Overblog
Suivre ce blog Administration + Créer mon blog
1 mai 2017 1 01 /05 /mai /2017 08:39

par Gérard Borvon

22 avril 2017, des milliers de personnes dans le monde marchent pour la science en réponse à l'hostilité de certains milieux politiques à l'égard des sciences. L'appel issu des USA a été relayé en France par de nombreux scientifiques. Dans une tribune publiée dans Le Monde, plusieurs d'entre eux expliquaient la démarche :

 

"Depuis le 20 janvier 2017 et l’investiture de Donald Trump, chaque jour amène son lot d’annonces fracassantes et de décrets liberticides. Les sciences, et plus généralement le monde académique, font partie des premières cibles de la nouvelle administration. Une hostilité idéologique à l’égard des sciences s’exprime désormais dans la doctrine officielle de la Maison Blanche. Le président Trump a ainsi dès les premiers jours cherché à contrôler les programmes de recherche susceptibles de recevoir des crédits fédéraux, et restreint la diffusion des résultats de grandes agences fédérales comme l’Agence pour la Protection de l’Environnement (EPA), à la tête de laquelle a été placé un climatosceptique proche des lobbies de l’énergie."

 

Mais le problème débordait largement des USA, la France elle même n'était pas épargnée. Nous y avions aussi nos scientificoscepticles.

 

"Si la négation des résultats scientifiques (issus des sciences de la nature comme des sciences humaines et sociales) est pour l’heure moins développée en France qu’aux États-Unis, les motifs d’inquiétude n’en restent pas moins nombreux. Cela concerne des prises de position répétées de nos responsables politiques : du haro sur la soi-disant « culture de l’excuse » des sciences humaines et sociales au retour du « roman national » dans les programmes d’histoire, jusqu’aux sorties de route climatosceptiques d’un ancien Président de la République, sans oublier l’intronisation du moteur diesel « au cœur de la mobilité environnementale ». Les orientations « stratégiques » de l’État sur la recherche et l’enseignement supérieur ces dernières années sont une autre source de préoccupation. Dans la maigre part consacrée aux sciences des programmes politiques des principaux candidats à la prochaine élection présidentielle de 2017, et ce quel que soit leur bord, celles-ci ne comptent qu’à travers leur mise au service de l’innovation et de l’« économie de la connaissance ». Cette vision étriquée et à court-terme contribue à l’affaiblissement des recherches fondamentales, menées sur le long terme, qui seules permettent de suffisamment comprendre notre monde et nos sociétés pour détecter et aider à anticiper ses évolutions futures.

 

Aux États-Unis, en France et partout ailleurs, les sciences doivent être remises au cœur du débat public. Marcher en nombre, comme ont décidé de le faire les scientifiques états-uniens, et ceux d’au moins huit pays européens, est un moyen d’y parvenir. La Marche citoyenne pour les Sciences en France initiée le 27 janvier participe de ce mouvement international. Synchronisée dans plusieurs villes de France où des comités locaux sont en cours d’organisation, elle rassemblera le 22 avril prochain toutes les citoyennes et tous les citoyens qui estiment que, dans notre démocratie, la reconnaissance de la démarche scientifique fondée sur la collecte, la vérification, et l’analyse rationnelle de faits et la garantie de son indépendance vis-à-vis des pouvoirs en place sont des enjeux essentiels. Hasard du calendrier, cette grande manifestation aura lieu la veille du premier tour de la présidentielle. C’est une formidable opportunité de montrer que sciences et démocratie forment un couple inséparable." 

 

__________________________________________

 

 

Londres 1772. Joseph Priestley publie "Experiments and Observations on different kinds of Air". Un ouvrage fondamental sur le chemin de la découverte de nombreux gaz dont, en particulier, l'oxygène. L'auteur à conscience de la hardiesse de ses découvertes. Il y aurait donc "plusieurs sortes d'airs" et non pas cet élément unique issu de la physique des quatre éléments de Empédocle, Platon et Aristote. Nous lisons dans l'introduction de la traduction française de son ouvrage : "Je passerai pour un Enthousiaste chez quelques-uns, mais je m'embarrasse fort peu de cette imputation, parce que je trouve mon bonheur dans les vues  qui m'y exposent."

 

Nous avons aussi nos "Enthousiastes". Eux aussi nous parlent de l'air. Ils sont membres du GIEC et nous alertent sur cette découverte de la fin du 20ème siècle : l'activité humaine a enrichi l'atmosphère de cet "air" que Priestley désignait comme "air fixe" car il savait déjà qu'on le trouvait "fixé" dans les calcaires d'où il pouvait être extrait par l'action des acides et dans les végétaux, libéré par la combustion, la putréfaction ou la fermentation. Cet "air fixe" que de puis Lavoisier on désigne sous le nom de dioxyde de carbone et que, avec Berzéluis, nous résumons dans la formule CO2.. Ce gaz, à l'origine de la vie sur terre, dont l'excès aujourd'hui menace l'équilibre biologique de la Planète.

 

Mais pourquoi citer Priestley au moment où des scientifiques marchent pour la science ? Parce que, lui même, dans l'introduction de son ouvrage s'insurge contre ces politiques si dédaigneux des sciences. Plus de deux siècles nous séparent, et pourtant quelques vérités nous rassemblent et méritent d'être rappelées.

 

Lisons Priestley. Il s'adresse aux personnes "qui affectent de parler avec un mépris arrogant" des ouvrages scientifiques. Parmi ceux-ci les "personnes distinguées par leur rang ou par leur fortune" qui, essentiellement attirées par les carrières politiques font peu de cas des sciences. Pourtant leur dit-il :

 

"Si l'on veut acquérir une réputation étendue & durable, les travaux littéraires, & surtout les travaux scientifiques sont préférables aux travaux politiques à bien des égards. Ceux-là sont d'autant plus favorables au développement des facultés humaines que le système de la nature est au-dessus de tout système politique.

Si l'on considère l'utilité la plus étendue, les sciences ont le même avantage sur la politique. Les grands succès dans cette dernière s'étendent rarement au delà d'un état particulier & d'un temps limité ; tandis qu'un travail heureux dans les sciences rend un homme le bienfaiteur de tout le genre humain et de tous les siècles. La réputation du plus grand homme d'Etat que ce pays ait jamais produit, est-elle comparable à celle des Bacon, des Newton ou des Boyle ? & n'avons-nous pas de plus grandes obligations à des hommes pareils qu'à tout ce qu'il y a de plus illustre dans la Biographie Britannique ? Chaque région où les sciences ont fleuri peut fourni des exemples semblables".

 

Nous avons, nous aussi, la chance d'habiter une de ces régions "où les sciences ont fleuri".  Les noms de Descartes, de Lavoisier, de Laplace, d'Ampère, de Pasteur, de Becquerel, de Curie, et déjà de quelques-uns de nos contemporains, ont franchi nos frontières et sont devenus des repères durablement inscrits dans cette nouvelle culture "sans frontière" qui irrigue la Planète. Mais qui, dans le monde, se souviendra d'un Sarkozy ou d'un Hollande et même d'un De Gaulle ou d'un Mitterrand ?

 

 

Partager cet article
Repost0
1 février 2017 3 01 /02 /février /2017 12:33

En 1956, année du centenaire de sa naissance, le nom de Tesla, Serbe né à  Smiljan dans l'actuelle Croatie, est donné à l'unité d'induction magnétique (symbole T) à l'occasion d'un congrès international des électriciens tenu à Munich. Il rejoint ainsi le groupe prestigieux des Volta, Ampère, Faraday, Ohm, Coulomb, Joule, Watt, Henry, Weber... Cet honneur posthume, certainement ne l'imaginait-il pas au moment de sa mort, seul et oublié dans un hôtel de New York. Pourtant, la mesure des champs magnétiques ayant pris une telle importance dans le monde contemporain, qui peut, aujourd'hui, ignorer le nom de Tesla ?

Ses compatriotes ne l'ont pas oublié et le musée Tesla à Belgrade est l'un des plus fréquentés de Serbie.

Salle du musée Tesla à Belgrade.

Quel héritage retenir ?

La plupart des savants dont le nom a été retenu par l'Histoire ont eu une multitude d'intérêts et sont à l'origine de plusieurs découvertes, pourtant chacun symbolise un moment de l'histoire de sa discipline. La pile pour Volta qui était aussi un chimiste de renom. Les effets magnétiques des courants pour Ampère qui a pourtant consacré plus de son temps à des écrits de nature philosophique. La notion de résistance pour Ohm et la fameuse loi connue de tous : U=R.I, l'équivalence travail/chaleur pour Joule... deux savants qui ont abordé bien d'autres sujets.

Que retenir de Tesla ? Bien sûr Tesla s'est illustré dans le domaine des ondes électromagnétiques ouvert par Hertz. Oui, dans d'autres circonstances on aurait dû lui reconnaître le titre d'inventeur  de la transmission sans fil attribué à Marconi. Il a acquis une extraordinaire mais éphémère notoriété par la création des courants à haute fréquence et les démonstrations extraordinaires qui font encore sa célébrité.

 

La découverte qui l'a réellement révélé et que personne ne lui a jamais disputée est celle des "champs tournants" et de leur application aux moteurs fonctionnant aux courants alternatifs biphasés et triphasés. A juste titre, la superbe statue de Zénobe Gramme reçoit les visiteurs du Musée des Arts et Métiers à Paris mais n'oublions pas que ce sont les moteurs inventés par Tesla qui sont aujourd'hui les plus utilisés.

 

Se souvenir de Tesla, c'est d'abord associer son nom à cette belle et si utile découverte. Il reste aux enseignants, au moment où ils introduisent l'unité de champ magnétique dans leur programme, ou, dans les classes techniques quand ils abordent la notion de "champ tournant" et découvrent les génératrices et moteurs à courants alternatifs triphasés, de rappeler qui était Tesla et ce que notre civilisation électrique lui doit.

Alternateur polyphasé de Tesla à l'exposition de Chicago en 1893.

__________________________________________________________________

Voir aussi :

Faut-il réhabiliter Nikola Tesla ?

Alternatif ou continu ? Produire et transporter l'électricité.

Textes et documents.

Document pédagogique.

__________________________________________________________________

Pour aller plus loin

Émanation, fluide, particule, onde… quelle est l’identité de cette chose insaisissable mais bien présente dont la quête remonte à vingt-cinq siècles et dont la réalité nous échappe dès qu’on pense l’avoir cernée ?

 

 

Partager cet article
Repost0
28 janvier 2017 6 28 /01 /janvier /2017 08:07

                   Une émission de France Culture.                         La Méthode scientifique

 
"Qui était Nicolas Tesla ? Quelles ont été ses grandes inventions à l’époque ? Comment a t-il fait évoluer le contexte industriel électrique et changé radicalement l’industrie électrique ? Quelle a été la nature de sa relation avec le célèbre Thomas Edison ? "
 
Telle est la question que posait Nicolas Martin en introduction de son émission  du 26 janvier 2017 consacrée à Tesla.
 

 

" Si l’on en croit les biographies qui lui sont consacrées, il était « L’homme qui a éclairé le monde », voire carrément « l’homme qui inventa le XXème siècle ». Il est l’inventeur du courant alternatif, de l’électricité moderne, certainement des premières ondes radio, de la notion de télécommande et même d’une certaine façon de l’idée du wifi et des armes à énergie dirigées. Savant fou, perclus de TOCs, insomniaque chronique, profond humaniste, il a terminé sa vie ruiné et misérable dans une chambre d’hôtel à New York. Bref, Nikola TESLA a tout du savant maudit et un destin proprement shakespearien.

Pourquoi faut-il réhabiliter Nikola Tesla ? C’est le problème qui va occuper La Méthode scientifique dans l’heure qui vient.

Et pour effectuer cette entreprise de réhabilitation, La Méthode scientifique a le plaisir d’accueillir Ilarion Pavel, ingénieur en chef des Mines, chercheur au laboratoire de physique théorique de l’École Normale Supérieure et Gérard Borvon, enseignant en physique, vous avez publié « L’histoire de l’électricité, de l’ambre à l’électron » aux éditions Vuibert.

« L’homme qui a éclairé le monde », « L’homme qui inventa le XXème siècle », est-ce que, comme souvent dans des entreprises de réhabilitation, on ne va pas un peu trop loin dans le sens inverse ? Ou est-ce que Nikola Tesla est vraiment un génie de cette envergure, trop longtemps tombé dans l’oubli ? "

Voir la suite et écouter ...

__________________________________________________________________

Et si nous répondions à la question : Faut-il réhabiliter Nikola Tesla ?

Y avons nous clairement répondu au cours de cette émission ?

Et tout d'abord, n'est-il pas déjà réhabilité ?

En 1956, année du centenaire de sa naissance, son nom est donné à l'unité d'induction magnétique (symbole T) à l'occasion d'un congrès international des électriciens à Munich. Il rejoint ainsi le groupe prestigieux des Volta, Ampère, Faraday, Ohm, Coulomb, Joule, Watt, Henry, Weber... La mesure des champs magnétiques ayant pris une telle importance dans le monde, qui peut ignorer le nom de Tesla ? Honneur posthume  certes mais c'est aussi le cas pour ses prédécesseurs et certainement n'imaginait-il pas, au moment de sa mort, qu'il serait ainsi distingué.

Ses compatriotes ne l'ont pas oublié et le musée Tesla à Belgrade est l'un des plus fréquentés de Serbie.

Salle du musée Tesla à Belgrade.

Quel héritage valoriser ?

La plupart des savants dont le nom a été retenu par l'Histoire ont eu une multitude d'intérêts et sont à l'origine de plusieurs découvertes, pourtant chacun symbolise un moment de l'histoire de sa discipline. La pile pour Volta qui était aussi un chimiste de renom. Les effets magnétiques des courants pour Ampère qui a pourtant consacré plus de son temps à des écrits de nature philosophique. La notion de résistance pour Ohm et la fameuse loi connue de tous : U=R.I, l'équivalence travail/chaleur pour Joule... deux savants qui ont abordé bien d'autres sujets.

Que retenir de Tesla ? "Quelles ont été ses grandes inventions à l’époque ? Comment a t-il fait évoluer le contexte industriel électrique et changé radicalement l’industrie électrique ?" Telle était la question initiale à laquelle nous étions invités à répondre. Bien sûr Tesla s'est illustré dans le domaine des ondes électromagnétiques ouvert par Hertz. Oui, dans d'autres circonstances on aurait pu lui reconnaître le titre d'inventeur  de la transmission sans fil attribué à Marconi. Une découverte que personne ne lui a jamais disputée est celle des "champs tournants" et de leur application aux moteurs fonctionnant au courant alternatif. A juste titre, la superbe statue de Zénobe Gramme reçoit les visiteurs du Musée des Arts et Métiers à Paris mais ce sont les moteurs inventés par Tesla qui actionnent aujourd'hui les TGV qui nous font traverser la France à 300km/h. Pourquoi ne pas associer son nom à cette belle et si utile découverte.

Se souvenir de Tesla.

Il reste aux enseignants, au moment où ils introduisent l'unité de champ magnétique dans leur programme, ou, dans les classes techniques quand ils abordent la notion de "champ tournant" et découvrent les génératrices et moteurs à courants alternatifs triphasés, de rappeler qui était Tesla et ce que notre civilisation électrique lui doit.

Alternateur polyphasé de Tesla à l'exposition de Chicago en 1893.

___________________________________________________________________

Voir aussi :

Alternatif ou continu ? Produire et transporter l'électricité.

Textes et documents.

Document pédagogique.

___________________________________________________________________

Partager cet article
Repost0
18 décembre 2016 7 18 /12 /décembre /2016 10:33

Par rennesensciences dans Vidéos le

 

Le 23 novembre 2016, notre ami Gabriel Gorre nous a présenté, lors d'une conférence-expérience sur la "Chambre à brouillard".

Selon les mots d'Ernest Rutherford il s'agit du "plus original et plus merveilleux instrument expérimental". Il permet de détecter et de visualiser les émissions radioactives.

 

Merci à Florence et Gabriel !

 

 

Voir la vidéo

Partager cet article
Repost0
29 septembre 2016 4 29 /09 /septembre /2016 12:29
Partager cet article
Repost0
23 septembre 2016 5 23 /09 /septembre /2016 12:56

Par Gérard Borvon.

 

Décembre 2016, Jean Michel Jarre célèbre 40 ans d'Oxygène.

 

1976. En Bretagne débutait la mobilisation contre un projet de centrale nucléaire à Plogoff dans la Pointe de Raz.

 

Et voilà ce titre qui nous parle d'écologie. Et voilà ces vagues de sons électroniques qui rompent avec tout ce qui a été entendu jusqu'alors. Et voilà cette pochette de Michel Granger, ce crâne encore saignant sortant du bleu de la Planète Terre.

 

Avec Jean Michel Jarre un mot de la chimie entrait dans le domaine du rêve, de la poésie. Je m'en suis souvenu en écrivant une "Histoire de l'Oxygène, de l'alchimie à la chimie". Le livre s'ouvre sur Empédocle, philosophe grec du 4ème siècle avant notre ère, qui initie la théorie des quatre éléments sous une forme poétique. Il se termine, ci dessous, avec Jean Michel Jarre qui, peut-être sans que j'en sois conscient, m'a servi de fil conducteur dans ce récit.

 

 

 

1976. Les harmonies électroniques d'un compositeur français s'envolent à travers la Planète. "Oxygène" fait connaître Jean Michel Jarre.

 

Le titre n'est pas anodin, pas plus que l'illustration de la pochette du disque : un crâne humain perçant l'épiderme de la planète bleue.

 

Inutile de s'interroger, un message écologique est contenu dans ce titre. Ce que revendique le compositeur lui-même. Dans un interview publié dans un journal parisien, il confirme que l'écologie est pour lui "une préoccupation quotidienne, qui inspire ses plus grands succès". Une préoccupation qu'il manifeste dans ses œuvres elles-mêmes mais aussi dans les lieux où il les produit : au pied des pyramides, au Mont Saint-Michel ou au Danemark dans un champ de 45 éoliennes. A l'évidence sa musique est faite pour les grands espaces aériens.

 

Le succès de Jean Michel Jarre nous fait savoir que le mot "oxygène" habite déjà l'inconscient collectif.

 

 

De Lavoisier à Jean-Michel Jarre.

 

"Le mot doit faire naître l'idée" déclarait Lavoisier. Incontestablement, le mot "oxygène" fait naître des idées.

 

Mais, ajoutait-il, "ce sont les mots qui conservent les idées et qui les transmettent". L'affirmation était hasardeuse, peu de gens se souviennent encore de l'idée, éphémère, à l'origine du mot oxygène.

 

En choisissant le nom de leur troupe, les acteurs du "Théâtre Oxygène" ne souhaitent certainement pas nous faire savoir qu'ils veulent "générer de l'acidité". Pas plus que les danseurs de la "Compagnie oxygène" qui promettent "de l'Humour, de la Nostalgie, du Rythme…". Ou que les membres de l'association Bulles d'oxygène qui déclarent vouloir rapprocher les cultures et les générations.

 

Leur oxygène est, comme celui de Jean Michel Jarre, générateur de vie, celle du corps comme celle de l'esprit.

 

Voyage en Oxygénie.

 

L'Oxygène, pour nos contemporains, est encore l'air vital des premiers chimistes. On peut vivre plus d'un mois sans nourriture, plus d'une semaine sans boire mais seulement quelques minutes sans oxygène. Rien d'étonnant, donc, à ce qu'on le gratifie d'une multitude de qualités.

 

De l'Oxygène on attend qu'il prévienne ou guérisse la plupart des maux de notre civilisation. Il donnera son nom à un centre de santé, un club de gymnastique, un fabricant de cycles, un parc aquatique, un sauna, un club de ski, un club de saut en élastique, un camping…

 

Ce nouvel élixir fait rêver à l'éternelle jeunesse. Des publicités nous invitent à aller consommer le "carburant indispensable pour faire fonctionner les cellules de votre corps" dans des "bars à oxygène".

 

L'Oxygène aère les poumons mais aussi l'esprit.

 

On ne compte plus les romans qui comportent le mot Oxygène dans leur titre.

 

Oxygène est le nom d'une station radiophonique, d'un atelier de création graphique, d'un organisme spécialisé dans des séminaires, d'une agence de communication.

 

"Donnez-moi de l'oxygène" est le cri de révolte de la chanteuse québécoise Diane Dufresne contre l'univers oppressant des villes.

 

Pour la chanteuse islandaise Björk "Chanter, c'est comme honorer l'oxygène".

 

L'Oxygène inspire les poètes. "Au seuil du millième millénaire nous nous nourrissons d’oxygène pur et de poésie." est le début d'un poème relevé sur internet.

 

L'oxygène inspire les cinéastes. Kislorod (Кислород, oxygène), est le titre d'un film russe présenté au public en 2008. Il se veut l'expression d'une nouvelle génération qui enfin respire. "L'oxygène pur" y est personnalisé par "une jeune fille rousse, libre et belle", une flamme vivante qui, nous dit le commentateur enthousiaste, "en imprégnant l'air d'amour, fait battre le cœur plus vite, respirer plus profondément et purement".

 

Oxygène recouvre aussi des fonctions bien plus "matérielles" : une agence de travail intérimaire, une agence immobilière, un salon de coiffure, un cabinet de recrutement en ressources humaines, un cabinet de marketing, un élevage de poissons d'eau douce, une entreprise de transports, une marque de chaussures. Bleu oxygène est une association pour l'insertion professionnelle. Le bleu de l'habit au travail se combinant à l'oxygène d'une deuxième chance.

 

A Lyon, la "Tour Oxygène" affiche orgueilleusement ses 115 mètres de haut, ses 28 étages, ses 28 794 m2, et sa surface à 80% vitrée.

 

La marque se vend bien. Des partis politiques prennent oxygène comme signe de ralliement, même s'ils ne sont pas toujours très "verts".

 

Où est le nouveau Bachelard qui écrira une psychanalyse de l'oxygène ? S'il existe il devra, aussi, s'interroger sur l'exception que ce corps constitue au sein d'une chimie devenue, pour beaucoup, sujet d'inquiétude.

 

Peur de la chimie ?

 

"Faut-il avoir peur de la chimie" est le titre du livre publié par la philosophe et historienne de la chimie, Bernadette Bensaude-Vincent (Les empêcheurs de penser en rond/Le Seuil, 2015).

 

Le texte en quatrième de couverture est sans ambigüité :

 

"De toutes les sciences modernes la chimie a le triste privilège d'être celle qui fait le plus peur. C'est sur elle que la crise de confiance du public envers la science semble se cristalliser."

 

Si l'industrie nucléaire a marqué l'opinion avec les catastrophes de Three Mile Island, de Tchernobyl et récemment de Fukushima, l'industrie chimique n'est pas en reste. Minamata, Bhopal, Seveso, AZF à Toulouse… sont autant de repères présents dans toutes les mémoires.

 

Aussi spectaculaires et dramatiques que soient ces accidents, il ne font pas oublier d'autres nuisances plus diffuses : les pesticides largement répandus et dont on connaît aujourd'hui les effets dévastateurs sur l'environnement et la santé humaine, les sacs plastiques qui s'accumulent en ilots flottants dans les océans et étouffent dauphins ou tortues Luth, les boues toxiques déversées dans les décharges africaines, les composants de l'électronique dont on se débarrasse dans les pays de l'Afrique et de l'Asie et qui empoisonnent les enfants qui les brûlent pour en extraire les métaux. On pourrait encore allonger cette liste.

 

Mais ce n'est pas la chimie qui en est responsable, répondent les promoteurs de l'industrie chimique, c'est l'usage que l'on fait de ses produits !

 

Est-il si simple de s'exonérer ? Quand la recherche des profits immédiats prime sur l'intérêt collectif tous les excès sont possibles. La résistance de l'industrie chimique et son activisme auprès des pouvoirs publics pour contrer toute tentative de limiter l'impact de ses produits sur l'environnement et la santé ne peut qu'inquiéter. La récente affaire du Médiator, "médicament" soupçonné d'avoir occasionné la mort de centaines de personnes, est sur ce point exemplaire.

 

Besoin d'oxygène ?

 

Devant ce constat l'envie nous vient de rappeler la déclaration de Lavoisier dans son mémoire de 1789 au moment où il établit la place essentielle de l'oxygène dans la vie animale.

 

Dans le silence de son laboratoire et de son cabinet, le scientifique peut, dit-il, "espérer, par ses travaux, de diminuer la masse des maux qui affligent l’espèce humaine ; d’augmenter ses jouissances et son bonheur, et n’eût-il contribué, par les routes nouvelles qu’il s’est ouvertes, qu’à prolonger de quelques années, de quelques jours même, la vie moyenne des hommes, il pourrait aspirer aussi au titre glorieux de bienfaiteur de l’humanité."

 

On peut imaginer que nombreux sont les chimistes qui souhaiteraient que cette image de leur discipline soit celle retenue par l'ensemble de leurs contemporains. Encore faudrait-il qu'ils et elles ne se sentent pas agressé(e)s à la moindre remise en cause. Ainsi, nous dit Bernadette Bensaude-Vincent, "les chimistes devraient-ils être les mieux préparés à prendre quelque distance par rapport aux réflexes de défense de leur spécialité pour s'ouvrir au débat politique" la chimie, ajoute-t-elle, "pourrait fournir désormais le modèle d'une science ouverte au politique, qui respecte le public autant que l'environnement".

 

Et si la chimie, comme notre société, avaient besoin d'oxygène ?

 

 

 

écouter

Partager cet article
Repost0
23 septembre 2016 5 23 /09 /septembre /2016 07:30

 

 

1976. En Bretagne débutait la mobilisation contre un projet de centrale nucléaire à Plogoff dans la Pointe de Raz.

 

Et voilà ce titre qui nous parle d'écologie. Et voilà ces vagues de sons électroniques qui rompent avec tout ce qui a été entendu jusqu'alors. Et voilà cette pochette de Michel Granger, ce crâne encore saignant sortant du bleu de la Planète Terre.

 

Avec Jean Michel Jarre un mot de la chimie entrait dans le domaine du rêve, de la poésie. Je m'en suis souvenu en écrivant une "Histoire de l'Oxygène, de l'alchimie à la chimie". Le livre s'ouvre sur Empédocle, philosophe grec du 4ème siècle avant notre ère, qui initie la théorie des quatre éléments sous une forme poétique. Il se termine avec Jean Michel Jarre qui, peut-être sans que j'en sois conscient, m'a servi de fil conducteur dans ce récit.

 

 

Partager cet article
Repost0
10 septembre 2016 6 10 /09 /septembre /2016 13:39

 

Ecouter l'émission de la Marche des sciences.

 

L'ambition de La Marche des Sciences fut de montrer que le passé éclaire l'avenir, que le scientifique ne vit pas dans sa tour d'ivoire et que le fossé traditionnel entre sciences et lettres, qui perdure encore aujourd'hui, pourrait être aboli.

Après sept ans d’histoire des sciences sur France Culture, et pour clore l’aventure, La Marche des Sciences consacre sa dernière émission à l'importance des sciences et de leur histoire dans la société d'aujourd'hui.

 

Partager cet article
Repost0
15 août 2016 1 15 /08 /août /2016 10:17

par Gérard Borvon

 

 

 

Carbone et CO2, Elixir ou Poison ?

 

Telle est la question que je pose en introduction du livre que j'ai écrit sous le titre "Histoire du carbone et du CO2" (Vuibert, 2013). Notre époque voit d'abord, et comment s'en étonner, dans le dioxyde de carbone libéré par l'activité humaine, le responsable de ce réchauffement de l'atmosphère qui perturbe l'ensemble de la Planète et met en danger de larges parts de l'Humanité.

 

 

Pourtant sans le dioxyde de carbone aucune vie n'existerait sur Terre et des générations de scientifiques ont été nécessaires avant que nous le comprenions. Transformer ce gaz dont ils ont eu tant de difficultés à faire valoir le rôle essentiel en une menace pour la vie ajoute au scandale de cet "anthopocène" dont on ne mesure pas encore où il conduira l'espèce humaine et les autres espèces vivantes avec lui.

 

Car la diabolisation du carbone n'est qu'un élément d'une question plus générale : faut-il avoir peur de la chimie ? (titre du livre de Bernadette Bensaude-Vincent, Seuil, 2005). Ou plus généralement, faut-il avoir peur des sciences ?

 

Question douloureuse pour qui a la passion des sciences, de leur histoire, de leur part de rêve, de la soif de connaître qu'elles alimentent, de la façon dont elles contribuent à nous libérer des vieilles peurs et des vieilles douleurs. Et pourtant la question est d'une brûlante actualité : les "sciences" font peur.

 

Un débat à la Sorbonne.

 

En mars 2013, s'est tenue à la Sorbonne une table ronde retransmise, par France-Culture, dans le cadre de l'émission "Science publique". Son thème : "La science est-elle le problème ou la solution ? ".

 

En introduction, Michel Alberganti, l'animateur, rappelait le contexte :

 

"Nous n’aurions pas eu l’idée de débattre d’un tel sujet il y a cent ans, ni même, sans doute, 50 ans, ni, peut-être, 30 ans. Mais en 1986, il y a 27 ans, s’est produite la catastrophe nucléaire de Tchernobyl. Et c’est peut-être à ce moment, plus encore qu’après la bombe atomique, que le doute a commencé à s’installer. Pour la première fois, une activité civile fondée sur la science et la technologie engendrait un drame humain de très grande ampleur. Avant même cet événement traumatisant, René Dumont avait plaidé en faveur des thèses qui allaient fonder le mouvement écologiste ".

 

Débattre de la science et de la vie il y a cent ans ?

 

Ayons la curiosité d'y aller voir. C'est justement il y a cent ans, le 1er avril 1913, que paraissait le premier numéro d'une revue promise à un long succès : "La Science et la Vie", devenu "Science et Vie".

 

 

Côté "Vie", on pouvait y lire un article sur "Les grands chirurgiens français d'aujourd'hui" ou encore un article sur les "petits agents de la mort", mouches, puces, moustiques… Et même, déjà, un article sur "La répression des fraudes alimentaire", avec une citation du professeur et académicien Paul Brouardel :

 

"Quand un homme a pris le matin, à son premier déjeuner, du lait conservé par l'aldéhyde formique, quand il a mangé à midi une tranche de jambon contenant du borax, accompagnée d'épinards verdis par du sulfate cuivre, quand il a arrosé cela d'une demi-bouteille de vin fuchsiné ou plâtré à l'excès, et cela pendant vingt ans, comment voulez-vous que cet homme ait encore un estomac ? ". Première alerte, donc, contre la "malbouffe".

 

Mais, dès les premières pages de la revue le lecteur avait été invité à suivre "La naissance, la vie et la mort d'un canon". La couverture de la revue représentait d'ailleurs l'usinage de ce fameux canon, avec, au premier plan, un officier, sabre au côté, surveillant l'opération.

 

Poursuivant leur lecture jusqu'aux dernières pages, un lecteur ou une lectrice, pouvaient également y lire un article de Gabriel Lippmann, prix Nobel de Physique en 1908. Celui-ci, sous le titre "La science et la vie", entendait montrer comment "la science joue dans notre vie un rôle immense" et à quel point "elle fait essentiellement partie de notre avenir comme de notre passé".

 

L'invention de la roue, du bateau, de l'imprimerie, ont, écrivait-il, "créé l'époque moderne". Mais il y ajoutait la poudre :

"Car il n'est pas jusqu'à l'artillerie qui ne soit un instrument de progrès, j'allais dire de paix et de progrès, à condition qu'elle soit de plus en plus savante".

 

Le discours était dans l'esprit du temps : la science devait être au service de la guerre et la guerre au service de l'industrie, du commerce… et de la science ! La démonstration qu'en faisait Lippmann mérite qu'on y jette un coup d'œil.

 

"Le boulet rond et le canon de bois, écrivait-il, ont suffit pour détruire le morcellement féodal et donner l'essor aux grandes nations. Aujourd'hui nous sommes plus avancés : nous avons une technique si perfectionnée que pour en tirer parti et surtout pour les perfectionner davantage, ce qui devient pour chacun une nécessité, il faut à chaque pays une foule de soldats suffisamment intelligents, d'officiers instruits, et par conséquent de corps savants et des écoles de haut enseignement bien organisées.

De plus, tout cela coûte horriblement cher, même en temps de paix. Aussi faut-il, pour porter le fardeau croissant des milliards, des revenus considérables ; c'est-à-dire une forte industrie ; c'est-à-dire un grand nombre d'industriels éclairés, de commerçants qui comprennent leur siècle ; il faut, en un mot, une classe bourgeoise cultivée".

 

A ce texte effarant d'un "savant", mettant la science au service du massacre qui allait, dans peu de temps, engloutir des millions d'hommes, il faut opposer le "discours à la jeunesse" de Jaurès, lu le 10 juillet 1903 devant les élèves du lycée d'Albi et la célèbre phrase :

"L’humanité est maudite, si pour faire preuve de courage elle est condamnée à tuer éternellement".

 

Un texte dont l'actualité ne peut nous échapper :

"? [.] J’ose dire, avec des millions d’hommes, que maintenant la grande paix humaine est possible, et si nous le voulons, elle est prochaine. Des forces neuves y travaillent : la démocratie, la science méthodique, l’universel prolétariat solidaire.

La guerre devient plus difficile, parce qu’avec les gouvernements libres des démocraties modernes, elle devient à la fois le péril de tous par le service universel, le crime de tous par le suffrage universel.

La guerre devient plus difficile parce que la science enveloppe tous les peuples dans un réseau multiplié, dans un tissu plus serré tous les jours de relations, d’échanges, de conventions ; et si le premier effet des découvertes qui abolissent les distances est parfois d’aggraver les froissements, elles créent à la longue une solidarité, une familiarité humaine qui font de la guerre un attentat monstrueux et une sorte de suicide collectif".

Dans le siècle qui allait suivre c'est, hélas, le sombre tableau dressé par Lippmann qui allait s'imposer.

 

Débattre il y a cinquante ans ?

 

En 1960 la première bombe atomique française explosait à Reggane, dans le Sahara algérien. Quinze ans plus tôt, le 18 octobre 1945, le général de Gaulle avait signé le décret de création du Commissariat à l'Energie Atomique, le CEA. C'était trois mois après l'explosion des bombes atomiques sur Hiroshima et Nagasaki. La presse avait alors titré sur une victoire de la science, et de la science française en particulier. "L'Amérique vient de révéler au monde une découverte scientifique qui est bien la plus sensationnelle du siècle", annonçait L'Humanité du 8 août 1945.

 

"La libération de l'énergie atomique, problème sur lequel se penchaient dès avant la guerre les physiciens les plus éminents de tous les pays, vient d'être réalisée. Son emploi dans la guerre contre le Japon, sous la forme d'une bombe dont la puissance est terrifiante, montre bien que cette découverte change la face de la guerre moderne. Elle peut aussi, dans peu d'années, changer la face économique du monde. Il convient aujourd'hui d'expliquer aussi clairement que possible ce qu'est cette énergie, d'où elle provient, et de situer la part qu'ont prise les savants français, et en particulier Frédéric Joliot-Curie, dans les travaux et les recherches qui ont permis cette conquête monumentale de l'homme".

 

Comme Jaurès en 1905, il fallait un Albert Camus pour sauver l'honneur des intellectuels français.

 

 

"Le monde est ce qu'il est, c'est-à-dire peu de chose. C'est ce que chacun sait depuis hier grâce au formidable concert que la radio, les journaux et les agences d'information viennent de déclencher au sujet de la bombe atomique", écrivait-il dans l'éditorial du journal Combat de ce même 8 août 1945.

 

"On nous apprend, en effet, au milieu d'une foule de commentaires enthousiastes que n'importe quelle ville d'importance moyenne peut être totalement rasée par une bombe de la grosseur d'un ballon de football. Des journaux américains, anglais et français se répandent en dissertations élégantes sur l'avenir, le passé, les inventeurs, le coût, la vocation pacifique et les effets guerriers, les conséquences politiques et même le caractère indépendant de la bombe atomique. Nous nous résumerons en une phrase : la civilisation mécanique vient de parvenir à son dernier degré de sauvagerie. Il va falloir choisir, dans un avenir plus ou moins proche, entre le suicide collectif ou l'utilisation intelligente des conquêtes scientifiques.

En attendant, il est permis de penser qu'il y a quelque indécence à célébrer ainsi une découverte, qui se met d'abord au service de la plus formidable rage de destruction dont l'homme ait fait preuve depuis des siècles. Que dans un monde livré à tous les déchirements de la violence, incapable d'aucun contrôle, indifférent à la justice et au simple bonheur des hommes, la science se consacre au meurtre organisé, personne sans doute, à moins d'idéalisme impénitent, ne songera à s'en étonner".

 

Oui, c'était bien la science qui s'était consacrée au meurtre organisé. Les promoteurs du projet Manhattan étaient bien des "savants", des "Prix Nobel".

 

Aujourd'hui, tout enseignant qui initie ses élèves aux mystères du noyau atomique, qui explique les phénomènes naturels que sont la radioactivité, la fission et la fusion nucléaire, ne peut chasser de son esprit le fait que la première apparition publique de la science nucléaire a été la mort immédiate et la souffrance prolongée de centaines de milliers de personnes.

 

Pourtant l'aventure de la découverte de la radioactivité mérite d'être enseignée : l'intuition de Becquerel étudiant la phosphorescence de l'uranium, la volonté et l'énergie de Marie Curie découvrant le Polonium puis le Radium, l'enthousiasme de Rutherford, de Bohr et de tous les physiciens qui ont éclairé la structure de l'atome, la pensée révolutionnaire de Einstein établissant le lien entre masse et énergie...

 

C'est encore cette découverte historique qui nous éclaire sur la nature de l'Univers : le big-bang, la formation des galaxies, des étoiles, des atomes… Toute cette science qui nous a appris, suivant une expression devenue célèbre, que nous sommes des "poussières d'étoiles", commence avec la découverte, il y a à peine plus d'un siècle, de la radioactivité et des phénomènes nucléaires.

 

Plus près de nous : le soleil dont la lumière est l'autre source de la vie terrestre. C'est, à nouveau, la physique nucléaire qui nous explique la libération d'énergie provoquée par les phénomènes de "fusion" au cœur de notre étoile. Mais comment en parler sans évoquer la folie humaine qui, en utilisant le même principe, a construit et disséminé les milliers de bombes dont une seule peut, en un instant, déclencher le cataclysme qui anéantira l'essentiel de la vie terrestre ?

 

Peut-on faire oublier le danger en affirmant que le nucléaire c'est aussi une énergie pour la paix.

 

Qui peut être dupe ? Les premières "piles atomiques" ont été construites pour produire les éléments nécessaires aux bombes. Les premiers "réacteurs nucléaires" ont équipé des sous-marins qui n'avaient rien de pacifiques. Les pays qui ont mis en place un programme de centrales électriques nucléaires sont aussi ceux qui avaient pour objectif premier la fabrication de bombes. Ceux qui cherchent à le faire aujourd'hui veulent surtout entrer dans le club fermé des "grands", ceux qui disposent de la menace nucléaire.

 

Atome pour la paix, nous disait-on. Atome sans danger, voulait-on nous faire croire. Et il y a eu Three Mile Island en 1979, Tchernobyl en en 1986, Fukushima en 2011. Alors oui, il est temps après un si long silence, que des amoureux des sciences, que des scientifiques disent stop !

 

A l'évidence les temps ont changé et il faut reconnaître que les scientifiques présents à la tribune du colloque de la Sorbonne le prouvaient en exprimant avec force ces "vérités qui dérangent".

 

Lanceurs d'alerte.

 

On y a parlé organisme génétiquement modifiés.

Le biologiste Jacques Testard y montrait que le problème n'avait rien de "scientifique" et que bien au contraire la démarche était clairement une "usurpation de la science" : "si on avait demandé à Darwin : "qu’est-ce que vous pensez de l’idée de fabriquer une plante qui va fabriquer son insecticide et donc détruire les insectes". Il aurait dit : "mais c’est stupide. En trois ou quatre ans les insectes auront muté et votre plante ne servira plus à rien. Il faudra en faire une autre et comme il vous faut dix à douze ans pour la fabriquer vous aurez toujours du retard sur la réalité". Donc on n’est pas dans la science."

 

Ailleurs, en Bretagne, des scientifiques lancent d'autres alertes. "OGM et Roundup danger ou pas ?" est le titre d'un article du journal Le Télégramme du 26 février 2013. On y annonce une conférence du professeur Robert Bellé, du laboratoire CNRS de Roscoff. Il avait été, dès 2002, le premier à publier dans la revue Nature, les résultats de son étude sur "la toxicité, à faible dose, des produits à base de Roundup".

 

Le Roundup est massivement utilisé dans la région depuis l'interdiction, en 2003, de l'atrazine. Il colore les champs en jaune-orangé au début du printemps. Il se concentre dans les eaux des rivières mais surtout il imprègne l'air pendant les périodes d'épandage. Le professeur Bellé et son équipe ont montré que cet herbicide perturbait à très faible dose, le développement des cellules et était donc un facteur potentiel de cancers et de malformations génitales.

 

Dans la région, on parle également de l'atrazine. Cet herbicide reconnu cancérigène, mutagène et tératogène (provoquant mutations et malformations génétiques), a bien été interdit depuis 2003, mais, faiblement biodégradable, on le trouve encore dans l'air et dans l'eau des rivières. Une équipe de l'INSERM de Rennes (Institut national de la santé et de la recherche médicale) a commencé à en traquer les effets, en Bretagne, chez les femmes enceintes, les nourrissons et les jeunes enfants. Les premiers résultats sont déjà alarmants.

 

"Pesticides durant la grossesse, bébé trinque", titrait le journal Ouest-France en décembre 2009. Les premiers résultats de l'étude avaient été publiés. Chez 95 % des 600 femmes testées, on retrouvait des traces d'insecticides organophosphorés ; chez 30 à 40 %, des traces d'herbicides de la famille de l'atrazine, utilisés dans la culture du maïs, interdits mais toujours présents dans l'environnement et l'eau. Quel est l'impact sur la grossesse ? L'étude montrait que, même à des niveaux faibles, leur présence "augmentait les risques d'anomalie de croissance dans l'utérus, avec un faible poids de naissance, qui pouvait être un handicap pour le développement du bébé, et un périmètre crânien plus petit, ce qui n'est pas bon pour le système nerveux central".

 

Retour à la Sorbonne.

 

On y a parlé effet de serre.

La recherche et l'exploitation des gaz de schiste est le débat du moment. "Ce que je n’aime pas dans les gaz de schiste c’est l’idée que, si on les exploite, on ne va plus se poser la question de la fin des énergies fossiles puisque le terme annoncé va être reculé non pas de 15 ou 20 ans mais de beaucoup plus" déclarait Etienne Klein, physicien au CEA, "du coup on va envoyer dans l’atmosphère tout le carbone que contient la croûte terrestre. Vous parliez du réchauffement climatique, voilà à mon avis un mauvais exemple de démocratie. Alors que les scientifiques après 40 années de recherches se mettent d’accord, on crée artificiellement une controverse qui permet de justifier un débat et d’entendre sur les ondes et à la télévision toutes sortes de choses qui permettent de ne pas croire ce que nous savons".

 

"Ne pas croire ce que nous savons" est devenu une des attitudes les plus caractéristiques de notre époque et d'habiles manipulateurs, armés d'un discours d'allure scientifique s'emploient à semer le doute.

 

On y a parlé nanotechnologie.

Le sujet nous ramène au carbone. La fibre de carbone est la première à avoir révélé ses extraordinaires propriétés. Associée à des résines dans des matériaux composites elle combine légèreté et résistance. Des cannes à pêche jusqu'aux navettes spatiales ses applications se sont multipliées. Plus étranges encore les fullerènes, ces très esthétiques sphères composées d'atomes de carbone. Le premier connu est composé de 20 atomes associés en 12 pentagones et de 20 hexagones. Sa figure ressemblant aux structures géodésiques de l'architecte Fuller, il en a hérité le nom de "fullerène" ou encore celui, plus populaire de "footballène" par analogie avec le ballon de football. Dans la même catégorie on peut ranger les nanotubes et récemment le graphène, couche monoatomique de carbone aux propriétés encore à peine explorées mais qui ajoute à celle des autres matériaux de nouveaux espoirs dans les domaines de l'électronique ou de la photonique. Comment ne pas comprendre l'enthousiasme des physiciennes et physiciens, jeunes pour la plupart, engagés dans ces recherches.

 

Mais comment également ne pas partager les inquiétudes de celles et ceux qui voient ces produits utilisés dans des applications, au mieux inutiles, au pire dangereuses. Car la particularité des fibres et nanoparticules, l'amiante nous l'a appris, est de se concentrer dans les organes humains et d'y provoquer des dommages que seul le temps révèle.

 

"La recherche scientifique est désormais largement orientée en fonction des intérêts du système oligarchique, tandis que les institutions publiques de contrôle de l'activité technique ont été systématiquement affaiblies", constate Hervé Kempf, journaliste au Monde (Fin de l'Occident, naissance du monde, Seuil, 2013). "C'est ainsi que les applications d'un phénomène nouveau sont mises en œuvre avant même que ses lois soient bien comprises. Les technologies dites nouvelles sont introduites dans l'espace commun sans qu'en aient préalablement été pesés les risques et inconvénients. Et quand les choses tournent mal, ce qui est fréquent, comme dans le cas des organismes génétiquement modifiés ou de l'énergie nucléaire, la responsabilité du désastre est supportée par la collectivité et non par les opérateurs privés".

 

A la Sorbonne, Etienne Klein rappelait que, concernant les nanoparticules, "il y a eu un débat qui s’est déroulé dans 18 villes de France par des conférences publiques pendant une période assez longue de six mois". Mais il constatait que seulement 3000 personnes s'étaient déplacées et qu'il n'y avait eu que 30 000 clics sur le site web de la CNDP (la Commission nationale de débat public) donc un intérêt faible. "Ce qu’a montré ce débat également c’est que la technologie c’est l’impensé du politique" ajoutait-il, "puisque pendant ces six mois aucun parti politique ne s’est intéressé au débat".

Politique, le mot était lâché.

 

Un problème de démocratie.

 

"Nos politiques ne sont pas du tout à la hauteur de la démocratie qu’ils prétendent diriger" confirmait Jacques Testard, "et s’il n’y a pas plus de monde dans les fameux débats démocratiques c’est simplement que les gens savent bien que cela ne mène à rien. C’est à dire que les jeux sont faits avant qu’on lance le débat". Et le biologiste de rappeler le débat sur la centrale nucléaire EPR de Flamanville en 2006. Alors que le débat était à peine lancé, le Premier ministre Dominique de Villepin annonçait : "étant donnée les avancées du débat public en cours, nous allons construire EPR à Flamanville". Cela montre "comment nos politiques prennent au sérieux des débats qu’ils ont eux-mêmes suscités", concluait Jacques Testard.

 

Un autre problème est souligné par Hervé Kempf : "les élites dirigeantes sont incultes. Formées en économie, en ingénierie, en politique, elles sont souvent ignorantes en science et quasi toujours dépourvues de la moindre notion d'écologie. Le réflexe habituel d'un individu qui manque de connaissances est de négliger voire de mépriser les questions qui relèvent d'une culture qui lui est étrangère, pour privilégier les questions où il est le plus compétent. Les élites agissent de la même manière. D'où, de leur part, une sous-estimation du problème écologique" (Comment les riches détruisent la planète, Seuil, 2007).

 

Incultes, ignorants en science… si désamour il y a, c'est visiblement vis-à-vis d'un système politique qui a oublié le sens du mot "démocratie".

Mais cette "inculture" est-elle uniquement celle de nos "élites" ? La façon d'enseigner les sciences n'est-elle pas, elle aussi, une des raisons du manque de culture scientifique de notre société en général ?

 

Cultiver les sciences.

 

En mars 2002, était publié un rapport sur la "Désaffection des étudiants pour les études scientifiques". Présenté par un ancien président de l'Académie des sciences, il répondait à une demande du ministère de l'Education Nationale et synthétisait les contributions de sommités du monde des sciences et de l'éducation.

 

Le constat n'était pas nouveau et avait déjà alimenté de nombreux débats : depuis plusieurs années les lycéens et étudiants boudaient les disciplines scientifiques et particulièrement la physique et la chimie. Diagnostic : enseignements qui mériteraient d'être "rendus plus attrayants" car consistant "trop souvent en un "pensum" pour les élèves", fossé culturel entre sciences humaines et sciences "dures". La difficulté des études et la "faible attractivité des carrières scientifiques en terme de salaires" est aussi notée. Mais on n'oublie pas la mauvaise image des sciences répandue dans la population :

 

"la Science et la Technologie sont présentées dans les médias, et surtout dans la presse, essentiellement comme étant la source de problèmes : on ne parle que rarement de la première pour montrer que son rôle est toujours nécessaire pour révéler et comprendre ces problèmes, ni de la seconde pour dire qu'elle seule peut apporter des solutions, lesquelles sont ensuite mises en œuvre, ou ne le sont pas…"

 

Les rédacteurs du rapport croyaient-ils vraiment réhabiliter la science et la technologie en affirmant qu'elles ont pour rôle de révéler et corriger les problèmes qu'elles avaient elles-mêmes créés ?

 

"On oublie, se défendaient-ils, qu'Internet ou le téléphone portable sont des conséquences du travail de physiciens, et les immenses succès de la science finissent par créer une sorte de saturation de l'émerveillement – tout en laissant subsister l'inquiétude, p. ex. devant l'absence d'une preuve absolue (évidemment impossible à obtenir) que le téléphone portable ne donne pas de tumeurs cérébrales…"

Présenter internet et le téléphone portable comme un "immense succès de la science" n'est-ce pas justement la meilleure façon de dénaturer les sciences et particulièrement la physique. Qu'y a-t-il de science dans le téléphone portable et qu'y a-t-il d'anti-science dans les inquiétudes des personnes habitant à proximité des antennes relais qui se multiplient ?

 

Les rédacteurs du rapport sont plus judicieux quand ils rappellent que, parmi les atouts méritant d'être mieux exploités, il y a le fait que "la pratique de la science est une activité ludique par excellence" même s'ils constatent que "malheureusement, ceci ne se révèle que tard…"

 

Et justement, là est le problème. Pourquoi faudrait-il accepter que le côté ludique des sciences ne se révèle que tard, c'est-à-dire trop tard ?

Et surtout croit-on vraiment répondre au problème en appliquant la proposition n°7 de la liste des 18 actions envisagées :

"dans le domaine de l'action dans les médias, étudier la possibilité d'une série de courts clips sur le thème du caractère ludique de la science : "La Science, c'est fun", ou "La Science, c'est le pied"…"

Fort heureusement, des émissions de "culture scientifique", attractives tout en étant sérieuses, existent déjà dans les programmes radiophoniques et télévisés. Il existe également de nombreuses collections et revues de culture scientifique de bonne qualité qui ont la faveur des lecteurs. Les musées des sciences sont de plus en plus " didactiques" tout en renforçant leur approche "ludique". Le Palais de la Découverte, à Paris, est un ancêtre qui n'a pas pris de rides. Des figures de "savants" s'illustrent avec éclats et alimentent un discours qui fait encore rêver de suivre leurs traces, du médiatique Hubert Reeves qui nous fait voyager à travers les étoiles jusqu'à Serge Haroche, récent prix Nobel, qui nous invite à découvrir les mystères du plus profond de la matière. Certains médias et "médiateurs" savent faire aimer la science.

 

Le problème est le fossé qui se creuse de plus en plus entre cette image brillante et l'ennui qui se distille trop souvent dans les cours de sciences, au lycée comme à la faculté.

 

Il ne saurait être question d'analyser ici les multiples causes de cette désaffection. Pour ce qui est de la physique et de la chimie, en classes scientifiques, on peut au moins noter la modification incessante des programmes. Chaque nouvelle génération d'inspecteurs généraux et chaque nouveau ministre de l'éducation, semblant vouloir apporter sa touche de "fun" au programme précédent, il en résulte un édifice incohérent que les enseignants de base ont bien du mal à faire tenir debout. Noter aussi le "bachotage" renforcé par cette mode stupide, lancée par les médias et reprise par les ministères de l'éducation, qui consiste à noter les lycées en fonction de leur pourcentage de reçus au baccalauréat. Au-dessous de 90% l'établissement est cloué au pilori. Pour y parvenir, dans les classes scientifiques, la méthode est simple : éliminer de l'enseignement tout ce qui n'est pas directement lié à la résolution d'exercices. Comment aimer les sciences avec un tel régime ?

 

Noter aussi, dans une société où chacun reconnaît la place essentielle prise par les sciences et les techniques, la nocivité de la frontière qui sépare l'enseignement "purement littéraire" de l'enseignement "purement scientifique". Pourquoi faut-il absolument priver les littéraires de sciences et les scientifiques de littérature ?

 

Rapide plaidoyer pour l'histoire des sciences.

 

La littérature scientifique ne pourrait-elle pas être un moyen d'amener les "littéraires" aux sciences et les "scientifiques" aux lettres ?

 

En 1926, Paul Langevin, publiait un texte sur "La valeur éducative de l'Histoire des sciences". Critiquant le dogmatisme et le conservatisme des manuels qu'il traitait "d'admirables catéchismes de science expérimentale" il leur opposait le style alerte des mémoires originaux.

Combien la remarque était juste. Se contenter d'un exposé magistral au sujet d'un scientifique des siècles passés, ou sur une expérience ancienne, peut ne servir à rien d'autre qu'à encombrer encore un peu plus un cours qui ne l'est déjà souvent que trop.

Prendre le temps de feuilleter un ouvrage vieux d'un ou deux siècles, lire de la science dans une prose ancienne, reproduire si possible les manipulations décrites, ont une toute autre dimension.

 

Où trouver ces ouvrages ? On ne sait pas assez que nombre de bibliothèques municipales, y compris de petites villes, ont dans leurs réserves des ouvrages du 18ème siècle arrachés par les révolutionnaires aux châteaux et aux monastères. Moins rares encore sont les revues scientifiques comme La Nature, l'Année scientifique, les Causeries scientifiques… auxquelles étaient abonnées les bibliothèques des municipalités des petites villes industrielles du 19ème siècle. Les rechercher est déjà une première démarche mais aujourd'hui ont les trouve largement numérisées et accessibles sur internet. Mention spéciale pour le site du Conservatoire des Arts et Métiers (http://cnum.cnam.fr/), celui de l'Académie des Sciences (http://www.academie-sciences.fr/) où ceux spécialisés sur Ampère (www.ampere.cnrs.fr) ou Lavoisier (www.cnrs.fr/lavoisier).

 

Nous ne prétendrons pas ici proposer, avec l'histoire des sciences et la littérature scientifique, "le" remède au désamour dont souffre l'enseignement scientifique, d'autant plus que cette désaffection a essentiellement des causes extérieures à l'enseignement. Mais qui pourrait nous reprocher d'en avoir évoqué l'intérêt en conclusion d'un livre qui a eu pour point de départ une histoire, celle du dioxyde de carbone.

 

Puisque nous avons évoqué internet, nous pouvons aussi noter à quel point cet outil offre une possibilité de "recyclage", voire même de formation initiale, pour celles et ceux qui, mesurant la force et l'intérêt des sciences, ne veulent pas en laisser l'usage aux seuls technocrates.

 

Les sciences remède à la technocratie ?

 

Si les sciences sont une espèce menacée, il semble qu'elles aient trouvé refuge dans la niche écologique constituée par les associations que l'on peut regrouper sous le terme "d'associations de protection de l'environnement" ou "d'associations écologistes". Chaque région en compte plusieurs dont la qualité scientifique ne peut, pour la plupart, être mise en doute. Il est même courant que des services publics leur sous-traite des études scientifiques "de terrain". La pratique s'est à ce point généralisée que le rapport de 2002 sur la "Désaffection des étudiants pour les études scientifiques" souhaite explicitement les enrôler dans le dispositif de revalorisation de l'enseignement scientifique officiel.

 

"Création sur la Toile d'un portail attrayant réservé aux sites de culture scientifique et technique, aux activités des Musées et des Clubs Scientifiques, Cafés des Sciences et associations de ce domaine, des Cafés des Sciences Juniors traitant pour les lycéens de sujets du type "Sciences et Citoyens", des sites étrangers voisins (notamment des sites francophones), des Expo-Sciences, etc".

 

Si ces associations occupent un terrain didactique abandonné par l'éducation nationale, beaucoup d'entre elles, et en particulier les plus importantes, se sont créées par la nécessité d'opposer un discours scientifique à une atteinte locale ou généralisée à leur environnement naturel ou humain. Elles peuvent être animées par des scientifiques professionnels, enseignants, chercheurs… mais le plus souvent par des autodidactes dont le bagage scientifique met à mal bien des "experts" officiels. Elles créent leurs "laboratoires indépendants" employant des ingénieurs et techniciens dotés des diplômes délivrés par l'Université. Elles ont leurs propres juristes qui se sont souvent formés au travers de luttes de terrain. Elles savent rechercher sur internet les sources fiables et échanger avec d'autres leurs propres productions.

 

C'est la Criirad (Commission de Recherche et d'Information Indépendantes sur la Radioactivité), et non pas un service de l'Etat, qui a informé les populations concernées de la nature et des risques des retombées radioactives après Tchernobyl et qui aide les ONG japonaises à s'équiper après la catastrophe de Fukushima. Le Criigen (Comité de Recherche et d'Information Indépendantes sur le Génie génétique) s'est créé sur le même principe.

 

Ces associations ont une caractéristique commune : elles ne rejettent pas les sciences. Bien au contraire la plupart de leurs animatrices et animateurs affichent leur amour des sciences. C'est par l'enrichissement de leur réflexion scientifique qu'elles entendent combattre les choix technocratiques qu'on leur impose.

 

Noter aussi que ce sont les associations qui soutiennent ces lanceurs d'alerte qui, issus du monde scientifique, sont trop souvent dénigrés par leur milieu d'origine. Exemple : ce sont essentiellement les associations qui popularisent les conclusions et propositions des scientifiques regroupés dans le GIEC (Groupe d'experts intergouvernemental sur l'évolution du climat) alors que d'autres "scientifiques" font valoir leurs titres académiques pour les combattre. Supprimer ?

 

 

"Une autre science est possible ! " est le titre d'un récent ouvrage de la philosophe des sciences, Isabelle Stengers. Elle y plaide pour une pour "une intelligence publique de la science" qui passerait par la collaboration entre "spécialistes" et "connaisseurs" et pour une culture scientifique "active" :

"une culture active implique la production conjointe de spécialistes et de connaisseurs avertis, capables d'évaluer le genre d'information qu'on leur donne, d'en discuter la pertinence, de faire la différence entre simple propagande et pari risqué.

L'existence de tels connaisseurs, ou amateurs, constitue pour les spécialistes un milieu exigeant, qui les contraint à entretenir avec ce qu'ils proposent un rapport "cultivé" – ils savent le danger de passer sous silence les points faibles, car ceux et celles à qui ils s'adressent feront attention aussi bien à ce qui est affirmé qu'à ce qui est négligé ou omis".

 

Les germes de la "science civilisée", pour laquelle plaide Isabelle Stengers, sont peut-être déjà en œuvre dans ces groupes de scientifiques critiques et dans ces associations.

Les germes de la "science civilisée", pour laquelle plaide Isabelle Stengers, sont peut-être déjà en œuvre dans cette convergence entre scientifiques critiques et "connaisseurs" associatifs.

 

 

Partager cet article
Repost0
14 août 2016 7 14 /08 /août /2016 20:13

Une industrie chimique des algues en Bretagne

par Gérard Borvon et les élèves du lycée de l'Elorn à Landerneau.

 

Ce texte est le résultat d'une recherche à la fois historique et pédagogique menée avec des classes de seconde du lycée de Landerneau entre les années 1995 et 2000.

 

C'est un travail historique : il montre l'évolution et la permanence d'une industrie liée aux algues en Bretagne depuis le début du 18ème siècle.

 

C'est un travail pédagogique avec pour objectifs :
- de sortir l'enseignement des murs de l'école.
- de faire participer les élèves à la construction de leur savoir.
- d'étudier un programme dans le cadre d'un projet.
- de situer une science et une technique, comme toute activité humaine, dans l'histoire et en particulier celle d'une région.

 

 

 

Vous y trouverez tous les dosages des éléments contenus dans les cendres d'algues. Les méthodes d'extraction de l'iode et des alginates. Les formules de masques de beauté et de moulages aux alginates. La recette d'un "flan" au "pioka". Le texte que nous présentons ici est une invitation à aller plus loin.

 

 

 

Une industrie chimique dans le Nord-Finistère

 

Le Nord-Finistère, en Bretagne, n'est pas particulièrement réputé pour son industrie chimique. Pourtant, depuis le 17e siècle, c'est à dire depuis le début de la chimie, une activité chimique y est menée, sans interruption, autour des algues.

 

L'industrie de la "soude" (carbonate de sodium) se développe d'abord. On extrait ce produit des cendres de goémons séchés. Il est indispensable à la fabrication du verre. Cette activité s'arrête à la fin du 18e siècle quand de nouveaux procédés sont découverts.

 

Elle reprend en 1829 après que le chimiste Bernard Courtois ait découvert, en 1812, un nouveau et utile produit dans les cendres d'algues : l'iode. L'iode est utilisée, en particulier, en photographie et en médecine. Sa production en Bretagne s'arrête en 1952 à cause de la concurrence de l'iode extrait des nitrates du Chili.

 

Aujourd'hui le relais est pris par l'extraction des alginates contenus dans les grandes laminaires.

 

 

En 1883 Edward Stanford isole l'algine des algues, plus tard le norvégien Axel Kefting en extrait l'acide alginique. La production à grande échelle commence en 1930. La Bretagne en produit environ 2000 tonnes dans les usines de Lannilis et Landerneau. Les alginates sont des agents épaississants et stabilisateurs qui interviennent aussi bien dans l'industrie pharmaceutique que dans l'industrie alimentaire ou celle du papier, des colorants ou des produits de moulage.

 

Plus confidentiels mais tout aussi riches d'intérêt sont les usages alimentaires, pharmaceutiques et cosmétiques des algues.De nombreux laboratoires, dans le Finistère, travaillent dans ces domaines pour des produits " haut de gamme " souvent destinés à l'exportation.

 

Cette ancienneté, cette richesse et cette diversité ont nourri les activités de plusieurs classes du lycée de l'Elorn à Landerneau. Ce site leur doit beaucoup. Il s'adresse à ceux qui voudraient s'inspirer de leur expérience mais aussi à tous ceux dont la curiosité aurait été éveillée par cette curieuse et attachante industrie.

 

La soude

 

En vous promenant sur les dunes du Nord-Finistère, vous ne pouvez manquer de rencontrer de longues tranchées tapissées de pierres plates. Les habitants du lieu vous dirons que ce sont les " fours à soude " des anciens goémoniers.

 

Pour le chimiste contemporain le mot " soude ", nom usuel de l'hydroxyde de sodium de formule NaOH, est déjà un archaïsme. La " soude " des goémoniers, quant à elle, évoque des temps encore plus reculés et désigne le carbonate de sodium (Na2C03). Dans un passé récent les droguistes savaient encore distinguer cette " soude du commerce " utilisée comme décapant banal de la " soude caustique " (l'hydroxyde de sodium) bien plus corrosive.

 

Un rapide coup d'œil dans un dictionnaire contemporain nous apprendra que le mot soude désigne également une plante des terrains salés appartenant à la famille des salsolacées qui comprend, entre autres, les salicornes. Le Larousse en trois volumes précisera même que le nom dérive de l'arabe " sunwäd ".

 

Un produit de la science arabe.

 

Ce sont bien les arabes qui ont introduit l'usage de la soude en Europe.

Depuis l'antiquité égyptienne, les populations du sud de la Méditerranée

 

Salicorne

 

savaient utiliser les propriétés des cendres des plantes terrestres riches en carbonate de potassium et celles des plantes marines contenant du carbonate de sodium. Le nom de " al kali ", par lequel les arabes désignaient ces plantes et leurs cendres, se retrouve dans le terme " alcalin " de la chimie récente. Ces cendres pouvaient être utilisées pour dégraisser les laines ou fabriquer des savons, elles entraient également dans la composition du verre.

 

Le verre, dont la découverte est attribuée aux égyptiens, est en effet un produit qui contient 70% de silice, 15% de chaux et 15% de soude ou de potasse.

 

Pour ceux que l'histoire du vocabulaire de la chimie intéresserait on peut signaler que, pour ces usages, les égyptiens de l'époque pharaonique utilisaient également les dépôts cristallins de carbonate de sodium déposés par évaporation sur les rivages des lacs Natron (Ouadi-Natroun), groupe de lacs à l'ouest du delta du Nil. Cette origine se retrouve dans le nom de natrium et le symbole Na retenus par la nomenclature internationale pour désigner ce que les chimistes français continuent à appeler sodium par référence à la soude.

 

On pourra noter également que le mot " kali " a donné le kalium de symbole K qui est le " potassium " de la nomenclature française. Cette autre exception française tire son nom du mot potasse, dérivé de l'allemand " Potasche " ou " Cendre de pot ". Ce terme a d'abord désigné le carbonate de potassium présent dans les cendres des végétaux terrestres et qui était utilisé, sous cette forme ou " lessivé " à travers un chiffon, pour la corvée de la " buée ", c'est à dire la " lessive " du linge sale. Le mot potasse désigne aujourd'hui l'hydroxyde de potassium.

 

De la salicorne à la soude.
 

Cette parenthèse étant refermée, il faut donc retenir que le carbonate de sodium extrait des cendres de plantes marines était une matière première indispensable aux industries du verre et du savon.

 

Aux 17e et 18e siècle la " pierre de soude " est un produit encore essentiellement importé d'Espagne. La soude d'Alicante est particulièrement réputée. Les arabes de l'époque andalouse ont introduit, dans cette région, la culture de la " Barille ", une variété de salicorne dont les cendres contiennent jusqu'à 30% de carbonate de sodium. Afin de rendre la France moins dépendante de ce pays parfois hostile, Colbert fera développer la culture de la salicorne et la fabrication de la " pierre de soude " sur les côtes françaises de la Méditerranée, inaugurant ainsi la vocation chimique de la région marseillaise.

 

La culture se fait sur les rives des étangs autour de Montpellier et Marseille. Les semailles sont faites en Février et Mars. La plante atteint la maturité fin Juillet, début Août, elle est alors jaune ou rouge et commence à sécher. On l'arrache, on la laisse faner comme le foin, on la bat avec des fléaux pour en recueillir la graine, elle est alors prête à être brûlée. Deux mille cinq cents quintaux d'herbes sèches donneront cent quintaux de " pierre de salicor ".

 

 

 

La combustion se fait dans une fosse circulaire de deux mètres cinquante de diamètre pour cinquante centimètres de profondeur tapissée de pierres. Le four est d'abord chauffé par des fagots de bois, la salicorne est ensuite jetée sur les braises en couches continues pendant trois heures environ. La cendre apparaît alors comme une masse en fusion qui est pétrie au moyen de perches de bois et qui deviendra un bloc compact lors du refroidissement. L'opération se poursuit jusqu'à ce que le fourneau soit rempli. Quand la " cuisson " de la pierre se fait de nuit on voit avec surprise dans la fournaise, une matière embrasée, liquide comme du métal fondu.

 

On ressent le même étonnement quand on observe l'aspect de lave en fusion de la soude des fours des goémoniers bretons au soir des démonstrations estivales.

 

 

La soude en Bretagne
 

La salicorne pousse également sur les côtes bretonnes, normandes ou vendéennes. Pourtant c'est une matière première différente qui y sera à l'origine d'une industrie de la soude : le goémon. Les cendres de warech et de laminaires ont rapidement été utilisées comme substituts aux cendres de salicorne. Cependant leur réputation est mauvaise pour ce qui concerne le blanchissage et la savonnerie, elles sentent le " foie de soufre " (le sulfure d'hydrogène), elles dissolvent mal les graisses, elles tachent le linge. Par contre elles sont efficaces en verrerie.

 

A l'initiative de verriers installés dans la région de Cherbourg l'industrie de la " soude de warech " se développe donc en Normandie, en Bretagne et partiellement en Vendée. Le verre obtenu n'est pas un verre de qualité, les sels minéraux composant les algues le colorent en vert, mais c'est un " verre à bouteille " très utile à l'industrie vinicole française. L'activité ne se développe pas sans difficultés, il faut convaincre les pêcheurs inquiets pour la reproduction du poisson et rassurer les agriculteurs persuadés que les épaisses fumées des fours, à l'odeur âcre, viendront ruiner leurs cultures. De savants académiciens seront mobilisés et viendront sur place apporter la caution de la science.

 

 

 

 

La technique des goémoniers est directement dérivée de celle des brûleurs de salicorne. Seule diffère la forme du four. La plus faible qualité combustible du goémon oblige à un four en tranchée orienté dans le sens des vents dominants. Les perches de bois utilisées pour malaxer la cendre en fusion cèdent la place à une perche de fer terminée par une pelle étroite : le " pifoun ". Le four est divisé en compartiments par des pierres transversales qui permettront un démoulage commode des " pains de soude " contrairement à la méthode méditerranéenne qui oblige à casser la " galette " en morceaux irréguliers.

 

L'une des premières industries chimiques développée en France s'est donc installée en Bretagne. La transformation des algues est, depuis cette date, restée la seule activité chimique consistante de cette région. L'industrie de la soude, pour sa part, s'y maintiendra jusqu'à la fin du 18e siècle.

 

 

Naissance de la soude factice
 

Très tôt, les chimistes avaient su reconnaître que la soude de warech contenait un élément présent dans le sel marin. L'idée de fabriquer la soude à partir de ce sel était donc naturelle. Elle ne se concrétisera qu'à la fin du 18e siècle. En 1781, l'Académie des sciences lance un concours pour " trouver le procédé le plus simple et le plus économique " de fabriquer de la soude à partir du sel marin.

 

Voir à ce sujet le mémoire présenté par Lavoisier

 

Deux propositions retiennent l'attention de l'Académie. L'une faite par un chimiste alsacien nommé Hollenweger, l'autre par Guyton de Morveau chimiste bourguignon déjà renommé. Les deux lauréats sont invités à rechercher une région exempte de gabelle pour y installer une manufacture. Tous les deux se retrouvent en Bretagne. L'un, Guyton de Morveau, s'installe au Croizic, l'autre, Hollenweger, au Pouliguen. Cependant, aucun de ces deux manufacturiers n'a vraiment réussi à développer sa méthode au moment où le Comité de Salut Public de la République lance un appel à tous les savants pour qu'ils établissent un procédé vraiment efficace.

 

Celui de Nicolas le Blanc est retenu. Il consiste à faire agir de l'acide sulfurique sur le chlorure de sodium dans une chambre en plomb. Le sulfate de sodium obtenu est ensuite porté à haute température en présence de charbon et de calcaire. Le chimiste moderne traduirait ces deux réactions par les équations suivantes :

 

H2SO4 + 2 NaCl -> Na2SO4 + 2 HCl

Na2SO4 + 2 C + CaCO3 -> Na2CO3 + CaS + 2 CO2

 

Pendant un siècle ce procédé restera le seul utilisé par l'industrie mais celle-ci ne s'installera pas en Bretagne. Depuis l'abolition des privilèges le sel breton a le même prix que celui des autres régions et rien ne pousse plus les industriels à venir s'installer dans cette province excentrée.

 

Quant à la soude de warech, autant ne pas en parler, elle n'a aucune compétitivité par rapport à la soude dite " factice ". Le métier de " soudier " aurait donc dû disparaître en Bretagne, si un événement fortuit ne l'avait pas relancé sur une autre base. Nous en reparlerons.

 

 

Retour aux sources
 

Depuis plusieurs années, les populations du Nord-Finistère ont voulu faire revivre la tradition du métier de goémonier. A Plouguerneau, un musée a choisi d'en conserver les outils et les gestes. Chaque été, ici ou là, les fours sont remis en activité pour une fête qui n'attire pas uniquement les touristes. Professeur de physique-chimie au lycée de l'Elorn à Landerneau, attaché à la région de Plouguerneau et au métier de goémonier par tradition familiale, j'ai très tôt eu le sentiment que les cendres d'algues pourraient constituer un produit de choix pour la construction d'un cours de chimie.

 

L'industrie des algues, d'hier et d'aujourd'hui, au lycée.
 

Petit à petit ce sentiment s'est transformé en une pratique. Des élèves ont procédé au brûlage des algues sous la conduite des derniers représentants de la profession qui faisaient revivre les tours de main ainsi que le vocabulaire, en breton, du vieux métier. Les cendres ont été concassées, tamisées, analysées et dosées au laboratoire. La chimie y trouvait une couleur nouvelle, plus chaleureuse, plus humaine, reliée à une histoire proche, sans que pour autant le " programme " soit oublié.

 

Mais pourquoi ne voir que le passé ? L'activité chimique autour des algues est, plus que jamais vivante en Bretagne. Les laminaires sont une source essentielle pour les alginates dont les domaines d'utilisation croissent sans arrêt. L'industrie alimentaire, cosmétique et pharmaceutique exploitent de plus en plus les ressources des plantes marines dans lesquelles on découvre en permanence de nouvelles propriétés.

 

Les " goémoniers" d'aujourd'hui sont des marins équipés de moyens modernes de récolte. Ce sont également des ingénieurs et des techniciens de haut niveau qui pratiquent dans des laboratoires ou des unités de production à taille humaine une " chimie du vivant " qui a de quoi séduire. Nous leur avons rendu visite. Ils nous ont initié à une chimie qui ne se trouve pas dans nos livres scolaires. Ils nous ont confié l'essai de leurs produits. Nous avons adapté leurs techniques à nos salles de travaux pratiques et constaté, là encore, que nos programmes de chimie " organique " pouvaient très bien se construire autour des algues.

 

Par séquences séparées, mais aussi parfois dans le cadre d'un projet construit sur l'ensemble de l'année scolaire, les algues, d'hier et d'aujourd'hui, sont donc entrées dans nos classes. Ce sont des éléments de ces travaux que nous proposons ici. L'année 2000 verra l'introduction dans les classes de seconde des lycées, de thèmes et de méthodes très proches de ce que nous avons réalisé. Des enseignants y trouveront peut-être des idées. Des élèves pourront y trouver des pistes pour des travaux personnalisés. Des apprentis chimistes voudront peut-être en reproduire certaines manipulations qui peuvent se faire, chez soi, avec peu de matériel.

 

Nous destinons également ce texte, qui est un travail de mémoire, à tous ceux que cette tradition, qui a fait se côtoyer des marins, des manufacturiers et des chimistes, intéresse. Au delà des techniques et des formules, c'est la vie d'une région qui est concentrée dans cette chimie.

 

Pour reprendre l'expression d'un élève d'une classe de seconde :

" ici des hommes ont su extraire de la nature, en la respectant, le mieux de ce qu'elle pouvait offrir ".

 

________________________________________________


Extraction de la soude (carbonate de sodium)
 

Le musée des goémoniers à Plouguerneau, sur la côte du Nord-Finistère, organise chaque été un brûlage des algues dans les anciens fours afin d'obtenir les cendres riches en soude.

 

Nous nous sommes rendus sur place pour extraire un " pain de soude " qui se présente sous une forme très compacte. Les cendres chaudes ont un aspect de matière en fusion et se moulent dans les alvéoles du four pendant leur refroidissement.

 

On peut également réaliser la combustion d'algues sèches dans une fosse de 40 à 50 cm de côté creusée dans le sol et tapissée de pierres plates.

 


Le traitement au lycée.
 

 

Le travail au pifoun dans le four.

 

 

 

Concasser le pain de soude

 

opération de lessivage

 

 

analyser le filtrat

 

__________________________________________________________________________________

 

Un fabuleux hasard : l'iode
 

La découverte de l'iode est due au chimiste Bernard Courtois (1777-1838). Fils d'un maître salpêtrier de Dijon, il reprend cette activité à Paris au moment où les guerres de Napoléon réclament le salpêtre nécessaire à la fabrication de la poudre à canons. En tant que responsable de la régie des poudres, Lavoisier a donné à cette activité une nouvelle rationalité. Le salpêtre est élaboré dans des « salpêtrières » où le développement des bactéries nitrifiantes sur des mélanges terreux appropriés est favorisé. Les terres enrichies en salpêtre doivent alors être lessivées. Les eaux-mères obtenues sont ensuite traitées par des cendres de bois riches en potasse afin d'obtenir la cristallisation du salpêtre.

 

Cependant le blocus commercial organisé autour de la France rend difficile l'approvisionnement en cendres potassiques dont la Suède est le principal fournisseur. Courtois tente donc l'essai des cendres de warech. Ces dernières contenant des composés sulfurés indésirables, le chimiste entreprend de décomposer ceux ci par l'acide sulfurique concentré. C'est à cette occasion qu'il observe le dégagement de vapeurs violettes et la précipitation d'un corps noir et brillant. Courtois est un chimiste suffisamment avisé pour comprendre qu'il est en présence d'un corps nouveau. Il en prépare une petite quantité qu'il confie à ses amis Clément et Désormes pour en faire une étude chimique qui sera ultérieurement complétée par Gay-Lussac et Davy. Cette découverte est annoncée à l'Académie des Sciences le 29 Novembre 1813 par Nicolas Clément. Le mot grec iôdês (violet) inspire le nom de « iode » qui est donné à ce produit par référence à la couleur de ses vapeurs.

 

Rapidement l'iode apparaît comme un produit de grand intérêt. Il est à l'origine des premiers daguerréotypes, photographies sur plaques de cuivre argentées sensibilisées aux vapeurs d'iode. C'est, en solution dans l'eau ou l'alcool, un excellent désinfectant encore très utilisé aujourd'hui. On reconnaît également, très vite, son efficacité contre le goitre. C'est donc un produit précieux dont la production s'annonce rémunératrice.

 

En 1828, arrive en Bretagne un jeune chimiste prêt à tenter l'aventure de sa production industrielle. François-Benoît Tissier a d'abord dirigé, à Paris, l'usine d'iode crée par son professeur, le chimiste Clément. Il y met au point une méthode efficace. Au Conquet, il rencontre la famille Guilhem déjà engagée dans cette aventure mais sans grande conviction. Il leur rachète leur fabrique et commence alors une ère de prospérité qui permettra à Tissier d'amasser une fortune colossale.

 

Le succès amène des concurrents. Des usines s'ouvrent à Granville (1832), Pont-Labbé (1852), Vannes (1853), Quiberon, Portsall (1857), Tréguier (1864), L'Aber-Wrach (1870), Guipavas (1877), Lampaul-Plouarzel, Audierne (1895), Loctudy, Penmarc'h (1914), Plouescat, Argenton (1918). Toutes ne connaîtrons pas le succès, d'autant plus qu'une rude concurrence existe avec l'iode du Chili.

 

Dès 1830 on constate que les riches gisements de nitrates du Chili contiennent de l'iode. Abondant, facile à extraire, il pourrait inonder les marchés européens si des mesures protectionnistes n'étaient pas prises. Un organisme international la « combinaison de l'iode » fixe la part de marché de chaque usine et le cours de l'iode. Le Chili qui pourrait produire jusqu'à 3000 tonnes par an limite sa production à 900 tonnes. L'Angleterre et la France disposent chacune d'un quota de 70 tonnes. Cet accord permet à l'industrie française de se maintenir jusqu'à 1955 environ. A cette date le gouvernement français décide de lever les mesures protectionnistes et invite les manufacturiers à rechercher un autre débouché pour les algues. S'ouvre alors l'ère des alginates.

 

L'extraction de l'iode des cendres d'algues

 

L'iode est extrait des cendres d'algues, le vieux métier de producteur de soude se poursuit donc avec la nouvelle activité. Un problème cependant : pour obtenir de beaux pains de soude, bien gris et bien compacts, il fallait des températures élevées et une combustion vive. A l'inverse la production d'iode nécessitait une température modérée, les iodures étant des corps très volatils. Plusieurs brevets avaient été déposés pour des fours à combustion ménagée utilisant la chaleur produite afin de sécher les algues mais aucun ne débouchera sur des applications rentables. Il aurait fallu pour cela pouvoir dépasser le maigre quota de production attribué à la France. Les goémoniers reprendront donc les vieux fours de leurs pères. Ils voudront, comme eux, mouler de beaux pains de soude en faisant brûler les algues à feu vif au détriment de la teneur en iode des cendres et ceci malgré la pression exercée par les manufacturiers qui les payaient en fonction de cette teneur. Il est vrai que des pains bien compacts se transportaient mieux, surtout si on devait les ramener des îles où les goémoniers faisaient de longues campagnes.

 

La teneur en iode dans les algues séchées variait suivant les algues de 2% à 3%. Dans les cendres cette teneur tombait de 1% à 1,5%. Reste à extraire cet iode.

 

Traitements pour obtenir l'iode
 

Lixivation : Les cendres sont concassées en morceaux de l'ordre de quelques cm 3. Le broyage se fait à la masse sur une table recouverte d'un plaque de fonte. Le lessivage dégage une partie soluble qui peut représenter jusqu'à 65% de la totalité. Les lessives contiennent de 6kg à 9kg d'iode au m3.

 

Concentration : Les solutions sont concentrées par évaporation dans des chaudières peu profondes chauffées à feu nu ou encore en utilisant des serpentins où circule de la vapeur d'eau sous pression. Le chlorure de sodium se dépose d'abord, le chlorure de potassium ensuite. Les eaux mères finales contiennent 100g à 150g d'iode par litre mais aussi les carbonates, les sulfures, sulfites et hyposulfites solubles.

 

Désulfuration : La désulfuration se fait en milieu acidifié. Il faut verser de l'acide sulfurique ou de l'acide chlorhydrique dans la solution qui à l'origine est très basique. Les carbonates se décomposent les premiers avec un dégagement de dioxyde de carbone. Les composés sulfurés se décomposent ensuite avec un dégagement de sulfure d'hydrogène et un précipité de soufre sous forme essentiellement colloïdale. En portant la solution à ébullition on chasse le sulfure d'hydrogène dissout et on favorise la précipitation du soufre.

 

Précipitation de l'iode : L'iode est chassé de la solution par l'action du chlore. Celui ci est obtenu par l'addition de chlorates dans la solution acide (au laboratoire on pourra utiliser de l'eau oxygénée). L'iode se précipite alors sous la forme d'une poudre noire.

 

Sublimation : L'iode lavé et séché par pression est sublimé dans des cuves de céramique surmontées d'un couvercle sous forme de cloche chauffées sur bain de sable. On obtient alors des paillettes contenant de 97% à 98% d'iode. Une nouvelle sublimation peut porter ce taux à 99,5%. C'est en nous inspirant de ces techniques que nous procéderont à l'extraction de l'iode puis à son dosage.

 

Vapeurs d'iode violettes.

 

Nous avons extrait l'iode de la solution par action de l'eau oxygénée H2O2 en milieu acide.

 

Fiche expérimentale
 
Etapes de la manipulation Réactifs et méthodes utilisés observation
Acidification de la solution Acide sulfurique concentré L'acidification de la solution a pour premier effet de libérer le dioxyde de carbone provenant des ions carbonates
Libération de l'iode eau oxygénée L'eau oxygénée oxyde les ions iodure, il se forme de l'iode qui colore la solution en brun. On observe même un léger précipité d'iode.
mise en évidence de l'iode gazeux chauffage Un chauffage léger libère les vapeurs d'iode violettes

Aujourd'hui - Les alginates et les carraghénanes

 

L'anglais Edward Stanford (1837-1899) isole, dans les algues, un gel qu'il désigne du nom d'algine. Le norvégien Axel Krefting est le premier à en extraire l'acide alginique. Ce produit trouve un intérêt immédiat comme apprêt pour les tissus. Sa production à grande échelle commence vers 1929 sur les côtes californiennes.

 

En Bretagne, cette industrie débute à Pleubian, dans les Côtes d'Armor, dès le début du siècle. Elle ne prendra son essor que vers les années 1960. A cette date l'état français a décidé de ne plus subventionner la fabrication de l'iode, obligeant ainsi les manufacturiers à se reconvertir. Ceux-ci font preuve d'une extraordinaire capacité d'adaptation. Il faut d'abord élaborer la théorie de l'extraction, il faut inventer et construire de nouvelles machines. Il faut surtout imaginer les utilisations possibles d'un produit aux débouchés encore limités.

 

Beaucoup d'usines disparaissent dans la tourmente mais le pari est gagné et le Nord-Finistère devient le producteur principal de l'alginate en Europe. Actuellement de l'ordre de 2000 tonnes par an sont produites dans les deux usines de Lannilis et de Landerneau qui se partagent le marché. L'essentiel de la production est exporté mais, sur place, une constellation de petites entreprises utilisent cette matière première pour des produits cosmétiques, pharmaceutiques ou alimentaires.

 

L'alginate est utilisé comme épaississant et stabilisateur dans les glaces, les crèmes et même les yaourts et les fromages frais. Dans la nomenclature européenne ce sont les E 400 et E 411. On trouve encore les alginates dans la fabrication du papier, de la peinture, des électrodes....Un marché en constante expansion qui n'est limité que par la quantité d'algues que l'on peut récolter. En Bretagne cette quantité est limitée aussi la production est-elle orientée vers des produits de qualité destinés aux industries cosmétiques, pharmaceutiques et alimentaires.

 

Le Pioka et les carraghénanes

 

Depuis plusieurs siècles le Chondrus est une algue utilisée en médecine et dans l'alimentation. Il y a plus de 600 ans les irlandais du comté de Carragheen dans le sud de l'Irlande savaient utiliser cette " Irish moss " pour des pommades et des flans. Cette algue séchée a, en effet, un extraordinaire pouvoir gélifiant en présence de lait. Les émigrants irlandais ont emporté leurs recettes avec eux quand, vers 1700, ils ont rejoint l'Amérique du Nord et constaté que leur " irish moss " poussait également sur les côtes du Massachusetts. Le polysaccharide extrait de cette algue et obtenu pur vers 1871 a été logiquement nommé carrageenan dans la nomenclature de la Société Chimique Américaine et est encore désigné sous ce nom.

 

En Bretagne, le Chondus Crispus est également abondant. Dans le Léon finistérien on le désigne par le terme de " pioka ", en Cornouailles il est parfois appelé " piko ". Une tradition de gâteaux et flans au pioka existe dans le Nord-Finistère. Est-elle ancienne ? Il est certain, par contre, que dès le début du 19ème siècle les industriels on su mesurer l'intérêt de ce produit. La cueillette du pioka, les jours de grande marée, est devenue une activité rémunératrice qui se pratique, encore de nos jours, avec les mêmes méthodes. Jadis vendu sec et blanchi, il est acheté humide aujourd'hui, sauf pour de petites productions artisanales. Actuellement, une seule usine, installée en Normandie, produit les quelques 3000 tonnes fabriquées en France.

 

Comme les alginates, les carraghénanes sont utiles dans l'industrie textile, la peausserie, la fabrication des peintures. Le gel qu'ils forment avec le lait les font utiliser en priorité dans tous les produits alimentaires lactés, mais aussi dans les bières, les pâtes alimentaires, les confitures.

 

 


Deux entreprises d'alginates à Landerneau

 

Dans la région de Landerneau, deux entreprises traitent les algues pour en utiliser les alginates.

 

L'entreprise Danisco est spécialisée dans l'extraction de l'acide alginique à partir des algues brutes.

 

L'entreprise Technature utilise les alginates pour élaborer des produits finis.

 

 

L'entreprise Danisco : Nous l'avons visitée sous la direction de son directeur Monsieur Pasquier. L'usine (9000 mètres carrés d'ateliers et de laboratoires) traite chaque année 6000 tonnes d'algues séchées pour la production d'alginates particulièrement purs utilisés pour la pharmacie et l'alimentation. La société Danisco nous a fourni un sachet d'acide alginique pur pour en étudier les propriétés. Son directeur nous a également détaillé le procédé d'extraction des alginates à partir des algues (voir fiche).

 

L'entreprise Technature : Nous y avons été reçus par son directeur, Monsieur Le Fur, et par son directeur commercial, Monsieur Winkler (aujourd'hui directeur de l'entreprise Lessonia). L'entreprise conditionne les alginates pour ses différents usages : moulages, cosmétiques, alimentation... Sa clientèle est mondiale (Europe, U.S.A, Japon). La réputation des produits bretons est internationale ! L'entreprise nous a confié des alginates de moulage pour que nous puissions réaliser un moulage. Elle nous a également proposé de mettre au point un nouveau masque de beauté.

 

 

Retour au laboratoire

 

Nous y avons extrait les alginates contenues dans des laminaires. Nous avons utilisé pour cette manipulation des laminaires de l'espèce " laminaria digitata " dont le nom en langue bretonne est " tali ".

 

Les procédés d'extraction des alginates nous ont été expliqués par M. Pasquier directeur de l'usine DANISCO et M. Le Fur directeur de l'entreprise TECHNATURE. Nous avons réalisé cette opération en suivant les étapes indiquées dans le tableau ci-dessous. Nous avons utilisé pour cette manipulation des laminaires de l'espèce " laminaria digitata " dont le nom en langue bretonne est " tali ".

 

 

Nature de l'opération méthode observation
préparation des algues découper une algue fraîche (laminaire) en morceaux (1cm x 1cm) ou réhydrater des morceaux d'algue sèche. Il faut utiliser des algues fraîches ou rapidement séchées après la cueillette.
Déminéralisation faire " mariner " les algues dans trois bains successifs de 25 minutes chacun d'une solution d'acide sulfurique à pH=2 Les algues prennent une consistance très ferme. Le bain d'acide dissout les sels minéraux et prend une coloration verdâtre.
Formation de l'alginate de sodium soluble les algues sont placées dans une solution de carbonate de sodium à pH=11. Les morceaux d'algues se ramollissent, l'ensemble prend un aspect pâteux dû à la dissolution de l'alginate de sodium.
Filtration, blanchiment La pâte est pressée à travers un tissu de coton blanc afin de séparer l'alginate de la cellulose le filtrat obtenu est légèrement gélatineux et faiblement coloré. On peut le décolorer par quelques gouttes d'eau de Javel (hypochlorite de sodium)
précipitation de l'acide alginique On utilise une solution d'acide sulfurique ou d'acide chlorhydrique. Il faut atteindre un pH=1,8 l'acide alginique se coagule. On peut l'extraire en utilisant un agitateur ou en filtrant.

 

voir aussi

 

Nous avons également construit des modèles moléculaires de ces monomères et de leurs polymères.

 

 

La technique du moulage à l'alginate

 

L'alginate de moulage est une poudre blanche composée d'alginate de calcium et de terre de diatomée (contrairement à l'alginate de sodium qui est soluble dans l'eau, l'alginate de calcium forme un gel insoluble). Mélangée à quatre fois son poids d'eau, la poudre d'alginate se transforme en une pâte onctueuse. Elle gélifie en 6 à 10 minutes en fonction de la température et de la concentration. On obtient une masse souple et résistante qui permet de réaliser le moule dans lequel on viendra verser du plâtre ou de la cire. Sa rapidité de prise, sa finesse de reproduction, son absence totale d'agression, en font un matériau idéal pour mouler des objets vivants : une main, le pieds d'un bébé, un visage.

 

Préparation de la pâte :

 

prévoir 300g de poudre pour un litre d'eau. Verser l'eau sur la poudre et mélanger activement avec une main pendant une minute pour obtenir une pâte homogène. A partir de ce moment on dispose d'un temps de travail de 3 à 5 minutes pour réaliser le moule. Ce moule dans certains cas pourra être utilisé deux ou trois fois si le démoulage ne l'a pas endommagé.

 

Que mouler ?

 

De façon classique on peut démarrer par la trace d'un animal sur le sol. La rapidité de la prise et la finesse de l'empreinte sont immédiatement perceptibles. La contre-empreinte réalisée en plâtre sera riche de détails.

 

Le plus spectaculaire : le moulage d'une main d'enfant !

 

Il faut trouver un pot pas trop large mais dans lequel la main de l'enfant puisse plonger jusqu'au dessus du poignet. Faire un essai du volume de pâte de moulage nécessaire en remplissant d'eau le récipient dans lequel l'enfant a plongé sa main. Calculer la quantité de poudre nécessaire ( ¼ du poids de l'eau).

 

Préparer la pâte. Verser la pâte dans le coffrage.

 

Masser la main avec un peu de pâte, celle ci ne collera pas à la peau en durcissant mais vous obtiendrez ainsi de fins détails.

 

Plonger la main dans le coffrage jusqu'à ce que les doigts touchent le fond et remonter légèrement.

 

Maintenir la pause quelques minutes, on sentira alors que l'alginate est bien gélifié, il résistera sous la pression des doigts et se détachera bien de la peau. Un petit tour de main pour décoller le moule : agiter les doigts doucement en rapprochant le pouce du petit doigt.

 

L'enfant doit, de la sorte, retirer la main sans trop de difficultés.

 

Un conseil : la surface de l'alginate est légèrement acide, le plâtre de moulage prend mal à son contact. On peut y remédier en versant dans l'empreinte une solution diluée de bicarbonate de sodium pour la rincer rapidement.

 

Mise au point d'un masque de beauté

 

L'entreprise Technature nous a confié la mise au point d'un masque de beauté. C'est un nouveau produit que l'entreprise souhaite commercialiser. Il s'agit d'un masque aux fruits tropicaux dont le support est constitué par un alginate de moulage.

voir :

 

Nous avons testé un premier masque d'alginate sans aucun additif afin d'observer l'effet " moulant " de ce produit. Nous avons ensuite essayé plusieurs formulations en faisant en particulier varier les colorants et les parfums. Pour finir, nous avons testé le masque obtenu

préparation phase 1

 

 

La recette d'un masque de beauté

alginates

couleur naturelle

extrait de papaye, d'ananas

parfum de mangue

phase 2

 

Dose : 30g de poudre d'alginate pour 100g d'eau.

 

Dilution du produit

Verser rapidement l'eau sur la poudre. Mélanger énergiquement jusqu'à l'obtention d'une pâte lisse et onctueuse. Important : La dilution se fait dans de l'eau à 20°C.

 

Application

Appliquer immédiatement sur le visage en évitant le contour des yeux. La prise a lieu au bout de 6 minutes.

Durée du soin 15 minutes environ.

 

Résultat peau plus douce plus fine, teint plus lumineux

 

Réalisation du masque.

 

__________________________________________________________________________________

 

 

L'agar-agar et la formation de gel

 

Agar-Agar est un mot malais.

 

Ce corps, utilisé en Malaisie, était également d'un usage courant au Japon et dans tout l'Extrême-Orient. L'Agar-Agar provient d'algues diverses et en particulier de l'espèce gélidium. Ces algues, après des lavages fréquents, sont séchées et soumises à ébullition. Le gel obtenu est déshydraté puis réduit en poudre.

 

Le pouvoir gélifiant de l'Agar-Agar est extrême. Deux grammes dans un quart de litre d'eau portée à ébullition pendant 5 minutes donnent un gel très ferme après refroidissement.

 

Au laboratoire de biologie, l'Agar-Agar sert à préparer des supports nutritifs pour les plantes. Au laboratoire de chimie, il sert, par exemple, à préparer des " ponts électrolytiques " conducteurs dans l'étude des piles.

 

Nous avons préparé un gel d'Agar-Agar coloré par de l'hélianthine. L'Agar-Agar est aussi utilisé pour préparer des flans mais nous avons utilisé pour cela une algue originaire de Bretagne, le Pioka, qui contient des carraghénanes.

 

L'Agar-Agar : un excellent gélifiant extrait des algues rouges
 

_________________________________________________________________________________

 

Les algues dans l'alimentation
Le " pioka " et les carraghénanes

pioka de Bretagne

 

Pioka est le nom breton d'une algue qu'on appelle également " lichen " de mer. On la récolte aux grandes marées, son prix élevé attire les cueilleurs saisonniers. Son nom scientifique est Chondrus crispus. Le principe actif qu'on en extrait est constitué par les carraghénanes . C'est un excellent gélifiant dans le lait. De façon traditionnelle, il est utilisé par les populations côtières du Nord de la Bretagne pour réaliser des " flans ". Préparation des algues Après la récolte, les algues sont étalées sur les dunes et séchées en les retournant fréquemment. On peut également les arroser d'eau douce de temps en temps afin de les débarrasser du sel et des débris divers. A la fin de ce traitement les algues sont blanches et sèches on peut alors les conserver. Juste avant l'usage On peut parfaire le rinçage par trempage et rinçages répétés. Les algues doivent être totalement débarrassées de leur odeur de " mer "


Recette de flan au pioka

 

Nous avons réalisé la recette de dessert suivante. Elle nous a été communiquée par une personne agée de la région de Brignogan dans le Nord-Finistère. Elle l'avait vue elle même réalisée par ses parents.

 

Remarque : les carraghénanes du pioka donnent facilement un gel avec le lait, il ne donnent pas de gel avec de l'eau. Pour cela il faudrait utiliser de l'Agar-agar que nous avons également testé (il est également utilisé pour des flans).

Notre recette

Utiliser une petite poignée d'algues sèches par quart de litre de lait. Les rincer. Faire bouillir pendant 5 à 10 minutes dans le lait en remuant. Filtrer le lait chaud dans une passoire ou une écumoire. Remettre le lait à bouillir cinq minutes avec l'arôme souhaité, chocolat ou vanille sucrés ( par exemple 3 cuillérées de Nesquik par ¼ de litre de lait). Verser dans des coupes. Laisser refroidir et mettre au frigo.

 

_________________________________________________________________________________
 
 
 
Conclusion
 

Si, comme nous, vous ignoriez que la chimie, depuis si longtemps, s'intéressait aux algues, vous savez maintenant que, chez nous en Bretagne, des personnes ont fabriqué, et fabriquent encore, des produits utilisés dans le monde entier.

 

Nous avons rencontré des " anciens ". Goémoniers et manufacturiers. Ils nous ont transmis la fierté qu'ils gardent de leur métier. Nous avons, également, rencontré les acteurs modernes de cette aventure. Des marins qui font un travail toujours hasardeux mais qui ont mis au point des techniques sures et efficaces et ne vivent plus la vie de forçats de leurs ancêtres exilés sur les îles. Des chimistes extrayant de la nature le meilleur de ce qu'elle peut fournir. Des biologistes mariant les essences et les extraits pour embellir, soigner ou nourrir.

 

Pour ce qui est de notre programme scolaire, il a avancé sans que nous nous en rendions compte. Etude théorique, recherche documentaire, visite des usines et discussion avec les chimistes de métier, manipulations au laboratoire, mise au point de nouvelles recettes et de nouveaux produits...tout cela faisait partie du même projet.

 

En rédigeant ce dossier nous avons eu le désir de garder la trace de notre travail et de transmettre cette expérience à tous ceux qui voudraient la partager et la compléter. Nous avons également pensé à nos lecteurs qui ne seraient ni chimistes ni lycéens. Nous avons cherché à leur faire découvrir un aspect de l'histoire et de l'actualité de notre région. A eux de nous dire si l'objectif a été atteint.

 

La classe de seconde A, année 1997/1998, La classe de seconde C, année 1998/1999 et leur professeur, Gérard Borvon.

 

___________________________________________________________________________________

 

 

Second prix du concours CEFIC pour l'enseignement des sciences.

 

Ce travail a reçu le second prix européen au concours CEFIC de 1999.

 

____________________________________________________________________________________

 


Une suite à notre travail

 

Il est cité et en partie repris sur le site CultureSciences-Chimie de l'école normale supérieure de Cachan.

voir : Les algues : une « agroressource » d'avenir


Il a fait également l'objet d'un sujet à des olympiades de chimie.

 

 

 

 

Ce travail est également mentionné par l'observatoire de l'eau en Bretagne

.


L'actualité des algues


Décembre 2008 : des algues sous serre.


 
Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens