Overblog
Suivre ce blog Administration + Créer mon blog
29 octobre 2014 3 29 /10 /octobre /2014 15:59

Les produits contenant des nanoparticules envahissent de plus en plus vite notre quotidien. Rappelons qu’1 nanomètre est 1000 millions de fois plus petit qu’un mètre. Ces nouvelles nano molécules hightech sont développées dans de nombreux domaines. En métallurgie, en chimie comme en biologie et ainsi, aussi, dans leurs utilisations médicales. C’est à ces dernières que nous nous intéressons. Souvent, les ingénieurs en recherche et développement qui inventent de nouvelles applications des Nanos sont commercialisés sans le moindre contrôle, au mépris de la réglementation qui les oblige à tester la toxicité des substances avant de les vendre. Or, il s’avère que ces nanoparticules sont souvent redoutables – elles sont si petites que certaines peuvent traverser tous les organes, jouer avec notre ADN et provoquer de nombreux dégâts. Or on peut dire, sans exagération, que cette opération « nano », menée à l’échelle planétaire, souvent avec le pire cynisme, continue de se déployer pour capter des profits mirobolants au détriment de notre santé.

 

Continent sciences par Stéphane Deligeorges

 

Invité : Roger Lenglet, Philosophe, journaliste

 

Ecouter l’émission

 

 

http://www.franceculture.fr/emission-continent-sciences-quand-le-nocif-se-fait-nanometrique-2014-10-27


Le livre :

 

Les produits contenant des nanoparticules envahissent notre quotidien. Invisibles à l’oeil nu, ces nouvelles molécules hightech laissent parfois deviner leur présence par les accroches publicitaires : aliments aux “saveurs inédites”, “cosmétiques agissant plus en profondeur”, “sous-vêtements antibactériens”, fours et réfrigérateurs “autonettoyants”, articles de sports “plus performants”, et armes plus destructrices…

 

Sans cesse, les ingénieurs en recherche et développement inventent de nouvelles applications des nanos qui sont commercialisées sans le moindre contrôle, au mépris de la réglementation les obligeant à tester la toxicité des substances avant de les vendre. Or, il s’avère que ces nanoparticules sont souvent redoutables – elles sont si petites que certaines peuvent traverser tous les organes, jouer avec notre ADN et provoquer de nombreux dégâts.

 

Grâce à son enquête aussi rigoureuse qu’explosive, Roger Lenglet a retrouvé les principaux acteurs des nanotechnologies. Il livre ici leurs secrets et les dessous de cette opération menée à l’échelle planétaire qui, avec le pire cynisme, continue de se déployer pour capter des profits mirobolants au détriment de notre santé.

 

Avec ce premier livre en français sur la toxicité des nanoparticules, Roger Lenglet tente de prévenir un nouveau scandale sanitaire d’une ampleur inimaginable.

 

Pour voir des extraits.


La vidéo :

http://www.youtube.com/watch?v=TM8wumsICxI

 

_________________________________________________________

 

Ecouter sur France Culture :

 

Terre à terre par Ruth Stégassy. Les Nanotoxiques

 

Avec Roger Lenglet, philosophe et journaliste d’investigation auteur de "Nanotoxiques.

 

 

 

 


On parle aussi des nanoparticules dans :

 

Histoire du carbone et du CO2. De l’origine de la vie jusqu’au dérèglement climatique.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses...

 

Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

Histoire du carbone et du CO2.

 

Un livre chez Vuibert.

 

feuilleter

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole. Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux

scientifiques tentent maintenant d’alerter l’opinion publique.

Seront-ils entendus ?

 

Voir l’introduction et la table des matières

 

_________________________________________________________________________

Partager cet article
Repost0
6 octobre 2014 1 06 /10 /octobre /2014 08:35

Salon de l'automobile, octobre 2014. Ségolène Royal, ministre de l'écologie, est venue y faire la publicité de la voiture électrique. "J'avais un temps d'avance" affirme-t-elle, parlant de son expérimentation en Poitou-Charentes.

 

Un temps d'avance ? Vraiment ? Retour en 1881.

 


Les expositions internationales constituent ces grands rendez-vous du 19ème siècle entre les états du monde "développé". Chacun y expose sa puissance technique et économique dans une rivalité qui s’affirme vouloir n’être que "pacifique". L’électricité y prend naturellement toute sa place. C’est le cas à Londres en 1862, à Paris en 1867 et 1878, à Vienne en 1875 et à Philadelphie en 1876. Mais l’exposition de 1881, à Paris, est une innovation.

 

Initiée par Adolphe Cochery (1819-1900), ministre des Postes et Télégraphes, c’est la première fois qu’une exposition internationale est entièrement consacrée à l’électricité et à ses applications. Cette rencontre prendra une importance particulière avec l’organisation, pendant l’exposition, du premier congrès international des électriciens.


Les moteurs électriques y sont spectaculairement illustrés par leur application à la locomotion. Le premier Tramway électrique fait ainsi son apparition à Paris. Il circule entre la place de la Concorde et le Palais de l’Industrie. Avec le téléphone et les lampes à incandescence c’est la plus belle attraction de l’exposition.

 


 

Premier tramway électrique à Paris

 

Visionnaire, Edouard Hospitalier imagine dans la revue La Nature (1882, premier semestre)  l’usage à venir des accumulateurs dans des véhicules électriques individuels :

 

"Les études sont dirigées aujourd’hui du côté des accumulateurs, et l’on peut espérer que, on sera arrivé à les construire assez légers pour pouvoir faire fonctionner des véhicules pendant quelques heures à l’aide de l’électricité emmagasinée. Il sera facile alors d’établir en certains points de la capitale de véritables relais où l’on viendra recharger les accumulateurs en les branchant sur la canalisation générale de la distribution. On aura ainsi réalisé le cheval de fiacre électrique et la nourriture électrique.

 

Nous n’en sommes pas encore là au point de vue de la pratique, mais combien d’années encore cette utopie mettra-t-elle à devenir une réalité."

 

Combien d’années ? E. Hospitalier, comme ses contemporains, était certain que l’électricité était l’énergie de leur avenir et avec elle la locomotion électrique. (voir l'histoire des voitures électriques)

 

C’était compter sans le pétrole dont on commençait seulement à imaginer l’usage possible dans ces moteurs à explosion dont le premier brevet avait été déposé par les frères Niépce en 1807 à un moment où ils qui ne disposaient pas encore du combustible idéal (leur prototype fonctionnait à la poudre de lycopode, spores d’un champignon). Un siècle plus tard, effet de serre et épuisement des ressources combinés, l’idée de la voiture électrique intéresse à nouveau pouvoirs publics et industriels.

 

Encore faut-il que la production d'électricité ne soit pas elle même source de pollution. Or dans le même temps où la ministre de l'écologie faisait la promotion de la voiture électrique, elle déclarait son attachement aux centrales nucléaires qu'elle considérait comme "un acquis et un atout" considérant par ailleurs que "le nucléaire est le socle de la politique énergétique de notre pays".

 

La voiture électrique ne serait-elle alors qu'un alibi pour la poursuite de la politique nucléaire de la France ?

 

 

 

Au siècle de l'avant pétrole, la "transition énergétique" vers l'électricité signifiait la sortie du tout-charbon et le recours aux énergies issues de la "Nature", celles qu'aujourd'hui, dans notre époque marchande, nous désignons comme "renouvelables".

 

Louis Figuier, rendant compte de l’exposition de 1881 dans L’année Scientifique de 1882, expose ses propositions : utiliser les énergies des chutes d’eau, des marées, des fleuves.

 

"Créer de l’électricité par la force primitive, transporter cette électricité à distance au moyen d’un fil, et à cette distance changer de nouveau cette électricité en mouvement… des forces naturelles aujourd’hui perdues pourraient être utilisées en les transportant à une distance plus ou moins grande.

 

Il y a par exemple, dans les Alpes, dans les Pyrénées, dans les Apennins, dans les Andes, d’immenses chutes d’eau qui pourraient produire de grands effets mécaniques, et qui sont perdues parce que l’on n’a pas le moyen de les utiliser sur place. Transportez cette force du pied des Alpes, par exemple, jusque dans une usine située à 20 ou 30 kilomètres, et vous disposerez ainsi d’une puissance qui était perdue, qui ne sera pas assurément gratuite, mais qui sera un accroissement de votre énergie mécanique.

 

Les marées sont une force naturelle immense, mais dont on ne peut tirer parti sur les rivages de l’océan. Transformez en électricité, au moyen d’une machine dynamo-électrique, la force mécanique de l’influx marin recueilli sur les côtes, et transportez au loin cette électricité… et vous aurez tiré parti d’une force naturelle qui jusqu’ici n’a jamais pu être utilisée sérieusement…

 

La roue d’un modeste moulin peut même être employée à produire de l’électricité, et cette électricité transporter au loin l’énergie mécanique de la chute d’eau"

 

Nous trouvons dans cette énumération une grande partie des énergies renouvelables que nous exploitons aujourd’hui ou que nous souhaitons exploiter dans l’avenir. En y ajoutant l’énergie du vent et surtout l’énergie solaire on aura complété la panoplie des alternatives aux énergies fossiles qui constitueront une part essentielle de notre futur.


 

Mais pour en revenir à la locomotion, plutôt que de développer un nouveau moyen de déplacement individuel à coup de subventions publiques (1), sans doute faudrait-il consacrer celles-ci en priorité à l'amélioration et au développement des transports collectifs moins coûteux en énergie et à l'isolation de l'habitat.

 

(1) Voir de Hervé Kempf : Loi sur l’énergie : un cadeau de 40 milliards d’euros au lobby de l’auto électrique.

 

_________________________________________________________

 

On parle des premières voitures électriques, du règne du tout pétrole et de transition énergétique dans :

 

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…
 

Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

 

 

 

Partager cet article
Repost0
1 octobre 2014 3 01 /10 /octobre /2014 13:23

Deuxième fils du Duc de Devonshire, Henry Cavendish, reçoit, de son oncle, un riche héritage qui lui permet de constituer un laboratoire bien équipé qu’il utilise avec une rigueur peu commune parmi ses contemporains. ___________________________________________________________

matériel de laboratoire de Cavendish.


En 1766, il présente devant l’Association Royale de Londres une communication sur les airs factices.

 

Son exposé traite de l’air fixe tel que le définit Black, à savoir : "cette espèce particulière d’air factice qui est extrait des substances alcalines par dissolution dans les acides ou par calcination" (Philosophical Transactions, 1766, p141).

 

Si la description de l’air inflammable (notre hydrogène) constitue, par sa nouveauté, la partie la plus remarquable du travail de Cavendish, nous retiendrons qu’il multiplie également les expériences sur l’air fixe. Il l’obtient par l’action de l’esprit de sel (l’acide chlorhydrique) sur le marbre.

 

Il en étudie d’abord la solubilité dans l’eau. Elle est importante. Cette observation sera retenue quand il faudra, ensuite, expliquer la richesse de la vie aquatique. Il constate aussi, entre autres observations, que l’air fixe se dissout plus facilement dans l’eau froide. Une observation qui nous concerne dans cette époque présente où l’augmentation de la température des océans limite leur rôle de "pièges à carbone".

 

En utilisant une vessie animale, Cavendish mesure la densité de l’air fixe. Ayant constaté que l’air ordinaire est 800 fois moins dense que l’eau, il trouve que l’air fixe ne l’est que 511 fois moins. Il en déduit que l’air fixe a une densité de 1,56 par rapport à l’air ordinaire (à comparer à la valeur de 1,52 actuellement admise).

 

Le résultat mérite d’être noté, l’air fixe, plus dense que l’air se concentre donc dans les parties basses des enceintes où il est produit. Ceci explique l’asphyxie des ouvriers dans les fosses d’aisance ou des vignerons dans les cuves mal aérées, ou encore celle des animaux dans les grottes désignées comme "grotte du chien" : c’est au raz du sol que le gaz "méphitique" menace. Cette donnée intéresse également les expérimentateurs qui savent qu’ils peuvent conserver l’air fixe dans un flacon ouvert dont l’ouverture est dirigée vers le haut, disposition commode pour leurs expériences.

 

Toujours attaché à mesurer, Cavendish cherche à déterminer la quantité d’air fixe contenue dans le marbre. Le fort pourcentage de CO2 trouvé (40,7% de la masse) est proche de la valeur admise aujourd’hui.

 

Le marbre et la craie, décomposés par un acide, deviendront ainsi l’une des sources essentielles de la production d’air fixe.

 

C’est ce procédé qui sera utilisé par Priestley pour son étude de l’air fixe.

_________________________________________________________

 

pour aller plus loin voir :

 

 

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…
 

Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

 

 


Voir aussi :

 

Une brève histoire du CO2. De Van Helmont à Lavoisier.

Partager cet article
Repost0
16 septembre 2014 2 16 /09 /septembre /2014 07:20

La COP 21, conférence internationale sur le climat, qui se tiendra à Paris en 2015 mettra à nouveau en évidence la responsabilité de l'augmentation du taux de CO2 dans l'atmosphère dans l'élévation de la température terrestre et le dérèglement climatique.

 

Mais qu'est-ce que ce CO2 ? Sait-on que la connaissance de son existence et de son rôle est récente ?

 

Un livre nous le révèle.

 

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

Histoire du carbone et du CO2.

 

Un livre chez Vuibert.

 

feuilleter

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?


contact : gerard.borvon@wanadoo.fr


L’introduction :

 

CO2, fatal ou vital ?

 

« CO2 - Élixir de vie et tueur du climat » est le titre d’une exposition présentée au musée Naturama de Aarau en Suisse à la charnière des années 2012 et 2013.

 

Élixir… le mot est fort. Il a été emprunté à l’arabe médiéval « al iksīr » désignant la liqueur d’immortalité des alchimistes ou la pierre philosophale supposée transformer le plomb en or.

 

Dans une première partie nous choisirons ce côté lumineux de l’histoire.
 

Nous découvrirons la suite de tâtonnements, de réussites et aussi parfois d’échecs, qui a fait prendre conscience de l’existence et du rôle de cet « élixir », le dioxyde de carbone et de ce joyau minéral, le carbone.

 

Tueur de climat. Qui peut encore le nier ? Et qui peut refuser de voir que la dangereuse augmentation du CO2 dans l’atmosphère, loin d’être une malédiction portée par ce gaz, est le résultat de l’emballement d’un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d’années et les disperse sous forme d’objets inutiles et de polluants multiples.

 

Élixir ou poison, amour ou désamour… Le carbone et le dioxyde de carbone sont symboliques de cette chimie aux deux visages qui sont aussi ceux de la science en général.

 

D’une part, une science « pour comprendre », qui enthousiasme les scientifiques comme les esprits curieux par ses extraordinaires avancées dans la connaissance des phénomènes naturels. Une science qui donne la liberté de penser le monde en dehors des dogmes et qui, en même temps, peut apporter du confort à la vie quotidienne de chacune et chacun.

 

De l’autre côté, une science au service d’une « croissance infinie », décrétée par un système économique qui impose ses choix techniques et politiques. Une science et une technique dont les bénéfices pour la société sont de plus en plus occultés par les nuisances sociales et environnementales qu’elles provoquent.

 

Qui s’intéresse à l’histoire des sciences et des techniques ne peut échapper à ce double sentiment :

 

- L’émerveillement devant l’ingéniosité de l’esprit humain et les constructions intellectuelles et matérielles qu’il met en oeuvre pour comprendre son environnement et améliorer son cadre de vie.

 

- La lucidité devant le redoutable pouvoir des sciences et des techniques entre les mains de ceux pour qui elles représentent d’abord un outil pour posséder ou dominer.

 

À travers cette histoire du carbone et du CO2, nous n’échapperons pas à ces allers et retours.

 

Depuis l’Antiquité grecque jusqu’à Lavoisier nous suivrons une science dans laquelle nous serons tentés de ne reconnaître que la curiosité de l’enfance et l’enthousiasme de l’adolescence. Cette première partie nous apprendra ce que sont le carbone et le CO2 et comment ils contribuent à la vie sur cette planète.

 

Nous verrons ensuite une accélération extraordinaire des connaissances scientifiques et une multiplication de leurs applications techniques, au cours d’un xixe siècle qui s’achève avec les ondes électromagnétiques, les rayons X, la radioactivité, les premières automobiles, etc. Viendra ensuite le xxe siècle qui exploitera ces découvertes, pour le confort des sociétés développées, en même temps que se développeront leurs usages les plus redoutables.

 

Un développement qui amène à s’interroger sur la fonction des sciences dans nos sociétés. Car les scientifiques en font eux-mêmes le constat : alors qu’elle est depuis longtemps un indiscutable synonyme de progrès, à la fois pour les connaissances et pour la vie quotidienne, un désamour s’installe entre la science et la société.

 

C’est dans ces moments de doute qu’un retour aux sources peut faire revivre, à travers les écrits des auteurs des époques antérieures, les élans et les joies des premiers succès. Peut-être trouverons-nous également, dans ces expériences passées, des aides pour imaginer un nouvel avenir des sciences dans une société qui fonctionnerait sur d’autres bases que celles d’une croissance matérielle effrénée.

 

Note : nous avons choisi de scinder ce texte en cinq parties qui s’enchaînent mais qui pourraient également se lire de façon séparée.


 


Table des matières

 

CO2, fatal ou vital ?.

 
Première partie. D’Empédocle à Lavoisier, des quatre éléments à la naissance du carbone.

 

Au début étaient les quatre éléments.

Un modèle d’une grande puissance évocatrice.

Des quatre éléments aux quatre humeurs.

L’intermédiaire alchimique.

 

Jean-Baptiste Van Helmont, l’eau, la croissance des végétaux
et le « gas silvestre ».

L’alchimiste blasphémateur.

Les Anciens se sont trompés : il n’existe qu’un seul élément !.

Lavoisier et la contestation de la transmutation de l’eau en terre.

Au sujet du « gas silvestre » et de la naissance du mot « gaz ».

Hommage rendu à Van Helmont : l’adoption du mot « gaz ».

 

Georg Ernst Stahl, de l’élément feu jusqu’au phlogistique.

De l’alchimie à la chimie.

Du « principe sulfureux » au « principe inflammable » : le phlogistique.

Le charbon et les métallurgistes.

Un modèle diffusé par les chimistes français.

Quand Lavoisier était encore phlogisticien.

 

La course aux airs.

Stephen Hales (1677-1761). Quand l’air se transforme en pierre !.

Joseph Black (1728-1799) et l’air fixe.

Henry Cavendish (1731-1810), de l’air fixe à l’air inflammable
et autres airs factices.

Joseph Priestley (1733-1804), air fixe, air nitreux, air déphlogistiqué
et autres airs.

Les plantes ne fonctionnent pas comme prévu !.

Priestley mesure l’importance de l’observation..

Priestley et l’air fixe : poison ou remède ?.

Vraiment bizarre ?.

 

Priestley, Scheele, Lavoisier. De l’air déphlogistiqué à l’air du feu
et à l’oxygène. . .

Priestley (1733-1804), le phlogistique et l’air déphlogistiqué.

Carl Wilhelm Scheele (1742-1786) et l’air du feu.

Lavoisier (1743-1794), de l’air vital au principe oxygine et à l’oxygène.

1774-1777 : l’air est un mélange de deux fluides.

1777 : le phlogistique n’existe pas.

Quand l’air vital devient « air acidifiant » : le principe oxygine.

Quand naît l’oxygène.

 

Lavoisier. De l’air fixe à l’acide crayeux aériforme
et au gaz carbonique. . .

Quand l’air fixe devient acide crayeux aériforme..

De l’acide crayeux aériforme à l’acide charbonneux.

Quand l’acide charbonneux devient gaz acide carbonique
et quand naît le carbone.

 

De l’offensive anticarbone à la victoire de CO2.

Une réception « nuancée » de la part des académiciens français.

Des mots durs, barbares, qui choquent l’oreille. . . . . . . . . . . . . . . . . . .

La guerre est déclarée.

Oubliez ces carbonates, ces carbures….

Et pourtant carbone, carbonique et carbonates se sont imposés.

Symboles et équations chimiques.

 

O2 et CO2 : le jour et la nuit des plantes. . .

Charles Bonnet et l’alimentation des plantes par leurs feuilles. . . . . . . .

Jan Ingenhousz : le soleil rythme la vie des végétaux.

La vie nocturne des plantes.

Comme les animaux, jour et nuit, les plantes respirent.

Senebier, ou comment les plantes s’alimentent.

Lavoisier et l’apport de la chimie.

Aujourd’hui.

Et avant-hier ?.

 

O2, CO2 et la respiration des animaux. . .

Lavoisier et la respiration animale.

Savoir mesurer la chaleur.

Après l’unité, l’appareil de mesure. .

Les cochons d’Inde et la respiration.

Lavoisier, Seguin et la respiration humaine.

 
Deuxième partie. Quand la chimie était verte. . .

 

Quand la chimie naissait des plantes. . .

Distiller les bois, les feuilles, les graines, les racines.

Les produits précieux des résines.

Une résine élastique : le caoutchouc.

Retour aux sources.

 

Au sujet des charbonniers et du charbon de bois. . .

L’antiquité du charbon de bois.

L’industrie métallurgique et la grande époque des charbonniers.

Les chimistes et le charbon.

Lavoisier, le charbon et la poudre noire.

Coup d’oeil sur le charbon de bois aujourd’hui.

Mais alors, où est le problème ?.

 

Du bois pour les gazogènes. . .

Philippe Lebon invente le gazogène.

Gazogène à bois, le retour.

Retour aux sources ?.

 

Des plastiques sans houille et sans pétrole. . .

Du coton-poudre au collodion.

Du collodion au Celluloïd.

Le succès de la soie artificielle.

Et aujourd’hui ?.

 
Troisième partie. Quand le charbon sort de terre. . .


Le charbon et la vapeur au siècle de l’industrie. . .

Avec Denis Papin, le siècle de la vapeur commence en Angleterre.

Newcomen, Watt : de la « pompe à feu » à la machine à vapeur.

En France, de la révolution sociale à la révolution industrielle.

Le versant noir du progrès.

De la mine aux tranchées.

La colonisation, l’autre guerre.

 

Quand le gaz de houille éclairait la ville. . .

Les pionniers britanniques.

L’éclairage au gaz en France.

Quand les « becs de gaz » investissent le paysage urbain.

Le gaz menacé par l’électricité.

La lumière électrique à Châteaulin quand Paris l’attend encore :
beau symbole !.

 

Le goudron de houille et le grand oeuvre des chimistes du xixe siècle.

Le merveilleux goudron.

L’affaire de la garance.

La conquête de l’indigo.

La suprématie allemande.

Une industrie « précieuse pendant la guerre ».

 
Quatrième partie. Asphalte, bitume et pétrole.

 

Asphalte, bitume et pétrole avant l’automobile.

Asphalte et bitume sous Louis XV.

L’asphalte dans les villes de la Belle Époque.

Le pétrole, huile de la pierre.

Quand le pétrole était un médicament.

Quel usage pour ce pétrole ?.

Le pétrole du Caucase.

Le pétrole d’Amérique.

Et en Europe ?.

Le pétrole dans le monde en 1889.

La querelle des plutoniens et des neptuniens.

 

Premiers pipe-lines, premiers pétroliers, premières raffineries,
premiers accidents.

Le pétrole, un produit d’avenir ?.

 

Et l’automobile fut.

L’automobile et la vapeur.

Quand la fée électricité animait les tramways, les fiacres et les
automobiles.

L’autre moteur.

La victoire du pétrole.

1900 : le big-bang automobile.

 

Le pétrole d’après.

 
Pour conclure.

 

Le carbone et la vie.

La chimie devient « organique ».

De la synthèse organique à la génétique.

Le carbone, du big-bang à l’Homo sapiens.

Naissance de la Planète bleue.

Quand s’assemblent les molécules du vivant.

 

La science face au désamour.

Un débat à la Sorbonne.

Débattre de la science et de la vie il y a cent ans ?.

Débattre il y a cinquante ans ?.

Lanceurs d’alerte.

Retour à la Sorbonne.

Un problème de démocratie.

Cultiver les sciences.

Rapide plaidoyer pour l’histoire des sciences.

Les sciences, remède à la technocratie ?.


Bibliographie.

 

Partager cet article
Repost0
14 août 2014 4 14 /08 /août /2014 12:14

Nous avons rencontré Hauksbee en 1705 quand, en frottant dans l’obscurité un globe de verre dans lequel il avait fait le vide, il y faisait apparaître une étrange lueur qui semblait suivre le doigt qui s’en approchait.

 

Plus tard, l’abbé Nollet reprenait ces expériences dans une mise en scène qui leur assurait une durable publicité.



Expérience des vases lumineux réalisée par l’abbé Nollet


Sa méthode était plus efficace. Au lieu de frotter le récipient de verre, il l’électrisait en faisant pénétrer, à son autre extrémité, le classique canon de fer, suspendu par des cordons de soie, qui recevait l’électricité du globe de la machine électrique.

 

L’expérience était réalisée dans l’obscurité. Laissons parler Nollet :

 

"Si vous portez la main au robinet de métal qui tient à l’un des goulots du matras purgé d’air ou que vous approchiez vos doigts de la surface du verre tandis qu’on électrise le conducteur : vous verrez dans l’intérieur du vaisseau plusieurs jets d’une matière très lumineuse ; et si vous le touchez, vous apercevrez une pareille matière qui se répand dans son épaisseur, à peu près comme une huile imprégnée de phosphore." (Nollet, leçons de physique expérimentale). Notons que le terme de phosphore ne fait ici nullement référence à l’élément chimique dont la découverte en Europe date de la fin du 17ème siècle mais de façon générale, en accord avec l’étymologie grecque, à tout "porteur de lumière".

 

Pour Nollet, l’expérience indique qu’il est "très probable que la matière électrique est la même que celle du feu et de la lumière".

 

Bien plus tard, Faraday s’intéresse à son tour au phénomène. Il utilise un tube muni de deux électrodes à ses extrémités et dans lequel il peut faire le vide. Quand le vide n’est pas poussé à son maximum, une lueur l’emplit dès que les électrodes sont reliées à une source de haute tension.

 

Poussant plus loin le vide, il observe une frange sombre dans la colonne lumineuse du côté de la cathode. Cette zone sans lumière s’élargit quand le vide augmente. Cette observation sera mise à profit par son compatriote William Crookes.

 
William Crookes et la matière radiante.

 

L’étude des décharges dans les gaz raréfiés prend une nouvelle vigueur avec William Crookes (1832-1919). Le savant britannique est déjà célèbre pour avoir découvert un nouvel élément, le Thallium, et aussi pour son radiomètre.

 

L’appareil est encore commercialisé, souvent sous forme de curiosité. C’est un rotor léger, constitué par un ensemble de quatre plaques carrées dont l’une des faces est blanche et l’autre noire. Placé dans une ampoule vide de son air, le rotor tourne sous l’action de la lumière. Crookes en avait fait un usage scientifique, en particulier pour la mesure des radiations invisibles comme les radiations infrarouges.

 

Crookes accepte la théorie cinétique des gaz proposée par Bernoulli. Celui-ci considère les gaz comme formés de molécules se déplaçant en ligne droite mais changeant rapidement de direction à l’occasion des chocs avec les autres molécules ou les parois des vases les contenant. Dans les tubes de Faraday ou de Geissler, Crookes fait l’hypothèse que les molécules se chargent d’électricité au contact de la cathode et en sont violemment repoussées.

 

Si le vide est insuffisant elles rencontrent rapidement d’autres molécules, la violence du choc se traduisant par une émission lumineuse.

 

Si on pousse le vide, la trajectoire rectiligne des molécules, perpendiculairement à la surface de l’électrode, s’allonge et un espace sans lumière apparaît. Celui qui avait déjà été observé par Faraday. Un vide très poussé, comme celui auquel parvient Crookes, fait même disparaître tout effet lumineux à l’intérieur du tube. Seul est visible l’impact du faisceau sur le verre qui s’éclaire à l’endroit où il le rencontre.

 

Pour mettre en évidence l’existence de ce jet invisible, supposé être constitué de molécules, Crookes a l’idée de leur opposer des obstacles. Un montage célèbre est celui d"une roue à palettes montée sur des rails de verre. Soumise au rayonnement, elle tourne et avance. On peut choisir le sens du mouvement en choisissant l’électrode alimentée

 

On peut aussi placer dans le tube un écran fluorescent, par exemple recouvert de sulfure de carbone. Placé légèrement incliné le long du trajet du faisceau, il le rend visible. Le montage est encore présent dans nos lycées pour l’étude des rayonnements cathodiques.

 

Autre méthode : présenter sur le trajet du faisceau un obstacle dont l’ombre se verra sur l’extrémité élargie du tube. Le tube muni d’une croix inclinable à volonté deviendra un équipement classique des laboratoires.

 

Il résulte de cette étude une observation qui mériterait explication : les particules suivent un trajet rectiligne toujours perpendiculaire à la surface de la cathode. La place de l’anode n’a aucune influence. Il ne s’agit donc pas d’un "courant électrique" passant d’une électrode à l’autre mais d’un phénomène de type nouveau qui sera désigné par le terme de "rayonnement cathodique".

 

Le 16 janvier 1880 Crookes exécute ses expériences devant la Société française de physique. Elles laissent les spectateurs perplexes.

 

Le rayonnement est dévié par l’approche d’un corps chargé d’électricité et se comporte comme constitué de particules chargées d’électricité négative. Mais il est également dévié par un aimant comme le serait un courant électrique. Alors, flux de charges électriques ou courant d’électricité ?

 

N’oublions pas qu’en France les deux notions sont très différentes : un courant électrique est constitué par le déplacement simultané et en sens inverse des deux fluides. L’un positif, l’autre négatif.

 

Plus étrange. Deux pinceaux parallèles sont créés à partir de deux cathodes voisines. Vont-ils se repousser car constitués de particules de même charge ou s’attirer comme le font deux courants électriques de même sens ? Ils se repoussent, ce sont donc des particules chargées d’électricité et non des courants électriques tels que pouvait les décrire Ampère.

 

Mais quel type de particules ? Ces expériences se font dans des tubes où le vide est extrême. Crookes a mis au point des machines "pneumatiques" qui permettent de faire un vide particulièrement poussé. En les faisant fonctionner longtemps (jusqu’à quinze jours) il arrive à un vide qu’il estime à un millionième d’atmosphère. Les particules chargées ne peuvent donc pas être des molécules d’air résiduel. Crookes imagine un quatrième état de la matière, la "matière radiante", dont une des caractéristiques sera cette propagation rectiligne à partir de la cathode

 

Il faudra attendre la fin du siècle avec J.J. Thomson et la découverte de l’électron pour trouver une explication du phénomène acceptable par l’ensemble du monde scientifique. Les applications seront alors nombreuses : ampoules à vide équipant les premiers appareils électroniques, tubes cathodiques des oscilloscopes, des écrans de télévisions et des premiers ordinateurs, etc…

 

Le tube cathodique sera aussi à l’origine de découvertes aussi importantes que le rayonnement X et la radioactivité.

_______________________________________________________________________

Partager cet article
Repost0
13 août 2014 3 13 /08 /août /2014 15:30

 

Physicienne reconnue et personnalité politique de premier plan en Tunisie, Faouzia Farida Charfi offre avec ce livre un vibrant plaidoyer pour la science et l’autonomie de la pensée.

Puisant dans l’actualité récente mais aussi dans l’histoire, elle retrace ici les relations entretenues par l’islam et la science. Des relations qui, après un véritable âge d’or des sciences arabes et la période réformiste du XIXe siècle, sont désormais marquées du sceau de l’ambiguïté : oscillant entre le rejet et la fascination, les islamistes se livrent aujourd’hui à des tentatives pour concilier les théories scientifiques et le Coran, dénaturant ainsi et la science et l’islam sous prétexte de modernité.

Faouzia Farida Charfi analyse aussi le créationnisme pour dénoncer l’alliance objective des fondamentalismes – anglo-saxons ou musulmans – et le sort qu’ils réservent aux femmes. Elle rappelle enfin qu’on peut les combattre et ouvre quelques pistes en ce sens.

Un appel pour que la Tunisie se donne les moyens de son avenir.

Faouzia Farida Charfi est physicienne et professeur à l’Université de Tunis. Militante de la première heure, dès la présidence de Habib Bourguiba, elle a été nommée secrétaire d’État à l’Enseignement supérieur dans le gouvernement provisoire issu de la révolution du 14 janvier 2011. Elle en a démissionné peu après pour reprendre sa liberté de parole et d’action.

 

Un extrait de la conclusion de son ouvrage :

 

" ... la science est basée sur l'analyse de l'observation des faits de la nature ou des résultats d'expérience et sur leur traduction en termes de théories dont la validité peut constamment être remise en cause. Elle réunit autour d'elle un monde parlant le même langage et offre un cadre de discussions à une échelle autre que nationale et dans une certaine mesure, à l'abri des clivages idéologiques et politiques.

 

Le statut que la science a acquis lui vient de la persévérance des savants, de leur travail souvent solitaire, de leur résistance aux attaques dont ils ont été l'objet, de leur enthousiasme aussi par rapport au bonheur que procure la découverte. Ils laissent un legs scientifique dont la richesse est le fruit d'un questionnement libre et sans limite, excluant les dogmes. "

 

Et un autre message qui s'adresse à la jeunesse tunisienne mais qui pourrait s'adresser à la jeunesse d'Europe et en particulier de la France qui voit son enseignement scientifique déserté par les étudiants.

 

La jeunesse tunisienne "pourrait être en mesure de créer de nouveaux concepts scientifiques générant de nouvelles avancées dans différents domaines, tels que l'informatique, la biologie, les énergies renouvelables, et contribuer à la construction du savoir scientifique.

 

Cela implique que le savoir ne soit pas conçu comme un produit "utile", mais comme l'aventure d'un esprit libre et critique. Cela implique que la science entre par la grande porte, afin d'être appropriée, valorisée et enrichie. Et non pas des bouts de science repris, déformés, mis en avant pour donner un vernis de modernisme, l'illusion d'être dans le monde actuel de la technologie. Ces bouts de sciences ne peuvent être générateurs de connaissances.

 

Un long chemin reste encore à faire dans l'ensemble du monde arabe. Ma conviction est qu'il vaut la peine d'être parcouru malgré les obstacles et je nourris l'espoir que bientôt les pays arabes se hisseront au rang de ceux qui ont accès au monde de la connaissance et contribueront au savoir universel."

 

__________________________ ____________________________________________

 

 

 

 

Suivre l'interview de Faouzia Farida Charfi

 

Ecouter également sur RFI :

Peut-on espérer une révolution du savoir en Tunisie ?

 

 

 

Partager cet article
Repost0
12 août 2014 2 12 /08 /août /2014 18:27

Volta a réservé la primeur de sa découverte de la pile électrique à la Royal Society.

 

Sa lettre du 20 mars 1800 adressée à Joseph Banks parvient à Londres dans les premiers jours d’avril et, avant même sa publication officielle en juin, est communiquée aux membres de la compagnie. Dès lors chacun s’emploie à reproduire les expériences décrites et à en imaginer de nouvelles.


Parmi les premiers auditeurs, un chirurgien, Anthony Carlisle est très attentif à l’invitation expresse de Volta : rechercher tout ce que la pile, "organe électrique artificiel" comparable à celui des poissons torpilles, peut apporter à la médecine et à la physiologie.

 

Des monnaies d’argent, des rondelles de zinc et des rondelles de carton imprégnées d’eau salée lui permettent de monter une colonne de 17 couples. Avec son ami Nicholson, physicien averti, il se propose d’abord de vérifier la polarité de son montage à l’aide d’un électroscope et du condensateur à plateau de Volta. Voulant améliorer le contact entre le fil relié à l’un des pôles de la pile et le plateau du condensateur de l’électroscope, il dépose sur celui-ci une goutte d’eau dans laquelle il plonge le fil.

 

Bons observateurs, les deux amis ne manquent pas de remarquer, autour du fil, un dégagement de fines bulles d’un gaz dont l’odeur leur fait soupçonner qu’il s’agit d’hydrogène. L’eau serait-elle décomposée par le fluide électrique ? Le 2 mai de l’année 1800, ils le vérifient en reliant les deux pôles de la pile à un tube de verre de 30 centimètres de longueur et de quinze millimètres de diamètre, rempli d’eau de source et fermé par deux bouchons de liège traversés par un fil de cuivre.

 

Le tube est vertical, son électrode inférieure est reliée à la plaque d’argent, l’autre à la plaque de zinc. Dans un premier temps rien ne se passe. On rapproche les fils de cuivre et quand ils ne sont plus distants que de cinq centimètres :

 

"une longue traînée de bulles excessivement fines, s’éleva de la pointe du fil inférieur de cuivre qui communiquait avec le disque d’argent, tandis que la pointe du fil de cuivre opposé devenait terne, puis jaune orangé, puis noire".

 

Après deux heures et demie de ce fonctionnement, le sommet du tube contenait environ un demi-centimètre cube d’un gaz qui, en détonnant avec un mélange d’air, se révélait être de l’hydrogène. La base du tube recevait pour sa part un dépôt filamenteux tombant du fil supérieur et qui se révélait être de l’oxyde de cuivre. On pouvait soupçonner que ce composé était le résultat d’une combinaison du métal avec l’oxygène issu de la décomposition de l’eau. Pour le vérifier il suffisait de remplacer le cuivre par deux fils d’un métal inoxydable comme le platine. Ce qui fut fait.

 

Comme espéré, un dégagement de gaz se développa, alors, sur chaque électrode. En modifiant le montage il était possible de les recueillir séparément et de constater que le premier était de l’hydrogène et le second de l’oxygène. Possible aussi de mesurer leur volume et de retrouver les proportions établies par Lavoisier pour la composition de l’eau.

 

Par le moyen de l’étincelle électrique, Lavoisier avait provoqué la synthèse de l’eau. Par l’usage de la pile électrique Nicholson et Carlisle en avaient donc réalisé la décomposition.

 

Etait-ce si simple ? L’expérience reprise dans toute l’Europe scientifique donnait lieu à débat. L’eau était-elle réellement le corps décomposé ? Les problèmes soulevés sont nombreux :

 

- A l’évidence une eau additionnée de certains acides ou de certains composés alcalins donne de bien meilleurs résultats que l’eau pure. Le corps dissout ne pourrait-il pas être l’agent essentiel de l’apparente décomposition ?

 

- De l’eau soigneusement distillée continue à être décomposée mais le phénomène n’est-il pas lié à la dissolution, dans cette eau, de l’air ou même de la matière du récipient qui sert à l’expérience ?

 

Rapidement, l’interprétation de l’électrolyse d’une solution aqueuse apparaît comme étant extrêmement complexe. Mais cette complexité est plutôt stimulante pour la nouvelle génération de chimistes européens formée à l’école des Priestley, Cavendish ou Lavoisier. Parmi ceux-ci Humphry Davy.

 

Humphry Davy (1778-1829).

 

Davy a vingt deux ans quand il prend connaissance des travaux de Volta. Il est alors le collaborateur du docteur Beddoès qui dans "l’institution pneumatique" qu’il a fondée à Boston, étudie les propriétés anesthésiantes du protoxyde d’azote identifié par Priestley vers 1774.

 

Chimiste dans un établissement qui se livre à des recherches médicales, c’est donc en chimiste qu’il aborde le problème de l’électricité "galvanique". Dès sa première publication du 26 octobre 1800, avec la hardiesse propre à la jeunesse, il met à mal la théorie de Volta. Le phénomène, dit-il, n’est pas le résultat d’une différence dans la "tension électrique" propre à chaque métal. Ayant constaté l’oxydation du zinc pendant le fonctionnement de la pile, il en déduit que "le galvanisme est un procédé purement chimique" qui "dépend entièrement de l’oxydation de surfaces métalliques".

 

Il constate ensuite que "si les plaques de zinc sont humectées avec de l’eau pure, la pile n’agit pas" mais que l’action de la pile est infiniment plus puissante quand on emploie de l’acide nitrique :

 

" Cinq couples avec de l’acide nitrique donnent des étincelles égales à celles de la pile ordinaire ; avec vingt couples la secousse est insupportable."

 

Volta n’avait attribué, au liquide imbibant ses rondelles de carton, que le rôle modeste d’un conducteur. Il lui faudra à présent admettre que le moteur de sa découverte se trouvait dans ce "détail" expérimental. C’est, en réalité, l’action chimique du liquide employé qui est essentielle. Après une suite d’observations heureuses mais d’interprétations erronées était venu le temps de "l’électrochimie".

 

De cette nouvelle conception allaient sortir d’autres modes de construction des appareils "électromoteurs". Cruikshank, collaborateur de Carlisle et Nicholson choisit de rendre horizontale la pile verticale. Dans une boîte de bois recouverte d’un vernis isolant, il place des plaques rectangulaires de cuivre et de zinc glissées dans des rainures aménagées dans la boîte et scellées au mastic. Les couples délimitent ainsi des cases régulières dans lesquelles est versée la solution conductrice choisie. On peut ainsi associer un nombre important de plaques de grande surface.

 

Certainement aurait-il été plus judicieux de conserver pour ce nouveau montage le terme "d’électromoteur" proposé par Volta, mais on continuera, comme aujourd’hui encore, à nommer "pile" cette construction qui n’en est plus une.

 

Ces piles d’un nouveau style ont des effets prodigieux. Celle de Pepys construite en 1802 comporte soixante paires de plaques carrées, zinc-cuivre, de six pouces de côté, plongeant dans une solution d’acide nitrique. Le courant obtenu fait fondre des fils de fer ayant jusqu’à trois millimètres de diamètre. La même année Davy en fait construire une qui exigeait d’être manipulée avec de nombreuses précautions. Elle se compose de quatre cents paires métalliques de cinq pouces carrés associées à quarante paires de un pied carré. Ce sont plusieurs centaines de volts qui sont ainsi disponibles entre ses pôles !

 

Son appareil construit, Davy se met au travail et livre ses premiers résultats le 29 décembre 1806 lors d’une lecture faite devant la "Royal Society". Après avoir étudié dans le détail l’expérience dite de "décomposition de l’eau", il s’attaque à l’action de la pile sur les solutions acides, alcalines ou salines.

 

Cherchant à décomposer la potasse et voulant éliminer l’influence de l’eau, il parvient à électrolyser le corps en fusion. Il voit alors apparaître, au pôle négatif, de petits globules, semblables à du mercure, et qui, très oxydables se recouvrent rapidement d’une couche terne.

 

Une course aux nouveaux éléments.

 

Davy vient de découvrir un métal nouveau auquel sera donné le nom de potassium. Il donne ainsi le départ d’une course à la recherche de nouveaux éléments. Lui-même découvre rapidement le sodium, le baryum, le strontium et le calcium.

 


Le laboratoire de Davy (Louis Figuer, Les Merveilles de la Science)


 

La renommée de Davy gagne le continent et, en 1808, l’Institut français des Sciences trouve enfin le successeur de Franklin et Volta et lui attribue le prix fondé par le Premier Consul et qui n’avait, jusqu’à présent, pu être attribué faute de candidat sérieux.

 

Cette réussite anglaise incite aussi Napoléon à faire construire au sein de l’école polytechnique une pile gigantesque de 600 couples cuivre/zinc de neuf décimètres carrés pour chaque plaque. L’ensemble avait 54 mètres carrés de surface et fut mis à la disposition des chimistes Gay-Lussac et Thénard.

 


La grande pile de l’Ecole Polytechnique (1813) (Louis Figuier, Les Merveilles de la Science)


 

Les Anglais ne voulant pas être en reste, une souscription permettait de construire, pour Davy, une nouvelle pile encore plus puissante. D’un type imaginé par Wollaston, elle associait deux cents éléments de dix plaques chacun associés en batterie soit un total de deux mille plaques. Trois fois plus que la pile de l’école polytechnique.

 


La pile de Wollaston construite en 1807 et utilisée par Davy (Louis Figuier, Les Merveilles de la Science)


 

Avec ce dispositif Davy découvrait l’arc électrique. En reliant les pôles de la pile par des charbons taillés en pointe, il observe la naissance d’une étincelle à l’éclat incomparable quand on approche ces deux pointes de quelques millimètres. En écartant ensuite les charbons on obtient un "arc" de plusieurs centimètres. La lumière obtenue peut, la nuit, éclairer, d’une lumière de plein jour, une pièce obscure. La chaleur de l’étincelle est suffisante pour volatiliser toute matière, aussi réfractaire soit-elle. Et ne parlons pas de la certitude d’être foudroyé si par inconscience on touchait, à la fois, les deux pôles de cette batterie.

 

La pile de Volta et ses premières applications ont totalement bouleversé la science électrique. La voie ouverte n’a rien à voir avec les approches passées. Finis les tubes et les sphères que l’on frotte pour observer des phénomènes que seuls les meilleurs manipulateurs sont capables d’obtenir. Il suffit d’une solution de sel ou d’acide et de plaques de métal réunies dans un montage à la portée de chacun pour obtenir des effets prodigieux.

 

Il est difficile d’imaginer que l’électricité n’a, pourtant, encore révélé qu’une modeste partie de son pouvoir. Et pourtant…


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.  Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

Partager cet article
Repost0
12 août 2014 2 12 /08 /août /2014 18:10

Avril 1764. Charles-Augustin Coulomb, jeune Ingénieur de 28 ans arrive à la Martinique pour diriger l’imposant chantier de la construction du Fort Bourbon qui doit défendre l’île contre les incursions anglaises. Chantier exténuant qui mobilise plus de mille hommes et qu’il mène avec la sûreté d’un bâtisseur confirmé. Trente ans plus tard nous le retrouvons, seul, dans son laboratoire parisien devant le délicat mécanisme d’une tige légère portant une boule de sureau et suspendue horizontalement à un fil d’argent plus fin qu’un cheveux. L’ingénieur, le bâtisseur, aurait été oublié si ce fragile montage ne lui avait pas permis d’établir la loi mathématique des attractions et répulsions électriques.

 

 

 

 

 

Coulomb (1736-1806) : le temps de la mesure.

 

Charles-Augustin Coulomb est né le 14 juin 1736 à Angoulême. Son père, inspecteur des Domaines du Roi, est d’abord nommé à Paris où son fils suit les cours du Collège Mazarin et où il se passionne pour les mathématiques. Des revers de fortune obligent la famille à rejoindre Montpellier. Charles-Augustin y poursuit ses études et est admis à l’Académie des Sciences de la ville qui jouit d’une flatteuse réputation. Pendant le même temps il se prépare au concours d’entrée à l’Ecole du Génie de Mézières, une école prestigieuse qui annonce les "grandes écoles" de la période napoléonienne. Il y entre en février 1760 avec le grade de lieutenant peu de temps avant que l’abbé Nollet y soit nommé en 1761 pour y assurer l’enseignement de la physique.

 

Sa carrière est d’abord celle d’un ingénieur du génie militaire. A la sortie de l’école, en 1761, il est nommé à Brest où pendant trois ans il travaille à la réalisation de cartes côtières. Il s’embarque pour la Martinique en 1764 et en revient en 1772 expérimenté mais épuisé.

 


Fort Bourbon à la Martinique.


 

Il occupe ensuite plusieurs postes sans intérêt majeur dans des garnisons militaires avant d’être élu membre de l’Académie des Sciences en 1781 et nommé à Paris. Il peut alors se consacrer totalement aux recherches sur le magnétisme et l’électricité qu’il n’avait pu mener jusqu’à présent que de façon épisodique.

 

Ses premiers travaux datent de 1776. Il est alors à Cherbourg où il refuse de se laisser gagner par la routine. Son ambition a toujours été de mettre à profit la riche culture scientifique, en particulier mathématique, qu’il a cultivée pendant ses études à Mézières. Il ambitionne surtout d’être élu à l’Académie des Sciences qui l’a distingué en lui accordant le titre de correspondant en 1774. Une occasion de se faire à nouveau connaître s’offre à lui quand, en 1775, l’Académie met au concours un prix concernant l’amélioration des boussoles et leur application à l’étude du magnétisme terrestre. L’enjeu est d’importance à un moment où il faut disputer aux anglais la maîtrise des mers. Le sujet n’est pas, à l’évidence, du domaine de compétence de Coulomb plus instruit à maîtriser les tonnes des matériaux de construction que la délicate aiguille marine. Cependant, ce concours, demandant peu de moyens matériels, se prête parfaitement au travail d’un chercheur isolé. Il lui permet surtout d’apporter la preuve de ses capacités à mener un programme rigoureux et de faire valoir ses connaissances mathématiques.

 

D’emblée, Coulomb définit l’objet de sa recherche et la façon dont il entend la mener : l’étude raisonnée des forces magnétiques exercées sur un aimant. Le débat n’est pas encore tranché entre ceux, que nous pourrions qualifier de "cartésiens", qui défendent l’idée de l’action mécanique d’un "fluide" entourant les corps magnétiques sous la forme de "tourbillons" agissant par contact et les "newtoniens" partisans des actions à distance.

 

Coulomb, rompant avec la plupart des électriciens français, se range dans le camp des derniers. Il considère "que ce ne sont point des tourbillons qui produisent les différents phénomènes aimantaires, et que, pour les expliquer, il faut nécessairement recourir à des forces attractives et répulsives de la nature de celles dont on est obligé de se servir pour expliquer la pesanteur des corps et la physique céleste". Il est vrai que depuis les travaux de Franklin, la théorie de Newton a gagné des adeptes parmi les électriciens français.

 

Quant à la méthode, elle est également nouvelle. Coulomb, pour éliminer les frottements sur l’axe de la boussole ou du barreau aimanté, propose de les suspendre à un cheveu ou un fil de soie. Il réalise ainsi un "pendule" de torsion et commence par établir la loi de la "torsion élastique" :

 

"Les forces de torsion qui ramènent un corps à sa situation naturelle sont nécessairement proportionnelles à l’angle de torsion"

 

Ces résultats sont distingués par un premier prix. Ils annoncent des recherches plus méthodiques dont les premières conclusions seront exposées à partir de 1784.

 

La loi de Coulomb.

 

En septembre 1784, Coulomb présente aux membres de l’Académie des Sciences le Mémoire où il traite des "Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal". Cette étude approfondit les résultats déjà obtenus sur la torsion. Surtout elle met en lumière l’intérêt d’une "balance" pour mesurer les forces de faible intensité comme les forces magnétiques et électriques. Il en fera usage dans une série de mesures qui occuperont 7 Mémoires dont le premier suffira à lui assurer la célébrité.

 

Ce Mémoire lu en Juin 1785 porte "sur l’électricité et le magnétisme" et en particulier sur la :

 

"Détermination expérimentale de la loi suivant laquelle les éléments des corps électrisés du même genre d’électricité se repoussent mutuellement".

 

Un dessin de sa balance de torsion illustre ce texte. Une tige légère porte une balle de sureau de 5mm de diamètre à l’une de ses extrémités et un disque de papier à l’autre. La fonction de ce dernier est celle d’un contrepoids et d’un frein opposé aux oscillations de la tige.

 

Celle ci est suspendue à un fil d’argent de 76cm de longueur. Un fil si fin que "1 pied de ce fil" ne pèse que "1/12 de grain" soit 0,16 grammes par mètre. L’ensemble est contenu dans une enceinte de verre constituée de deux cylindres. Une deuxième balle de sureau est introduite dans le cylindre inférieur au contact de la première. Il suffit alors de toucher l’une des balles par une tige chargée d’électricité (ici une tête d’épingle) pour que les balles de sureau se chargent à leur tour et se repoussent. On peut les obliger à se rapprocher par une torsion du fil pratiquée à sa partie supérieure. L’effort nécessaire est alors déterminé par l’angle de torsion mesuré par un micromètre.

 


Balance de Coulomb Mémoires de l’Académie des Sciences, 1785


Quatre chiffres suffisent à Coulomb pour annoncer un résultat :

 

" Premier essai : Ayant électrisé les deux balles avec la tête d’épingle, l’index du micromètre répondant à zéro, la balle a de l’aiguille s’est éloignée de la balle t de 36°.
 

- Deuxième essai : Ayant tordu le fil de suspension au moyen du bouton du micromètre de 126°, les deux balles se sont rapprochées et arrêtées à 18° de distance l’une de l’autre.
 

- Troisième essai : Ayant tordu le fil de suspension de 597°, les deux balles se sont rapprochées à 8°30’. "

 

Les angles totaux de torsion du fil (144° et 595,5°), c’est à dire les forces exercées, sont dans un rapport de 4,13 alors que les distances sont dans un rapport de 2,12, chiffre dont le carré est égal à 4,48. Cette différence de 8% entre les deux chiffres semble suffisamment faible à Coulomb pour qu’il puisse affirmer que :

 

"La force répulsive de deux petits globes électrisés de la même nature d’électricité est en raison inverse du carré de la distance du centre des deux globes"

 

Avec un vocabulaire plus moderne nous dirions que les forces exercées entre les deux charges électriques sont inversement proportionnelles au carré des distances qui les séparent.

 

Deux mesures pour dégager une loi ? Même si des mesures, bien plus nombreuses, furent exploitées dans les mémoires suivants, il ne manqua pas de commentateurs pour estimer que, telle que présentée, cette conclusion ne faisait pas preuve d’une réelle rigueur. Coulomb a-t-il su résister au désir de se présenter comme le Newton de l’électricité ? N’aurait-il pas voulu tout simplement vérifier une intuition forte, à savoir l’existence d’une loi analogue à celle établie et vérifiée dans le domaine de la gravitation ?

 

Jusqu’en 1825 il se trouvera des physiciens pour refuser ses conclusions et proposer, par exemple, une loi en 1/d au lieu de la loi en 1/d2. Quand il meurt en 1806, Coulomb n’est donc pas encore reconnu comme l’auteur véritable de la première loi mathématique de l’électricité. Loi d’où découleront toutes celles de l’électrostatique. Loi qui sera fondamentale pour définir les futures unités électriques. Il faudra l’énergie de ses disciples français, Biot, Haüy et Poisson pour que soit reconnue la valeur de son travail et que lui soit fait l’honneur de donner son nom à la loi d’action électrique à distance ainsi que, plus tard, à l’unité de charge électrique.

 

En même temps que sa loi sera validée, la balance de torsion dont il a été le premier à utiliser le principe, se perfectionnera pour devenir un instrument utile à la mesure des faibles effets mécaniques ou électriques. L’électromètre à quadrant de Thomson ou le galvanomètre à cadre mobile sont des exemples accomplis de l’usage de la balance de torsion et seront l’occasion de problèmes scolaires classiques jusqu’à la fin du 20ème siècle.

 

Coulomb clôt une époque fertile. Aussi habile expérimentateur que savant mathématicien, il donne réellement à l’électricité, sous sa forme "statique", le statut d’une science académique, c’est-à-dire d’une science capable de se voir appliquer, au travers de la loi d’action à distance, tous les concepts et les outils mathématiques de la mécanique "newtonienne".

 

S’ouvre alors une autre période, celle de l’électricité en mouvement, c’est à dire des courants électriques.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.

Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

 

_______________________________________________________________________

Partager cet article
Repost0
11 août 2014 1 11 /08 /août /2014 19:18

Deux espèces d’électricité ou une seule ? Nous avons vu que jusqu’à la fin du 19ème siècle deux système ont cohabité.

 

Celui initié par Dufay des deux espèces d’électricité : vitrée ou positive, résineuse ou négative.

 

Celui de Franklin : un seule espèce d’électricité chargeant les corps en plus ou en moins.

 

Il est vrai que le choix ne s’impose pas quand on étudie l’électricité à l’état statique.

 

Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?

 

 


La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Des charges jusqu’aux courants électriques.

 

Le concept de courant électrique est déjà en germe dans les lettres de Franklin à ses correspondants. En définissant l’électricité comme un fluide qui peut s’accumuler sur un corps ou en être extrait, en désignant par le terme de "conducteur" les corps susceptibles de transmettre ce fluide, on introduit nécessairement l’idée d’un écoulement. Le mot "courant" est d’ailleurs utilisé par Franklin pour décrire les "effluves" qui s’échappent des conducteurs et M.E. Kinnersley, l’un de ses correspondants, qui a déjà eu l’occasion de lui signaler les effets différents du verre et du soufre, lui propose un premier montage propre à faire circuler ce fluide :

 

" Si un globe de verre est placé à l’un des bouts du conducteur, et un globe de soufre à l’autre, les deux globes étant également en bon état, et dans un mouvement égal, on ne pourra tirer aucune étincelle du conducteur, parce que l’un des globes attire (le fluide électrique) du conducteur aussi vite que l’autre y fournit ! ".

 

Le même Kinnersley observe l’effet calorifique du courant électrique. Il relie par un fil d’archal (autre nom du laiton, alliage de zinc et de cuivre), les deux armatures d’une batterie de bouteilles de Leyde (nous parlerons bientôt de ces premiers condensateurs électriques) : "le fil d’archal fut chauffé jusqu’au rouge". L’interprétation du phénomène est très "moderne" :

 

" On peut inférer de là que, quoique le feu électrique n’ait aucune chaleur sensible lorsqu’il est dans un état de repos, il peut par son mouvement violent et par la résistance qu’il éprouve, produire de la chaleur dans d’autres corps, en y passant pourvu qu’ils soient assez petits. Une grande quantité passerait au travers du gros fil d’archal sans y produire de chaleur sensible, tandis que la même quantité passant au travers d’un petit, étant restreinte à un passage plus étroit, et ses particules plus serrées les unes sur les autres, et éprouvant une plus grande résistance, elle échauffera ce petit fil d’archal jusqu’à le faire rougir et même jusqu’à le faire fondre".

 

Quant à s’interroger sur le sens de circulation de ce courant de fluide électrique, la question n’est jamais posée par les partisans du fluide unique tant la réponse est évidente : il circule nécessairement à travers le conducteur du corps qui en porte "en plus" vers celui qui en porte "en moins".

 

Le même point de vue est exprimé par le français Jean-Baptiste Le Roy (1720 - 1800) qui préfère pour sa part parler d’électricité "par condensation" et d’électricité "par raréfaction". Il décrit sa machine électrique comme une "pompe à électricité" qui refoule celle-ci de son pôle positif (le plateau de verre frotté) et l’attire à son pôle négatif (les coussins de cuir responsables du frottement). La circulation du fluide est clairement décrite :

 

"Si le fluide est raréfié d’un côté et condensé de l’autre, il doit se former un courant tendant du corps où il est condensé vers celui où il est raréfié".

 

Pour les tenants de la théorie du fluide unique, la définition du sens de circulation du courant électrique ne doit donc rien ni au hasard ni à une quelconque convention. Il est imposé par le modèle choisi : c’est du "plus" vers le "moins".

 

Les machines de Jean-Baptiste Le Roy sont une tentative sur la voie des générateurs électriques, il faudra cependant attendre le début du XIXème siècle et la construction de la première pile électrique par Volta pour que l’étude des courants électriques et de leurs effets prenne le pas sur celle des phénomènes statiques. Pour suivre cette histoire jusqu’à sa conclusion provisoire, commençons notre excursion vers des périodes plus proches de notre présent.

 

De la pile Volta au Bonhomme d’Ampère.

 

Nous ne détaillerons pas ici l’observation publiée en 1791 par Luigi Galvani et qui devait amener Volta à la découverte de la pile électrique. Nous y reviendrons. Disons simplement, pour le moment, qu’en assemblant des rondelles de cuivre et de zinc alternées et séparées par des rondelles de carton imprégnées d’une solution acide, Volta réalise une générateur capable de faire circuler un courant électrique dans un conducteur extérieur (fil métallique ou solution conductrice).

 

Ce courant est, pour Volta, constitué d’un fluide unique tel que celui décrit par Franklin. Un fluide qui circule, à l’extérieur de la "pile", de son pôle positif vers son pôle négatif. Mais les tenants des deux fluides ne désarment pas : la pile produit du fluide positif à l’un de ses pôles et du fluide négatif à l’autre, disent-ils. Deux courants en sens inverse, l’un de fluide positif, l’autre de fluide négatif, circulent donc dans le conducteur qui relie les deux pôles.

 

Ce sont d’abord les chimistes qui s’emparent avec bonheur de la pile voltaïque et ils ne tranchent pas la querelle. Des phénomènes extraordinaires se font jour au niveau des électrodes reliées aux pôles de la pile et plongées dans les multiples solutions conductrices testées. La nature et le sens de circulation du fluide électrique ne sont pas leur préoccupation première. Ils sont déjà suffisamment occupés par l’étude des propriétés de la multitude de nouveaux corps que l’électrolyse vient de leur faire découvrir.

Il faut attendre 1820 pour que Oersted ramène l’intérêt des physiciens sur les courants traversant les conducteurs métalliques en mettant en lumière leurs effets magnétiques et mécaniques.

 

Oersted : la pile et la boussole.

 

Malgré l’opposition établie par Gilbert, l’hypothèse de la nature commune de l’électricité et du magnétisme n’a pas été totalement abandonnée. L’aimantation de tiges de fer sous l’action de la foudre est déjà signalée dans les oeuvres de Franklin de même que le mouvement d’une aiguille aimantée à l’occasion de la décharge d’une bouteille de Leyde. Malheureusement ces recherches étaient vouées à l’échec tant que leurs auteurs ne disposaient pas d’une source continue d’électricité.

 

Hans Christian Oersted (1777-1851), professeur de physique à l’Université de Copenhague est celui à qui la chance sourira. Occupé pendant l’hiver 1819, à montrer à ses élèves l’effet calorifique de la pile Volta, il observe le mouvement d’une aiguille aimantée située à proximité du conducteur traversé par le courant électrique. Une étude attentive lui montre que l’effet est maximal quand le fil conducteur est placé parallèlement à l’aiguille aimantée. Celle-ci tend alors vers une position d’équilibre perpendiculaire au fil. Le sens de ce mouvement dépend de l’ordre dans lequel les pôles de la pile ont été reliés au conducteur.


JPEG

Expérience de Oesrsted.

Voir la vidéo sur le site Ampère/CNRS


Nous reviendrons sur cette expérience, acte de naissance de l’électromagnétisme. Pour le moment contentons nous de voir comment elle intervient dans la définition "du" sens du courant électrique.

 

Interprétant cette expérience nous dirions, aujourd’hui, que le sens de la déviation de l’aiguille dépend du sens du courant électrique. Oersted, lui, est adepte du modèle des deux fluides. Les courants de fluide positif et de fluide négatif, pense-t-il, se déplacent en sens inverse le long du conducteur. Héritier des théories cartésiennes, il les décrit sous la forme de deux "tourbillons" : La " matière électrique négative décrit une spirale à droite et agit sur le pôle nord" tandis que " la matière électrique positive possède un mouvement en sens contraire et a la propriété d’agir sur le pôle Sud ". Quand nous inversons les pôles de la pile auxquels est relié le fil conducteur, nous inversons le sens de chacun des courants et donc de leur effet sur la boussole.

 

Oersted réussit sans peine à faire entrer son interprétation dans le cadre théorique qui est le sien. La théorie des deux fluides résiste !

 
Ampère : le sens conventionnel.

 

On sait que dès l’annonce, en France, des observations faites par Oersted, Ampère (1775-1836) commençait la série d’expériences qui allaient l’amener à la mise au point de la théorie de "l’électromagnétisme". Chacun connaît le fameux "bonhomme" placé sur le fil conducteur de telle sorte que le courant électrique lui entre par les pieds. On pourrait penser qu’avec Ampère le courant unique a fini par l’emporter. Erreur ! Ampère est un ferme partisan des deux fluides. Il le rappelle dans son "Exposé des Nouvelles Découvertes sur l’Electricité et le Magnétisme" publié à Paris en 1822 :

 

"Nous admettons, conformément à la doctrine adoptée en France et par beaucoup de physiciens étrangers, l’existence de deux fluides électriques, susceptibles de se neutraliser l’un l’autre, et dont la combinaison, en proportions déterminées, constitue l’état naturel des corps. Cette théorie fournit une explication simple de tous les faits et, soumise à l’épreuve décisive du calcul, elle donne des résultats qui s’accordent avec l’expérience".

 

Par contre il rejette les termes d’électricité vitrée et résineuse, il leur préfère ceux de positive et négative à condition que ces termes ne conservent que le sens d’une convention :

 

"Lorsqu’on admit l’existence des deux fluides, on aurait dû dire : ils présentent l’un à l’égard de l’autre les propriétés opposées des grandeurs positives et négatives de la géométrie ; le choix est arbitraire, comme on choisit arbitrairement le côté de l’axe d’une courbe où ses abscisses sont positives ; mais alors celles de l’autre côté doivent être nécessairement considérées comme négatives ; et le choix une fois fait, comme il l’a été à l’égard des deux électricités, on ne doit plus le changer".

 

En toute logique, la pile produit ces deux types d’électricité :

 

" Dans la pile isolée, chaque électricité se manifeste à l’une des extrémités de l’appareil, l’électricité positive à l’extrémité zinc, et l’électricité négative à l’extrémité cuivre". (Ampère respecte ici les polarités proposées par Volta et dont nous verrons qu’elles étaient erronées).

 

La conclusion est naturelle :

 

"Deux courants s’établissent toujours, lorsque l’on fait communiquer les deux extrémités de la pile."

 

Le courant d’électricité positive part de la lame positive et celui d’électricité négative de la lame négative. Comme les phénomènes magnétiques s’inversent quand on change le sens de ces deux courants il est nécessaire, cependant, de bien repérer ces sens. C’est l’occasion pour Ampère de proposer une convention commode :

 

"Il suffit de désigner la direction du transport de l’un des principes électriques, pour indiquer, en même temps, le sens du transport de l’autre ; c’est pourquoi, en employant dorénavant l’expression de courant électrique pour désigner le sens dans lequel se meuvent les deux électricités, nous appliquerons cette expression à l’électricité positive, en sous-entendant que l’électricité négative se meut en sens contraire".

 

Voici donc enfin ce fameux "sens conventionnel". En réalité, ce qu’il décrit n’est pas le sens du courant mais celui des courants. En choisissant d’appeler "sens du courant" celui de la circulation du fluide positif, Ampère a eu l’habileté de trouver un vocabulaire commun aux hypothèses "anglaise" et "française". Dès lors, le fameux "bonhomme d’Ampère" peut servir d’outil aux deux modèles :

 

"Pour ... définir la direction du courant relativement à l’aiguille concevons un observateur placé dans le courant de manière que la direction de ses pieds à sa tête soit celle du courant, et que sa face soit tournée vers l’aiguille ; on voit alors que dans toutes les expériences rapportées ci-dessus le pôle austral de l’aiguille aimantée est porté à la gauche de l’observateur ainsi placé".

 

L’observateur d’Ampère reçoit bien le fluide positif par les pieds mais reçoit également le fluide négatif par la tête.


JPEG
"Bonhomme d’Ampère" nageant dans le courant
(Louis Figuier, Les Merveilles de la Science)

 

voir aussi :

 

Au sujet du sens du courant électrique, du bonhomme d’Ampère et du tire-bouchon de Maxwell.


Avec Ampère, c’est la théorie des deux courants qui s’impose en France et dans la plupart des Pays d’Europe, elle est encore classique dans les manuels du début du XXème siècle et exige des enseignants de véritables prouesses pédagogiques. Il n’est en effet pas commode d’exposer la façon dont les deux fluides peuvent se croiser sans se neutraliser.

 
Le retour de Franklin.

 

L’Angleterre est en général restée fidèle à Franklin et au fluide unique. Maxwell (1831-1879), par exemple, souhaite une grande prudence vis-à-vis de la notion même de fluide électrique :

 

"Tant que nous ignorons si l’électricité positive ou négative, ou si l’électricité même est une substance, tant que nous ne saurons pas si la vitesse du courant électrique est de plusieurs millions de lieues par seconde ou d’un centième de pouce à l’heure, ou même si le courant électrique marche du positif au négatif ou dans la direction opposée nous devrons éviter de parler de fluide électrique". (Maxwell, traité élémentaire d’électricité - Paris - Gautier Villars - 1884).

 

Malgré cette prudence il faut bien choisir l’un des modèles pour interpréter les phénomènes électromagnétiques, c’est alors le fluide unique et le modèle de Franklin qui auront sa préférence :

 

"S’il existe une substance pénétrant tous les corps, dont le mouvement constitue le courant électrique, l’excès de cette substance dans un corps, au delà d’une certaine proportion normale, constitue la charge observée de ce corps".

 

Aucune ambiguïté avec le modèle de la "vis" (ou du "tire-bouchon", comme le préfèrent les français) proposé par Maxwell pour décrire l’expérience d’Oersted : elle avance, le long du fil, dans le sens du courant :

 

"Supposons qu’une vis droite s’avance dans la direction du courant, en tournant, en même temps, comme au travers d’un corps solide, c’est à dire dans le sens des aiguilles d’une montre, le pôle Nord de l’aimant tendra toujours à tourner autour du courant dans le sens de rotation de la vis, et le pôle sud dans le sens opposé".

 

Nous pourrons terminer cette brève histoire avec J.-J. Thomson (1856-1940). En 1897, il reconnaît, lui aussi, que rien, jusqu’à présent, n’a pu départager la "théorie dualiste" de l’électricité de la "théorie unitaire" :

 

"Les fluides étaient des fictions mathématiques, destinées seulement à fournir un support spatial aux attractions et répulsions qui se manifestent entre corps électrisés... Aussi longtemps que nous nous bornons à des questions qui impliquent seulement la loi des forces se manifestant entre des corps électrisés et la production simultanée de quantités égales d’électricité positive et négative, les deux théories doivent donner le même résultat, et il n’y a rien qui puisse nous permettre de choisir entre les deux... Ce n’est que lorsque nous portons nos investigations sur des phénomènes impliquant les propriétés physiques du fluide, qu’il nous est permis d’espérer pouvoir faire un choix entre les deux théories rivales".( J-J.Thomson. Electricité et Matière. Paris : Gautier Villars - traduction-1922)

 

Thomson, à cette période de sa vie, étudie le "rayonnement" qui traverse un tube vidé de son air et dont les tubes "cathodiques" équipaient, il n'y a pas si longtemps, les écrans de récepteurs de télévision et d’ordinateurs.

 

Au moment où, dans ce rayonnement, il découvre le "corpuscule d’électricité" que l’on appellera plus tard "électron", il pense faire, d’une certaine façon triompher ses couleurs nationales. Constatant que les rayons cathodiques sont constitués de "grains" d’électricité négative de masse plus de mille fois inférieure à celle du plus petit des atomes, celui d’hydrogène, il ne peut douter d’avoir assuré la victoire de son camp. Se souvenant que Franklin considérait que "La matière électrique est composée de particules extrêmement subtiles", il écrit :

 

"Ces résultats nous conduisent à une conception sur l’électricité qui a une ressemblance frappante avec la "théorie unitaire" de Franklin".

 

Le triomphe cependant n’est pas total :

 

" Au lieu de considérer, comme le faisait cet auteur, le fluide électrique comme étant de l’électricité positive, nous le considérons comme de l’électricité négative... Un corps chargé positivement est un corps qui a perdu une partie de ses corpuscules".

 

Il reste, en effet, ce mauvais choix initial : le verre frotté ne se charge pas d’électricité, il en perd !

 

Situation bloquée.

 

Nous voici au moment où la situation se fige. Depuis un siècle et demi les conventions de Franklin ont imprégné la science électrique, Ampère a incrusté cette empreinte en fixant un sens conventionnel de circulation du courant. La découverte des électrons, puis des protons, impose une nouvelle interprétation de la conduction électrique. Les charges positives et négatives existent bien toutes les deux et il est vrai que, dans l’électrolyse, deux courants de charges opposées se croisent dans la solution d’électrolyte.

 

Dans les conducteurs métalliques, par contre, seules les charges négatives sont mobiles. Le fluide positif reste immobilisé dans les noyaux fixes des atomes. Le courant électrique doit à présent être considéré, dans un circuit métallique, comme un courant d’électrons se déplaçant du pôle négatif du générateur vers son pôle positif.

 

Cette découverte est-elle un évènement suffisant pour provoquer une révolution dans les conventions électriques ? Il faut constater qu’on s’accommodera de ces électrons qui se déplacent dans le sens inverse du sens "conventionnel". Ce déplacement n’est d’ailleurs pas spectaculaire. Nous pouvons à présent répondre à l’interrogation de Maxwell. La vitesse du courant d’électrons dans un courant continu n’est pas de plusieurs millions de lieues à la seconde et si elle est quand même supérieure à un centième de pouce à l’heure, elle ne dépasse pas quelques centimètres à l’heure. Ce résultat parle peu à l’imagination. Ce lent courant d’électrons s’accorde mal avec la puissance observée des phénomènes électriques. C’est peut-être pourquoi on préfère continuer à raisonner sur le courant mythique des premiers temps de l’électricité qui se précipitait du pôle positif où il était concentré vers le pôle négatif où il avait été raréfié.

 

Il reste un certain étonnement et parfois de l’irritation quand on présente au débutant cette contradiction dans la science électrique. Quoi ? Plus d’un siècle s’est écoulé et l’erreur n’est toujours pas réparée ?

 

D’une certaine façon cette "erreur" est bénéfique : elle casse le discours linéaire, elle force à l’interrogation et oblige à un retour sur l’histoire des sciences. Au moins les apprentis électriciens retiendront-ils que l’activité scientifique est une activité humaine, une activité vivante, et qu’on y rencontre parfois les cicatrices des erreurs passées.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


 

Partager cet article
Repost0
11 août 2014 1 11 /08 /août /2014 18:41

Un premier cours d’électricité est l’occasion d’une mise en scène classique dans la tradition expérimentale des professeurs de physique : Une tige d’ébonite est frottée, une boule de sureau suspendue à son fil de soie ou de nylon est attirée puis vivement repoussée. Commence alors une série de manipulations à base de chiffon de laine, de peau de chat, de tige de verre ou de règle de matière synthétique, supposée faire découvrir une propriété fondamentale de la matière : l’existence de deux espèces d’électricité.


Progressant dans le cours on arrive rapidement à la notion de courant électrique. C’est là qu’apparaît "le"problème. A peine a-t-on défini son sens conventionnel de circulation, du pôle positif du générateur vers son pôle négatif dans le circuit extérieur, qu’il faut ajouter que le fluide électrique est, en réalité, constitué d’électrons négatifs se déplaçant en sens inverse !

 

Une explication s’impose. Le professeur pressé évoquera une erreur ancienne. Peut-être même imaginera-t-il un hasardeux pile ou face. Il suffirait cependant d’un rapide retour sur l’histoire de l’électricité pour révéler, au lieu de décisions hâtives, la recherche obstinée d’une réalité physique. Dufay est l’un des premiers maillons de cette chaîne.

 
Dufay (1698-1739) et la répulsion électrique :

 

 

Charles-François de Cisternay Dufay est d’une famille de haute noblesse militaire. Lui même entre au régiment de Picardie, à l’âge de quatorze ans, comme lieutenant. Il participe à la courte guerre d’Espagne et conserve sa charge militaire jusqu’à 1723, année où il rejoint l’Académie des Sciences comme adjoint chimiste.

 

Comment un jeune homme de 25 ans peut-il sauter de la condition de soldat à celle de membre d’une prestigieuse académie scientifique ? Il faut, pour le comprendre, dire quelques mots de Dufay, le père.

 

Ce militaire avait été instruit par les jésuites à Louis-le-Grand. Il en conserve une culture qu’il continue à enrichir pendant ses campagnes militaires. « Les muses », disait-il, « guérissent des blessures de Mars ». Le propos se vérifie quand, en 1695, la perte d’une jambe met fin à sa carrière militaire. Il revient à Paris où il se consacre à l’éducation de ses enfants et à l’enrichissement d’une fabuleuse bibliothèque. Charles-François pourra y cultiver son goût pour les sciences dans le temps même où son père lui enseigne le métier des armes.

 

Chez les Dufay on rencontre de puissants personnages. Tel le Cardinal de Rohan qui soutient le jeune Charles-François quand celui-ci postule au poste d’adjoint chimiste à l’Académie, en 1723. Réaumur retient cette candidature.

 

Dufay mettra un point d’honneur à mériter cette distinction. Ses premiers travaux sont marqués par une curiosité débridée. Il passe de l’étude de la phosphorescence à celle de la chaleur libérée par "l’extinction" de la chaux "vive". De la solubilité du verre à la géométrie. De l’optique au magnétisme. Son énergie lui vaut d’être nommé Intendant du Jardin du Roi en 1732. C’est peu de temps après cette promotion qu’il entend parler des travaux de Gray. Il tient enfin "son" sujet. L’électricité lui donnera l’occasion de mettre en œuvre une méthode dont la rigueur n’aura pour équivalent que celle de Lavoisier, dans le domaine de la chimie, un demi-siècle plus tard.

 

De magnifiques découvertes seront au rendez-vous. Elles feront l’objet d’une série de mémoires publiés dans l’Histoire de l’Académie des sciences à partir d’avril 1733.

 

Le premier de ces mémoires se présente comme une "Histoire de l’Electricité". Ce texte reste, même lu avec le recul de près de trois siècles, un honnête document. Avant de faire état de son apport personnel, Dufay choisit de « mettre sous les yeux du lecteur, l’état où est actuellement cette partie de la physique ». Il souhaite, dit-il, rendre à chacun son mérite et ne conserver, pour lui, que celui de ses propres découvertes. Il veut surtout se libérer de l’obligation d’avoir à citer, à chaque moment, le nom de tel ou tel de ses prédécesseurs. Son projet, en effet, est ambitieux : il se propose de poser les premières pierres d’une véritable théorie de l’électricité. La plupart des auteurs qui l’ont précédé ont, dit-il, "rapporté leurs expériences suivant l’ordre dans lequel elles ont été faites". Son plan est différent : il veut classer leurs expériences et les siennes "afin de démêler, s’il est possible, quelques-unes des lois et des causes de l’électricité".

 

Un discours de la méthode :

 

Le second mémoire annonce sa méthode sous forme de six questions.

 

Il s’agit de savoir :

 

. Quels sont les corps qui peuvent devenir électriques par frottement et si l’électricité est une qualité commune à l’ensemble de la matière.

 

. Si tous les corps peuvent recevoir la vertu électrique par contact ou par approche d’un corps électrisé.

 

. Quels sont les corps qui peuvent arrêter ou faciliter la transmission de cette vertu et quels sont ceux qui sont le plus vivement attirés par les corps électrisés.

 

. Quelle est la relation entre vertu attractive et vertu répulsive et si ces deux vertus sont liées l’une à l’autre ou indépendantes.

 

. Si la "force" de l’électricité peut être modifiée par le vide, la pression, la température…

 

Quelle est la relation entre vertu électrique et faculté de produire la lumière, propriétés qui sont communes à tous les corps électriques.

 

Un beau programme qui sera mené avec une remarquable rigueur.

 

Les trois premières questions cernent le problème de l’électrisation des corps et de la conduction électrique. Nous avons déjà vu comment Dufay s’intercale entre Gray et Franklin pour en établir les premières lois. La quatrième question pose, pour la première fois, le problème de la répulsion.

 

La répulsion rejoint l’attraction.

 

Depuis William Gilbert, et même depuis l’antiquité, électricité est synonyme d’attraction. Dufay n’échappe pas à la règle et, dans l’introduction à son premier mémoire il définit l’électricité comme "une propriété commune à plusieurs matières et qui consiste à attirer les corps légers de toute espèce placés à une certaine distance du corps électrisé par le frottement d’un linge, d’une feuille de papier, d’un morceau de drap ou simplement de la main".

 

Cependant, il a été troublé par l’une des observations faites par Otto de Guericke : celle du globe de soufre qui repousse le duvet qu’il a d’abord attiré. Il avoue n’être jamais parvenu à la reproduire. Par contre il rencontre le succès avec une expérience similaire proposée par Hauksbee. Il s’agit de frotter un tube de verre tenu horizontalement et de laisser tomber sur sa surface une parcelle de feuille d’or. Le résultat est spectaculaire :

 

"Sitôt qu’elle a touché le tube, elle est repoussée en haut perpendiculairement à la distance de huit à dix pouces, elle demeure presque immobile à cet endroit, et, si on approche le tube en l’élevant, elle s’élève aussi, en sorte qu’elle s’en tient toujours dans le même éloignement et qu’il est impossible de l’y faire toucher : on peut la conduire où l’on veut de la sorte, parce qu’elle évitera toujours le tube".

 

Même si les prouesses réalisées par la "fée électricité" ont apaisé depuis longtemps notre soif de merveilleux, l’expérience, aujourd’hui encore, mérite d’être tentée. Il importe pour cela de se munir du tube de verre adéquat. Celui de Dufay est du type de celui utilisé par Gray et qui est devenu un standard. Il a une longueur proche de un mètre et un diamètre de trois centimètres. Il est réalisé dans un verre au plomb. Gray et Dufay ne disent rien de la façon dont il était frotté, peut-être tout simplement par la main bien sèche de l’expérimentateur comme le recommandent plusieurs auteurs.

 

Pour avoir tenté l’expérience, je peux témoigner de l’importance du choix du tube de verre. Un simple tube à essai ne conviendra pas et encore moins la tige de verre d’un agitateur (bien que ce soit de cette façon que, depuis le 19ème siècle, l’expérience est décrite dans les manuels de physique). Leurs diamètres sont insuffisants. Il faut au minimum celui d’une solide éprouvette à gaz. J’ai personnellement rencontré le succès avec le col, long de 50cm, d’un ballon de verre pyrex extrait d’un matériel de chimie. Bien séché et frotté en utilisant le premier sac de "plastique" récupéré, il donne des résultats spectaculaires. Trouver une feuille d’or n’est pas trop difficile si on connaît un marbrier ou un relieur. On peut plus simplement utiliser un duvet ou quelques fibres de coton. Je conseillerais pour ma part les plumets d’un chardon cueillis secs à la fin de l’été.

 

Bien réalisée, cette expérience montre que la répulsion électrique est beaucoup plus spectaculaire que l’attraction. La parcelle de feuille d’or, le duvet ou le plumet de chardon, que vous aurez lâché, va se précipiter sur le tube frotté pour en être violemment repoussé jusqu’à trente, quarante, cinquante centimètres, voire plus. Personne ne peut être insensible à l’étrangeté d’une telle "lévitation".

 

Dufay donne de ces faits une interprétation immédiate : "lorsqu’on laisse tomber la feuille sur le tube, il attire vivement cette feuille qui n’est nullement électrique, mais dès qu’elle a touché le tube, ou qu’elle l’a seulement approché, elle est rendue électrique elle même et, par conséquent elle en est repoussée, et s’en tient toujours éloignée".

 

Mais approchons le doigt ou un autre objet conducteur de la feuille : elle vient s’y coller pour retomber à nouveau sur le tube et à nouveau s’élever.

 

Explication simple encore, nous dit Dufay : "Sitôt que la feuille a touché ce corps, elle lui transmet toute son électricité, et par conséquent, s’en trouvant dénuée, elle tombe sur le tube par lequel elle est attirée, de même qu’elle l’était avant que de l’avoir touché ; elle y acquiert un nouveau tourbillon électrique" et est donc repoussée. Ainsi se trouve expliqué l’étrange comportement, parfois observé, de feuilles d’or dansant une sarabande entre le tube de verre et un objet proche.

 

Une simple remarque : Dufay parle de "tourbillon" électrique. La théorie des "tourbillons" est ici empruntée à Descartes. Pour celui-ci chaque corps céleste est entouré d’un tourbillon d’une matière subtile. Ces tourbillons en se touchant maintiennent les astres à distance l’un de l’autre et entraînent l’ensemble dans le mouvement d’horlogerie que chacun peut observer même si les rouages restent invisibles. De la même façon, les tourbillons "électriques" entourant deux corps électrisés les écarteront l’un de l’autre.

 

La loi de Dufay

 

Fort de cette interprétation, Dufay passe alors en revue les observations antérieures et en particulier celles de Hauksbee concernant des fils de coton attachés à l’intérieur d’un globe de verre frotté et qui " s’étendent en soleil du centre à la circonférence". Tous ces faits le conduisent à une première loi de la répulsion :

 

"Il demeure pour constant, que les corps devenus électriques par communication, sont chassés par ceux qui les ont rendu électriques".

 

Par ce mécanisme de "l’attraction – contact – répulsion", (A.C.R), Dufay explique avec élégance une foule d’observations. Le phénomène doit cependant être approfondi. Il faut, en particulier, répondre à la question suivante :

 

Deux corps chargés d’électricité à deux sources différentes vont-ils également se repousser ?

 

En cherchant à le vérifier Dufay fait accomplir à l’électricité un nouveau bond en avant : "cet examen", dit-il," m’a conduit à une autre vérité que je n’aurais jamais soupçonnée, et dont je crois personne n’a encore eu la moindre idée".

 

Le moment est suffisamment important pour que nous lui laissions la parole :

 

" Ayant élevé en l’air une feuille d’or par le moyen du tube (de verre), j’en approchais un morceau de gomme copal (résine d’arbre exotique de la famille des légumineuses) frottée et rendue électrique, la feuille fut s’y appliquer sur le champ, et y demeura, j’avoue que je m’attendais à un effet tout contraire, parce que selon mon raisonnement, le copal qui était électrique devait repousser la feuille qui l’était aussi ; je répétais l’expérience un grand nombre de fois, croyant que je ne présentais pas à la feuille l’endroit qui avait été frotté, et qu’ainsi elle ne s’y portait que comme elle aurait fait à mon doigt, ou à tout autre corps, mais ayant pris sur cela mes mesures, de façon à ne me laisser aucun doute, je fus convaincu que la copal attirait la feuille d’or, quoiqu’elle fût repoussée par le tube : la même chose arrivait en approchant de la feuille d’or un morceau d’ambre ou de cire d’Espagne (cire végétale extraite de certaines espèces de palmiers) frotté.

 

Après plusieurs autres tentatives qui ne me satisfaisaient aucunement, j’approchai de la feuille d’or chassée par le tube, une boule de cristal de roche, frottée et rendue électrique, elle repoussa cette feuille de même, afin que je ne pus pas douter que le verre et le cristal de roche, ne fissent précisément le contraire de la gomme copal, de l’ambre et de la cire d’Espagne, en sorte que la feuille repoussée par les uns, à cause de l’électricité qu’elle avait contractée, était attirée par les autres : cela me fit penser qu’il y avait peut-être deux genres d’électricité différents."

 

Une hypothèse aussi hardie effraie d’abord son auteur. Si deux électricités existent réellement, comment ne les a-t-on pas encore signalées ! De nombreuses vérifications s’imposent. Dufay frotte toutes les matières dont il dispose : il faut bien se rendre à l’évidence, le phénomène est général.

 

" Voilà donc constamment deux électricités d’une nature différente, savoir celle des corps transparents et solides comme le verre, le cristal, etc. et celle des corps bitumineux ou résineux, comme l’ambre, la gomme copal, la cire d’Espagne, etc.

 

Les uns et les autres repoussent les corps qui ont contracté une électricité de même nature que la leur, et ils attirent, au contraire, ceux dont l’électricité est de nature différente de la leur."

 

Que dire de plus ? La loi d’attraction et de répulsion électrique est toute entière dans ces deux phrases. Si nous cherchons son énoncé dans un manuel contemporain nous l’y retrouvons pratiquement au mot près. Reste à nommer ces deux électricités différentes :

 

" Voilà donc deux électricités bien démontrées, et je ne puis me dispenser de leur donner des noms différents pour éviter la confusion des termes, ou l’embarras de définir à chaque instant celle dont je voudrais parler : j’appellerai donc l’une l’électricité vitrée, et l’autre l’électricité résineuse, non que je pense qu’il n’y a que les corps de la nature du verre qui soient doués de l’une, et les matières résineuses de l’autre, car j’ai déjà de fortes preuves du contraire, mais c’est parce que le verre et la copal sont les deux matières qui m’ont donné lieu de découvrir ces deux espèces d’électricités."

 

Électricité vitrée, électricité résineuse... ces deux termes ont au moins le mérite de proposer des étalons commodes. La fin du mémoire constitue d’ailleurs un début de classement. Au registre des corps qui présentent de l’électricité résineuse nous trouvons l’ambre, la cire d’Espagne, la gomme copal, la soie, le papier. L’électricité vitrée apparaît sur le verre et aussi le cristal, la laine, la plume... mais laissons à Dufay le soin de présenter son plus bel exemple :

 

"Rien ne fait un effet plus sensible que le poil du dos d’un chat vivant. On sait qu’il devient fort électrique en passant la main dessus ; si on approche alors un morceau d’ambre frotté, il en est vivement attiré, et on le voit s’élever vers l’ambre en très grande quantité ; si, au contraire, on en approche le tube, il est repoussé et couché sur le corps de l’animal".

 

Ainsi débute la longue tradition des peaux de chat dans les laboratoires de nos lycées.

 

Après les découvertes fondamentales que sont la conduction et l’électrisation par influence, la découverte des deux espèces d’électricité ouvre des voies prometteuses. La conclusion du mémoire manifeste l’espoir de progrès rapides.

 

"Que ne devons nous point attendre d’un champ aussi vaste qui s’ouvre à la physique ? Et combien ne nous peut-il point fournir d’expériences singulières qui nous découvriront peut-être de nouvelles propriétés de la matière ? "


 

 


Quand il écrit ces lignes, Dufay a trente cinq ans. Sa mort prématurée cinq ans plus tard lui laissera peu de temps pour tracer plus loin son sillon. Il lui aura surtout manqué le temps de défendre une théorie trop hardie pour la plupart de ses contemporains. Son disciple direct, l’Abbé Nollet, à peine plus jeune que lui, est le premier à la rejeter.

 

La théorie de Dufay et L'abbé Nollet.

 

Dans son "Essai sur l’électricité des corps", il se livre à une vigoureuse critique de la théorie des deux électricités :

 

" Question : Y a-t-il dans la nature deux sortes d’électricité essentiellement différentes l’une de l’autre ?

 

Réponse : Feu M. Dufay séduit par de fortes apparences et embarrassé par des faits qu’il n’était guère possible de rapporter au même principe il y a trente ans, c’est à dire dans un temps où l’on ignorait encore bien des choses qui se sont manifestées depuis, M. Dufay dis-je, a conclu par l’affirmation sur la question dont il s’agit. Maintenant bien des raisons tirées de l’expérience, me font pencher fortement pour l’opinion contraire ; et je suis pas le seul de ceux qui ont examiné et suivi les phénomènes électriques, qui abandonne la distinction des deux électricités résineuse et vitrée".

 

Il propose pour sa part la théorie d’une matière électrique unique qui quitterait et rejoindrait les corps électrisés dans un double mouvement simultané.

 

" La matière électrique s’élance du corps électrisé en forme de rayons qui sont divergents entre eux et c’est là ce que j’appelle matière effluente ; une pareille matière vient, selon moi, de toutes parts au corps électrisé, soit de l’air atmosphérique soit des autres corps environnants et voilà ce que je nomme matière affluente ; ces deux courants qui ont des mouvements opposés, ont lieu tous deux ensemble. ".

 

Théorie confuse et sans réelle portée explicative mais l’Abbé Nollet est devenu le "Physicien électriseur" le plus célèbre des cours d’Europe et ses avis ont force de loi. Pendant de longues années il sera un obstacle, hélas efficace, à la diffusion de la théorie des deux électricités.

 

Nous ne quitterons pas Dufay sans un regret. Des découvertes de portée équivalente ne restent généralement pas anonymes. Coulomb, Volta, Galvani, Ampère, Laplace...vivent toujours dans le vocabulaire électrique à travers une loi, parfois une unité. Qui connaît encore Dufay ?

 

Déjà en 1893, Henri Becquerel, qui avait choisi d’en faire l’éloge à l’occasion du centenaire du Muséum d’Histoire Naturelle, devait constater cet oubli :

 

"Parmi les statues et les bustes qui ornent nos galeries, parmi les noms gravés sur nos monuments, j’ai cherché en vain la figure ou même le nom seulement d’un des hommes qui firent le plus de bien et le plus d’honneur au vieux Jardin des Plantes, le nom du prédécesseur de Buffon. Que dis-je, j’ai cherché jusqu’à son souvenir, et ni dans tout le muséum, ni dans Paris même, je n’ai pu trouver un portrait de Charles-François de Cisternay du Fay, intendant du Jardin Royal des Plantes".

 

Nous pourrions prolonger la longue période oratoire de Becquerel :

 

"J’ai vainement cherché son souvenir dans les livres de physique, dans le nom des lois et des unités électriques...".

 

Est-il vraiment trop tard pour perpétuer le souvenir de ce physicien talentueux ?

 

Rien ne nous empêche de signaler dans nos cours et dans nos manuels que la loi d’attraction et de répulsion électrique est la "loi de Dufay".

 

Dufay oublié, il faudra une longue suite d’observations et d’interprétations contradictoires pour que la théorie des "deux électricités" nous revienne. Le second maillon de cette chaîne est, à nouveau, Benjamin Franklin.

 

Benjamin Franklin (1706-1790) : un vocabulaire neuf pour un fluide unique.

 

Contrairement à son prédécesseur, la renommée n’a pas oublié Franklin, "l’inventeur" du paratonnerre, avec qui nous pouvons, à présent, faire plus ample connaissance.

 

Dans le domaine de la physique il se décrit lui-même comme un amateur. Né à Boston en 1706, il est autodidacte. Son père est un modeste fabricant de chandelles et c’est chez son frère imprimeur qu’il peut assouvir sa passion pour la lecture. Il rencontre l’électricité par hasard vers l’âge de quarante ans. Il est alors à Philadelphie où il participe aux activités des cercles cultivés de la ville. Ceux-ci ont reçu d’Angleterre un "coffret électrique contenant "un tube de verre avec une note explicative sur l’emploi qu’on en peut faire" pour réaliser "certaines expériences électriques". L’auteur de cet envoi est Peter Collinson, membre de la Royal Society, l’académie des sciences anglaise. C’est un marchand Quaker de Londres entretenant des relations commerciales avec les colonies d’Amérique et qui ambitionne d’encourager les américains dans l’étude des sujets scientifiques. Il n’a pas manqué de joindre à son envoi une notice explicative : une relation des expériences spectaculaires menées en Allemagne par Bose et ses successeurs. Une "bouteille de Leyde" (nous reparlerons de ce premier condensateur électrique) est jointe au colis, elle procurera de vigoureuses secousses au "Tout-Philadelphie" pendant plusieurs mois.

 

Franklin fait de ce matériel un usage plus scientifique dont il rend compte, à partir de mars 1747, sous forme de plusieurs lettres à son correspondant anglais M. Collinson, membre de la Royal Society.

 

Nous avons déjà évoqué la proposition qui servira de socle à toutes ses interprétation ultérieures : l’électricité est un fluide qui imprègne tous les corps. Le frottement a pour effet d’en faire passer une certaine quantité d’un corps à l’autre.

 

Cette nouvelle façon de percevoir l’électricité est parfaitement illustrée par la deuxième lettre qu’il adresse à Pierre Collinson. Trois personnages y sont mis en scène : A, B et C.

 

A est isolé sur un gâteau de cire, il frotte un tube de verre qu’il tend à B lui-même isolé. B approche la main du tube et en reçoit une étincelle. A ce moment le personnage C resté au sol, en contact avec la terre, tend les doigts vers A et B et reçoit de chacun une décharge électrique. Franklin propose une interprétation séduisante :


"Nous supposons que le feu électrique est un élément commun, dont chacune des trois personnes susdites a une portion égale avant le commencement de l’opération avec le tube : la personne A qui est sur un gâteau de cire, et qui frotte le tube, rassemble le feu électrique de son corps dans le verre, et sa communication avec le magasin commun (la terre) étant interceptée par la cire, son corps ne recouvre pas d’abord ce qui lui manque ; B, qui est pareillement sur la cire, étendant la jointure de son doigt près du tube, reçoit le feu que le verre avait ramassé de A ; et sa communication avec le magasin commun étant aussi interceptée, il conserve de surplus la quantité qui lui a été communiquée. A et B paraissent électrisés à C, qui est sur le plancher ; car celui-ci ayant seulement la moyenne quantité de feu électrique, reçoit une étincelle de B, qui en a de plus, et il en donne à A qui en a de moins...

 

De là quelques nouveaux termes se sont introduits parmi nous. Nous disons que B (ou tout autre corps dans les mêmes circonstances) est électrisé positivement et A négativement ; ou plutôt B est électrisé plus et A l’est moins, et tous les jours dans nos expériences nous électrisons les corps en plus ou en moins suivant que nous le jugeons à propos.".

 

Pour la première fois, est donc exprimée la notion de charges positives et négatives. Cependant, nous l’avons compris, Franklin ignore l’interprétation de Dufay en termes de deux espèces d’électricité. Pour lui, le fluide électrique est unique, un corps chargé positivement en porte une quantité supplémentaire, un corps chargé négativement en a perdu. "Plus " et "moins" ne sont donc pas une nouvelle convention pour désigner deux électricités différentes mais ont le sens réel de gain et de perte.

 

Ce modèle, opposé à celui de Dufay, peut facilement convaincre. Il présente cependant de sérieuses lacunes. Comment peut-on affirmer, comme une évidence, que l’homme qui frotte le tube de verre fait passer l’électricité de son corps vers le tube ? Etait-il plus difficile d’imaginer que ce même homme arrache de l’électricité au tube frotté ? Franklin propose une étrange hypothèse : il imagine que la "chose frottante" perd une partie de son fluide au profit de la "chose frottée". Mais qui frotte et qui est frotté dans cette opération ?

 

Regrettons, au passage, que Franklin n’ait pas d’abord frotté du soufre. Il lui aurait, pour la même raison, attribué une charge positive ce qui, nous le verrons par la suite, aurait simplifié la tâche des professeurs des siècles suivants.

 

La publication de ces premières lettres lui vaut à ce sujet un courrier critique. Un de ses correspondants lui signale le comportement différent du soufre et du verre et suggère l’existence de deux électricités. Franklin maintient son interprétation initiale. Tout au plus doit-il admettre qu’un corps peut non seulement gagner de l’électricité quand on le frotte, mais aussi en perdre. Persévérant dans son intuition première il décrète cependant que c’est bien le verre qui se charge "en plus" tandis que le soufre se charge "en moins".

 

Une seconde mise en garde est plus sévère. On n’étonnera personne en disant que le sujet favori de Franklin aura été le tonnerre. Il en imagine le processus de la façon suivante : la terre est la réserve, le "magasin" de l’électricité. En s’évaporant pour former les nuages, l’eau arrache au globe terrestre une certaine quantité de fluide qui lui est ensuite restituée sous forme d’éclairs. Or, après la découverte du paratonnerre, Franklin est en mesure de prélever et d’analyser l’électricité portée par les nuages. Il constate alors qu’ils sont généralement chargés "en moins". Il faudrait donc que l’eau ait abandonné de l’électricité au sol et que, dans le phénomène du tonnerre, ce soit "la terre qui frappe les nuages et non pas les nuages qui frappent la terre". Cette constatation, contraire au sens commun, chagrine son auteur et, finalement, le doute s’installe :

 

"Les amateurs de cette branche de la physique ne trouveront pas mauvais que je leur recommande de répéter avec soin et en observateurs exacts, les expériences que j’ai rapportées dans cet écrit et dans les précédents sur l’électricité positive et négative, et toutes celles du même genre qu’ils imagineront, afin de s’assurer si l’électricité communiquée par le globe de verre est réellement positive..."

 

Il faudra presque un siècle et demi pour apporter une réponse à cette question. Cette réponse, hélas, sera négative.

 

Cela n’empêche pas la théorie du fluide unique de s’imposer. Elle possède, en effet, un pouvoir déductif très développé et sera la source d’un progrès rapide dans l’expérimentation. Aujourd’hui encore, le schéma proposé par Franklin reste à la base de la plupart de nos raisonnements.

 

Entre Dufay et Franklin : les bas de soie de Robert Symmer.

 

Robert Symmer (1707 - 1763) est écossais. Après une carrière dans la finance il se consacre aux sciences. En 1759 il publie dans les Philosophical Transactions de la Royal Society de Londres, le compte rendu d’expériences qui, malgré leur caractère étrange, lui vaudront une durable renommée.

 

Cela commence par une observation banale : des étincelles éclatent le soir quand il retire ses bas. Beaucoup de ses amis lui disent avoir fait la même observation mais, dit-il, "il n’a jamais entendu parler de quelqu’un qui ait considéré le phénomène de façon philosophique". C’est en effet une idée qui ne vient pas spontanément à l’esprit et c’est pourtant ce qu’il se propose de faire. Il décide donc de porter chaque jour deux paires de bas superposées, l’une de soie vierge l’autre de laine peignée. Heureuse initiative car alors le phénomène se renforce et surtout les deux paires de bas, quand on les sépare, manifestent une furieuse tendance à s’attirer. On peut même mesurer cette attraction en lestant l’une des paires au moyen de masses marquées de poids non négligeable.

 

Arrive un jour où un décès dans sa famille l’amène à porter le deuil. Il ne renonce pas pour autant à son expérience et enfile une paire de bas de soie noire sur ses habituels bas de soie naturelle. Ce soir là, au moment du déshabillage, l’effet est extraordinaire ! Jamais bas ne se sont attirés avec tant de fougue !

 

Quand la période de deuil touche à sa fin, et que des bas plus classiques reprennent leur place en position externe sur la jambe de Symmer, les phénomènes retrouvent leur cours plus modéré. Voici donc deux matériaux de choix pour une expérimentation sur les attractions électriques : la soie naturelle et la soie noire à laquelle le colorant a apporté de nouvelles propriétés. Pour décrire ces observations Symmer utilise d’abord le vocabulaire de Franklin mais, dans l’incapacité de décider lequel des deux bas perd ou gagne de l’électricité, il refuse un choix arbitraire et s’oriente, après avoir lu Dufay, vers l’idée de deux fluides électriques différents :

 

" C’est mon opinion, qu’il y a deux fluides électriques (ou des émanations de deux pouvoirs électriques distincts) essentiellement différents l’un de l’autre ; que l’électricité ne consiste pas en l’effluence et l’affluence de ces fluides, mais dans l’accumulation de l’un ou l’autre dans les corps électrisés ; ou, en d’autres termes elle consiste dans la possession d’une grande quantité de l’un ou l’autre pouvoir. Ainsi il est possible de garder un équilibre dans un corps, par contre si l’un ou l’autre pouvoir domine, le corps est électrisé de l’une ou l’autre manière".

 

Pour désigner ces électricités Symmer conserve les termes "positive" et "négative" qui associent une neutralité mathématique à la neutralité électrique de la matière. Tout en la sachant arbitraire il conservera également la convention de Franklin et appellera positive l’électricité qui apparaît en excès sur le verre frotté et négative celle qui s’accumule sur le soufre. C’est donc la théorie de Dufay habillée du vocabulaire de Franklin. C’est encore le modèle de nos "modernes" manuels.

 

Plusieurs auteurs souhaiteraient un armistice dans la querelle. C’est le cas du suédois T. Bergman qui propose en 1765, peu après la mort de Symmer, un "fluide neutre composé". Constitué de quantités égales de fluide négatif et de fluide positif, il ne se manifeste pas dans l’état normal d’équilibre. Certaines opérations, comme le frottement, le décomposent en deux fluides opposés. Cette théorie fera des adeptes après la découverte de la pile électrique.

 

Dufay, malgré la rigueur de sa méthode, a été rapidement oublié. Par contre, on trouve encore le nom de Symmer dans les manuels du début du XXème siècle.

 

Le XIXème siècle voit donc cohabiter deux modèles différents, celui du fluide unique plutôt enseigné en Angleterre et celui des deux fluides surtout utilisé en Europe continentale. Les raisons de choisir l’un ou l’autre sont souvent plus d’ordre philosophique que d’ordre pratique. Une attitude qu’illustre assez bien Charles-Augustin Coulomb (1736-1806), alors qu’il vient, en 1788, d’établir la loi mathématique de l’attraction et de la répulsion à distance.

 

Pour comprendre cette difficulté à choisir, il faut admettre que, certes, le modèle du fluide unique offre de sérieux avantages mais qu’il soulève également plusieurs difficultés qu’il serait trop commode de passer sous silence. Parmi elles, celle de la répulsion entre deux corps chargés négativement.

 

La répulsion entre deux corps portant "plus" d’électricité ne pose pas de problème à Franklin et à ses disciples : cette électricité supplémentaire forme, pensent-ils, une "atmosphère" qui entoure chaque corps chargé. Ces atmosphères, par leur simple action mécanique élastique, expliquent de façon simple la répulsion entre deux corps chargés positivement.

 

Le problème est différent avec deux corps ayant "perdu" de l’électricité. Aucune atmosphère ne les entoure. D’où alors provient la répulsion ? Ce phénomène qu’ils n’arrivent pas à expliquer de façon satisfaisante, sera la source d’un tourment permanent pour Franklin et ses partisans.

 

L’un d’entre eux, Franz Aepinus (1724-1802), professeur à Berlin puis à Saint-Pétersbourg, abandonne l’hypothèse des "atmosphères" électriques et adopte une vision "newtonienne" de l’action électrique. Celle-ci se ferait à distance, sans aucun support mécanique.

 

La matière "ordinaire" aurait le pouvoir d’attirer le fluide électrique jusqu’à s’en "gorger" comme une éponge et acquérir ainsi un état de neutralité électrique. Par contre, les particules de matière électrique, c’est admis, se repoussent entre elles. Deux corps chargés d’un surplus d’électricité doivent donc se repousser.

 

Mais pourquoi deux corps ayant perdu de l’électricité se repousseraient-ils ? Tout simplement parce que la matière ordinaire, privée d’électricité, a elle-même la propriété de répulsion à distance. Ainsi la répulsion se manifesterait entre deux corps chargés de trop d’électricité mais également entre deux corps ayant perdu du fluide électrique.

 

Cette "matière ordinaire", caractérisée par son volume, sa masse, son inertie, serait donc capable, à la fois, d’exercer sur elle-même des forces d’attraction à distance de nature gravitationnelle comme l’a proposé Newton et des forces de répulsion de nature électrique. Ce système assez compliqué ne pouvait convenir qu’à des franklinistes déjà convaincus. Ce n’est pas le cas de Coulomb :

 

" M. Aepinius a supposé dans la théorie de l’électricité, qu’il n’y avait qu’un seul fluide électrique dont les parties se repoussaient mutuellement et étaient attirées par les parties des corps avec la même force qu’elles se repoussaient... Il est facile de sentir que la supposition de M. Aepinius donne, quant aux calculs, les mêmes résultats que celle des deux fluides... Je préfère celle des deux fluides qui a déjà été proposée par plusieurs physiciens, parce qu’il me paraît contradictoire d’admettre en même temps dans les parties des corps une force attractive en raison inverse du carré des distances démontrée par la pesanteur universelle et une force répulsive dans le même rapport inverse du carré des distances". (Des deux natures d’électricité – Histoire de l’Académie Royale des Sciences – année 1788, page 671).

 

Il reste vrai, cependant, que le choix ne s’impose pas quand on étudie l’électricité à l’état statique. Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?

 

La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Mais ceci est une autre histoire.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès lesclasses de premières S et STI de nos lycées, et entre les mains  de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


On trouve dans le Volume 38 des "Philosophical Transactions of the Royal Society, 1734", une communication de Dufay dans laquelle il présente sa découverte des deux espèces d’électricités.

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens