Par Gérard Borvon
_____________________________________________________________________
Jean-Baptiste Van-Hemont, Stephen Hales, Joseph Black, Henry Cavendish, Joseph Priestley, Charles Bonnet, Jan Ingenhousz, Jean Senebier, Horace-Bénédicte de Saussure, Antoine de Lavoisier, sont les personnages de cette quête d'un corps, le dioxyde de carbone, dont nous savons aujourd'hui qu'il est à l'origine de la vie, telle qu'elle s'exprime en ce moment sur la Terre, mais aussi source du dérèglement climatique provoqué par l'usage abusif du carbone fossile issu lui même de processus vitaux.
Jean-Baptiste Van-Helmont (1579-1644) et le gas silvestre.
Il considère que tous les corps sont constitués d'un seul élément : l'eau. Il observe, cependant, que tous ne se transforment pas immédiatement en eau. L’exemple le plus remarquable est celui du charbon dont il affirme que, pendant sa combustion, il libère un " esprit sauvage nommé gas ". Cet esprit constituerait d’ailleurs l’essentiel du charbon, car, dit-il "soixante deux livres de charbons consumés ne laissent guère plus d’une livre de cendres. Donc les soixante livres de surplus ne seront qu’esprit".
________________________________________________________________________
Stephen Hales (1677-1761). Quand l’air se transforme en pierre !
Connu comme chimiste et physiologiste, Stephen Hales communique en 1727, à la Société Royale de Londres, le résultat de ses expériences sur la physiologie des végétaux. Il considère que l'air est le principal constituant des plantes.
Ses travaux initient une nouvelle façon de produire et de recueillir ce que nous désignons aujourd’hui par le mot "gaz".
Buffon qui a lu sa communication trouve indispensable de la traduire. Elle paraît en 1735 sous le titre : "La statique des végétaux et l’analyse de l’air".
Le traducteur est enthousiaste. "L’Angleterre produit rarement d’aussi bonnes choses", écrit-il. "La nouveauté des découvertes et de la plupart des idées qui composent cet ouvrage, surprendra sans doute les Physiciens. Je ne connais rien de mieux dans son genre, et le genre par lui-même est excellent". Il note en particulier le passage sur l’air qui est "le plus bel endroit de son livre"
______________________________________________________________________
Joseph Black est né à Bordeaux, où ses parents étaient négociants en vins. Il s’inscrivit à l’Université de Glasgow à l’âge de dix-huit ans, et quatre ans plus tard partit terminer ses études de médecine à Édimbourg.
Il y est l’élève de William Cullen, médecin et professeur écossais. Celui-ci dispose d’un laboratoire bien équipé, en particulier pour les mesures des masses et des volumes gazeux.
A la demande de son professeur, il s’attache à étudier l’action et les propriétés chimiques de la "magnésie blanche" (carbonate de magnésium), utilisée comme laxatif. Cette étude l’amène à étudier, de façon quantitative, la calcination de la craie et sa transformation en chaux vive.
_______________________________________________________________________
En 1766, il présente devant l’Association Royale de Londres une communication sur les airs factices.
Son exposé traite de l’air fixe tel que le définit Black, à savoir : "cette espèce particulière d’air factice qui est extrait des substances alcalines par dissolution dans les acides ou par calcination" (Philosophical Transactions, 1766, p141).
Si la description de l’air inflammable (notre hydrogène) constitue, par sa nouveauté, la partie la plus remarquable du travail de Cavendish, nous retiendrons qu’il multiplie également les expériences sur l’air fixe. Il l’obtient par l’action de l’esprit de sel (l’acide chlorhydrique) sur le marbre. Il en étudie la solubilité dans l'eau et en mesure la densité.
_______________________________________________________________________
Joseph Priestley (1733-1804), quand les plantes purifient l’air.
Les plantes ne fonctionnent pas comme les animaux !
Il est connu que quand on enferme une bougie dans une enceinte pleine d’air, celle-ci fini par s’éteindre. De même un animal y meurt rapidement. Mais que se passe-t-il quand on y met une plante ? Va-t-elle dépérir à son tour ?
"On pourrait imaginer, écrit Priestley, que comme l’air commun est autant nécessaire à la vie végétale qu’à la vie animale, les plantes comme les animaux devraient être affectés de la même manière. J’avais moi-même cette intuition quand je mis pour la première fois un plan de menthe dans un flacon de verre renversé sur une cuve à eau. Mais quand il a continué à y pousser pendant quelques mois, je trouvai que l’air du flacon n’éteignait pas une chandelle et qu’il n’avait aucun effet négatif sur une souris que j’y avais mise."
Priestley mesure l’importance de l’observation.
"Je me flatte, écrit-il, d’avoir découvert accidentellement une méthode pour restaurer l’air qui a été pollué par la combustion des chandelles et d’avoir découvert un des remèdes que la nature emploie dans ce but. C’est la végétation.
Par quel procédé la nature agit-elle pour produire un effet aussi remarquable, je ne prétends pas l’avoir découvert, mais nombre de faits se déclarent en faveur de cette hypothèse".
_______________________________________________________________________
Charles Bonnet, né le 13 mars 1720 à Genève et mort le 20 mai 1793 dans la même ville est un naturaliste et philosophe suisse. On le connaît surtout pour ses études sur les insectes et sa description de la parthénogenèse chez le puceron.
En 1754 il publie ses "Recherches sur l’usage des feuilles dans les plantes".
S’inspirant des études de Stephen Hales, il souhaite étudier la nature des échanges dans les feuilles et en particulier la façon dont elles participent à l’absorption de l’eau. Les deux faces d’une feuille sont différentes, "la surface supérieure est ordinairement lisse et lustrée" observe-t-il, "la surface intérieure au contraire est pleine de petites aspérités ou garnies de poils courts", il imagine donc une série d’expériences à partir d’une hypothèse :
"Ces différences assez frappantes ont sans doute une fin. L’expérience démontre que la rosée s’élève de la terre. La surface inférieure des feuilles, aurait-elle été principalement destinée à pomper cette vapeur et à la transmettre dans l’intérieur de la plante ? "
Pour y répondre, il imagine d’observer le comportement de feuilles disposées à la surface de l’eau en alternant les faces en contact avec le liquide. Celui-ci est contenu dans le récipient qui lui semble le mieux adapté par la largeur de son col : un poudrier.
"Au commencement de l’été de 1747, j’introduisis dans des Poudriers pleins d’eau, des rameaux de vigne. Ces rameaux appartenaient au cep planté dans le milieu d’un jardin.
Dès que le soleil commença à échauffer l’eau des vases, je vis paraître sur les feuilles des rameaux, beaucoup de bulles semblables à de petites perles. J’en observais aussi, mais en moindre quantité, sur les pédicules et sur les tiges.
Le nombre et la grosseur de ces bulles augmentèrent à mesure que l’eau s’échauffa davantage. Les feuilles en devinrent même plus légères ; elles se rapprochèrent de la superficie de l’eau".
_______________________________________________________________________
Jan Ingenhousz (ou Jan Ingen-Housz) est un médecin et botaniste britannique d’origine néerlandaise, né le 8 décembre 1730 et mort le 7 septembre 1799.
Il publie en 1779, à Londres ses "Expériences sur les Végétaux" avec comme sous-titre : "Spécialement sur la propriété qu’ils possèdent à un haut degré, soit d’améliorer l’air quand ils sont au soleil, soit de le corrompre la nuit, ou lorsqu’ils sont à l’ombre".
Le livre en français est publié pour la première fois dans l’été 1780, puis plusieurs fois réédité, notamment en 1787. Il sera ultérieurement traduit en hollandais et allemand.
Le sous-titre est explicite. Il connait les travaux de Priestley, dont il fait un éloge prononcé. Il lui reconnaît le mérite d’avoir montré que les plantes pouvaient purifier l’air vicié dans lesquelles on les plaçait. Il revendique, par contre, celui d’avoir montré le rôle de la lumière solaire dans ce phénomène, ce que n’avait pas vu Priestley.
Il montre aussi que pendant la nuit, les plantes respirent en dégageant du CO2.
_______________________________________________________________________
Jean Senebier (1742-1809) est bibliothécaire à Genève et particulièrement intéressé par les sciences, en particulier la biologie. Il connaît les travaux de Priestley, Bonnet et Ingenhousz sur la "respiration" des plantes et s’emploie lui-même à les reprendre et à les développer.
Il publie ses résultats dans des "Mémoires physico-chimiques sur l’influence de la lumière solaire pour modifier les êtres des trois règnes de la nature, et surtout ceux du règne végétal (1782)" suivis des "Recherches sur l’influence de la lumière pour métamorphoser l’air fixe en air pur par la végétation (1783)".
L’émission d’air pur serait "le résultat de la conversion de l’air fixe, opéré par l’action de la végétation" qui séparerait le phlogistique de l’air fixe pour en alimenter la plante, et qui en chasserait l’air pur "comme un excrément inutile".
________________________________________________________________________
Dans un mémoire lu le 3 mai 1777 à l’Académie des Sciences, Lavoisier traite des "expériences sur la respiration des animaux et sur les changements qui arrivent à l’air en passant par leurs poumons".
Chacun connaît l’importance de la respiration pour le maintien de la vie humaine et pourtant, nous dit Lavoisier, "nous connaissons peu l’objet de cette fonction singulière". Cet "objet", c’est l’air mais, ajoute-t-il, "toutes sortes d’air, ou plus exactement toutes sortes de fluides élastiques, ne sont pas propres à l’entretenir, et il est un grand nombre d’airs que les animaux ne peuvent respirer sans périr".
Le travail de Lavoisier constitue la dernière étape vers la connaissance de la nature et des propriétés du dioxyde de carbone.
________________________________________________________________________
pour aller plus loin voir :
Dérèglement climatique, fonte des glaces, cyclones, sécheresses…
Coupable : le dioxyde de carbone.
Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.
L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.
L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.
Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.
Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
Seront-ils entendus ?
__________________________________________________________