Overblog
Suivre ce blog Administration + Créer mon blog
13 août 2017 7 13 /08 /août /2017 12:20

Thalès, nous disent Aristote et Hippias, communiquait la vie aux choses inanimées au moyen de l’ambre jaune mais, également, de la "pierre de magnésie" (μαγνήτις λίθος), l’aimant naturel.


Contrairement à l’ambre, venu des contrées lointaines, l’aimant, oxyde de fer naturellement "magnétique" est largement réparti à la surface du globe. Ses propriétés n’en sont pas moins mystérieuses. L’un de ses noms en grec ancien : "pierre d’Hercule", témoigne de la force des pouvoirs qui lui étaient attribués.

 

Même si l’observation commune ne permettait pas de constater, de sa part, d’autres prodiges que l’attraction de quelques râpures de fer, la légende se nourrissait de récits d’îles attirant les vaisseaux munis de clous de fer et d’hommes cloués au sol par leurs souliers ferrés. Des auteurs aussi sérieux que Plutarque ou Ptolémée n’hésitaient pas à rapporter d’étranges pratiques. "Frottez un aimant avec une gousse d’ail ou du jus d’oignons, disaient-ils, et il cessera d’attirer le fer". "Trempez le dans du sang de bouc, disaient d’autres auteurs, et il reprendra toute sa force" (cité par Henri Martin, doyen de la Faculté des lettres de Rennes dans La foudre, l’électricité et le magnétisme chez les anciens. Paris 1866). A l’évidence une observation de type "scientifique" n’était pas encore à l’ordre du jour !

 

Le terme de "magnétisme" sera donc, comme celui "d’électricité", le principal héritage légué par les grecs.

 

Les hellénistes du 19ème siècle qui, comme Henri Martin, se sont penchés sur l’origine de cette dénomination, ont constaté que l’expression "pierre de magnésie", a pu être interprétée de façon variable suivant les époques. Le sens qui s’est finalement figé est celui d’une pierre issue de la ville Magnésie, cité grecque d’Asie mineure. La ville étant supposée abriter des mines de cet oxyde de fer auquel nous donnons, aujourd’hui, le nom "d’oxyde magnétique" ou "magnétite", et que nous désignons par la formule Fe3O4.

 


cristaux de magnétite.


Ce nom de "Pierre de Magnésie", sera également donné à d’autres minéraux. La "magnésie" est aussi une terre blanchâtre utilisée dans les pharmacopées anciennes comme laxatif. Elle donnera son nom au magnésium dont elle est l’hydroxyde. "Pierre de magnésie" sera aussi le nom ancien du Manganèse, corps dont l’oxyde naturel était utilisé comme fondant par les premiers verriers ou les métallurgistes et qui est indispensable, actuellement, à la fabrication de nombreux alliages.

 

Retenons surtout que Magnésie a donné "magnétisme" et le mot anglais ou allemand "magnet" qui désigne ce que, en France, nous appelons "aimant".

 

Le terme d’aimant est, quant à lui, issu du latin adamas : le diamant. Par une voie obscure le mot "adamas" a également désigné une pierre de magnésie particulièrement active. Ce double sens se retrouve dans le latin médiéval mais bientôt le mot "diamas" désigne le diamant pendant que le terme adamas, conservé pour la magnétite, est interprété comme issu du verbe "adamare" (aimer avec passion) et traduit en langue romane par le mot "aymant" puis aimant (voir Henri Martin : : La foudre, l’électricité et le magnétisme chez les anciens. Paris 1866).

 

Le mystère et la poésie antiques renaissent ainsi dans une pierre capable d’amour. Le domaine des sciences n’échappe pas à la règle, les mots y sont chargés de l’histoire humaine.

L’héritage chinois.

 

Magnet, aimant… Les grecs et les latins ont légué le vocabulaire au monde européen. Pourtant la propriété la plus fabuleuse de la pierre de magnésie leur avait échappé. C’est de Chine que viendront les premières lumières à travers l’instrument qui fera le bonheur des marchands et des navigateurs : la boussole.

 

A une période que certains auteurs fixent comme antérieure au troisième siècle avant notre ère y est attesté l’usage d’un "indicateur de sud". C’est une statuette montée sur un pivot vertical et dont le bras étendu montre en permanence le sud. C’est naturellement une tige aimantée qui guide ce bras.

 

On évoque aussi la trouvaille archéologique d’une cuiller divinatoire très particulière. La cuiller utilisée dans ce but a une queue courte et tient en équilibre sur sa base arrondie. On la place au centre d’une plaque polie où sont gravés divers signes propres à lire l’avenir. Un coup vif sur la queue et la cuiller tourne. Quand elle s’arrête, il reste à interpréter les inscriptions indiquées par la direction de son manche. Une cuiller en magnétite et sa plaque de bronze ont ainsi été retrouvées laissant imaginer la façon dont les prêtres chinois aidaient le sort.

 

Plus sérieux. Des boussoles à aiguille suspendue, placées sur pivot ou sur un flotteur sont signalées, en Chine, entre le neuvième et douzième siècle de notre ère. Elles étaient utilisées pour des relevés terrestres. Peut-être étaient-elles déjà connues des ingénieurs qui ont dirigé la construction de la grande muraille.

 

Il est vraisemblable que la boussole a d’abord été adoptée par les arabes avant d’arriver en Europe au début du treizième siècle. Les navigateurs européens seront dès lors capables de s’éloigner des côtes et d’ouvrir les routes maritimes de l’Inde, de la Chine et des Amériques.

Pierre de Maricourt ( XIIIe siècle) et les pôles de l'aimant.

 

C’est un "ingénieur militaire" au service du Duc d’Anjou, Pierre de Maricourt dit "Le Pèlerin", qui élucide une partie du mystère de la boussole (son nom est issu de l’italien "bussola" et évoque la "petite boîte" dans laquelle les navigateurs la tiennent enfermée). Pierre de Maricourt est d’ailleurs en Italie, occupé au siège de la ville de Lucera, quand, en 1269, il rédige, sous le titre "Epistola de magnete" (lettre sur l’aimant), le traité qui l’a rendu célèbre.

 

L’unanimité se fait pour considérer ce texte comme l’un des actes fondateurs de la science expérimentale. Suivons, un moment, sa démarche.

 

D’abord quand il définit les "pôles" de l’aimant. "Cette pierre, dit-il, porte en elle la ressemblance du ciel… car dans le ciel il y a deux points remarquables parce que la sphère céleste se meut autour d’eux comme autour d’un axe. L’un est appelé le pôle Nord, l’autre le pôle Sud. Ainsi dans cette pierre tu trouves tout à fait de même deux points dont l’un est appelé pôle Nord et l’autre pôle Sud".

 

Le terme de "pôles" sera conservé dans le vocabulaire du magnétisme mais, notons-le : les pôles dont il est ici question ne sont pas ceux de la terre mais ceux du ciel. La boussole indique le Nord céleste. C’est à l’univers entier qu’est liée la Pierre.

 

L’image du ciel implique une sphère et deux pôles sur celle-ci. Il faut donc que l’aimant soit taillé en forme de sphère :

 

"Pour la découverte de ces deux points tu peux employer divers moyens. L’un consiste à donner à la pierre une forme ronde avec l’instrument employé pour cela pour les cristaux et autres pierres."

 

Reste à y placer les pôles :

 

"Ensuite on pose sur la pierre une aiguille ou un morceau de fer en longueur équilibré comme une aiguille et suivant la direction du fer on marque une ligne divisant la pierre en deux. Ensuite on pose l’aiguille ou le morceau de fer en un autre endroit de la pierre et pour cet endroit, de la même manière, on marque de nouveau une ligne. Et, si tu veux, tu feras cela en plusieurs endroits et sans nul doute toutes ces lignes concourront en deux points comme tous les cercles du monde qu’on appelle azimuths concourent en deux pôles du monde opposés"

 

Ensuite :

 

"Casse un petit morceau d’une aiguille qui soit long de deux ongles et pose le à l’endroit où le point a été trouvé comme on vient de le dire, et s’il se tient perpendiculairement à la pierre, tu as sans nul doute le point cherché… et de même tu trouveras le point opposé. Si tu l’as bien fait et si la pierre est homogène et bien choisie, les deux points seront diamétralement opposés comme les pôles de la sphère céleste"

 

Pour savoir lequel est le pôle Nord, lequel est le pôle Sud, il reste à placer la sphère dans un bol de bois posé sur l’eau et à la laisser s’orienter comme une boussole. On marquera alors comme "pôle Nord" celui qui se dirigera vers le Nord céleste.

 

Maintenant, expérimentons. Une deuxième pierre a été préparée, on l’approche de la première, et voilà que la Nature dévoile l’une des lois cachée jusqu’à présent à la connaissance des hommes !

 

Attraction et répulsion des pôles magnétiques.

 

"Sache donc cette règle", écrit Maricourt " que le pôle Nord d’une pierre peut attirer le pôle Sud de l’autre et le pôle Sud son pôle Nord. Si au contraire tu approches le pôle Nord du pôle Nord, tu verras la pierre que tu portes fuir sur l’eau la pierre que tu tiens et de même si tu approches le pôle Sud du pôle Sud"

 

Le moyen âge, dit-on, est période d’obscurantisme. Pierre de Maricourt semble vouloir prouver le contraire. Il faudra attendre plus de trois siècles pour que William Gilbert apporte de nouveaux éclairages sur le même sujet et plus de quatre siècles pour que Dufay décrive, avec la même précision, les lois de l’attraction et de la répulsion électrique.

 

Louis Néel, en recevant le prix Nobel de physique en 1970 pour ses travaux sur le ferromagnétisme, saura rendre, à Pierre de Maricourt, un hommage mérité. Après avoir salué les travaux de ses prédécesseurs, Pierre Curie, Paul Langevin, Pierre Weiss, il situe ses propres travaux dans l’héritage de son confrère médiéval :

 

" Seules restaient incomprises les propriétés de la plus ancienne des substances magnétiques connues : la magnétite ou pierre d’aimant qui a attiré l’attention des curieux depuis quatre mille ans. J’ai eu la chance de combler cette lacune et d’expliquer ces propriétés, avec la notion de ferromagnétisme.
 

Mais j’avais été précédé dans cette voie, au XIIIème siècle, par Pierre de Maricourt, auteur en 1269 du premier traité sérieux sur les aimants."

 

Pour ajouter à son mérite, notons que Pierre de Maricourt observe également l’aimantation du fer par le contact d’un aimant et qu’il inaugure l’expérience classique de "l’aimant brisé" : quand on brise un aimant, un pôle sud apparaît au niveau de la cassure sur le morceau qui porte le pôle Nord et un pôle Nord sur la partie qui porte le pôle Sud. Deux nouveaux aimants naissent donc de cette rupture.

 


aimant brisé de Pierre de Maricourt

 


William Gilbert

 

Plus de trois siècles se sont écoulés. Nous retrouvons William Gilbert. C’est, rappelons le, dans le cadre d’un ouvrage sur le magnétisme qu’il avait été amené à différencier les actions de l’ambre et de l’aimant et à faire connaître la multiplicité des corps susceptibles d’être "électrisés" par le frottement. C’est lui faire justice que de reconnaître son apport tout aussi fondamental dans le domaine du magnétisme.

 

Quand, en l’année 1600, il publie "De Magnete" l’Univers n’est plus celui de Pierre de Maricourt. Depuis déjà plus d’un demi-siècle, Copernic a mis le soleil au centre du monde et rabaissé la Terre au rang d’une simple Planète. La sphère céleste s’est effacée, le Nord et le Sud ne sont plus les pôles du ciel mais les extrémités de l’axe autour duquel tourne la Terre. La boussole, quant à elle, est devenue l’objet de toutes les attentions. Il y a déjà plus d’un siècle qu’elle a guidé Christophe Colomb vers un nouveau monde. Mais, si ce n’est plus le ciel qui la dirige, comment fonctionne-t-elle ?

 

C’est la Terre, nous dit Gilbert, qui attire la boussole car elle est elle-même un gigantesque aimant.

 


Pour Gilbert la terre est un aimant.


 

Les aimants sphériques de Pierre de Maricourt pouvaient, de façon naturelle, amener à ce modèle. Gilbert en fera des "terellae", des petites Terres sur lesquelles il pourra promener une boussole. Il étudiera ainsi le phénomène d’inclinaison magnétique. Une boussole suspendue n’est horizontale qu’au niveau de l’Equateur. Elle s’incline ensuite quand on se dirige vers les pôles pour se présenter perpendiculaire à ceux-ci quand elle les atteint.

 

Il sait aussi que le Nord magnétique ne coïncide pas exactement avec le Nord géographique. Il n’ignore pas que Christophe Colomb, le premier, a observé la déclinaison, cet écart variable suivant les lieux entre le Nord et la direction de la boussole. Ces variations n’enlèvent rien au modèle qu’il propose. Il les attribue aux imperfections de la Terre qui, avec ses océans, ses montagnes, ses mines métalliques, est loin de l’homogénéité d’un aimant parfait.

 

Le problème !

 

Mais la nouvelle théorie pose un problème de vocabulaire. Si la Terre est un aimant, son pôle Nord géographique qui attire le pôle Nord de la boussole est donc, en réalité, le pôle Sud de l’aimant terrestre !

 

Pour éviter la confusion, des physiciens des siècles suivants, proposeront d’appeler "pôle magnétique positif" le pôle Nord de l’aimant et "pôle magnétique négatif" son pôle Sud. Le pôle Nord de la terre serait ainsi, tout simplement, un pôle "moins" magnétique. Hélas le succès de cette nomenclature ne fut pas au rendez-vous.

 

Les physiciens du 19ème siècle pensaient pouvoir échapper à la confusion en utilisant le terme de "magnétisme boréal" pour l’aimantation du pôle Nord terrestre et de "magnétisme austral" pour celle du pôle opposé. Ainsi le pôle Nord d’une boussole présentait-il un magnétisme "austral". Cet usage artificiel de synonymes ne réglait cependant, en rien, le problème.

 

Combat perdu : les scientifiques ont jusqu’à présent renoncé à réformer un vocabulaire imposé par des siècles de pratique. Nouvelle cicatrice de la science : nous devons nous accommoder d’un "Nord magnétique" des géographes qui est en réalité un "Sud magnétique" des physiciens.

Partager cet article
Repost0
13 août 2017 7 13 /08 /août /2017 08:58

Cicatrice de la science : parfois un mot, un nom, une expression, une règle,  semblent échapper à toute la logique que l'on attendrait des sciences. De quoi irriter l'apprenti scientifique. Un retour sur l'histoire de la discipline est alors nécessaire et nous rappelle que la science est une activité humaine, une activité vivante, qui porte parfois les cicatrices de son passé.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 

Une cicatrice de la science. Les deux espèces d'électricité et les deux sens du courant électrique.

 

Un premier cours d'électricité est l'occasion d'une mise en scène classique dans la tradition expérimentale des professeurs de physique : Une tige d'ébonite est frottée, une boule de sureau suspendue à son fil de soie ou de nylon est attirée puis vivement repoussée. Commence alors une série de manipulations à base de chiffon de laine, de peau de chat, de tige de verre ou de règle de matière synthétique, supposée faire découvrir une propriété fondamentale de la matière : l'existence de deux espèces d'électricité.

 

Progressant dans le cours on arrive rapidement à la notion de courant électrique. C'est là qu'apparaît "le" problème. A peine a-t-on défini son sens conventionnel de circulation, du pôle positif du générateur vers son pôle négatif dans le circuit extérieur, qu'il faut ajouter que le fluide électrique est, en réalité, constitué d'électrons négatifs se déplaçant en sens inverse !

 

Une explication s'impose.

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 

Une cicatrice de la science : le nom des premiers alcanes.

 

L'apprenti chimiste débutant dans l'étude des alcanes se trouve soudain devant l'obstacle que constitue le nom des quatre premiers corps.

 

Rappelons que la formule d'un alcane est CnH2n+2. A partir de n=5 la nomenclature ne pose aucun problème. La numération grecque est mise à contribution. Le pentane comprend 5 atomes de carbone, puis viennent l'hexane, l'heptane, l'octane, etc.

 

Formule de l'octane linéaire.

Formule de l'iso-octane (2.2.4-triméthylpentane) qui sert de référence pour l'indice de l'essence pour automobiles.

 

Reste que les quatre premiers doivent être appris par coeur : méthane, éthane, propane, butane !

 

Quatre cicatrices qui méritent explication.

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 

 

Une cicatrice de la science. Le nom des pôles de l'aimant.

 

 

Si la Terre est un aimant, son pôle Nord géographique qui attire le pôle Nord de la boussole est donc, en réalité, le pôle Sud de l’aimant terrestre !

Une explication s'impose.

 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 

Partager cet article
Repost0
13 août 2017 7 13 /08 /août /2017 08:56
Partager cet article
Repost0
12 août 2017 6 12 /08 /août /2017 10:02

 

 
MEGE est une association régie par loi de 1901. Elle a été créée en 1992 par des agents et anciens agents d’EDF et de Gaz de France. Elle bénéficie du soutien de EDF, de ERDF, de GrDF et de la Fondation EDF.
 
L’objet de l’Association est de promouvoir la recherche, la conservation et la présentation des matériels et documents mis en œuvre pour assurer la distribution de l’électricité et du gaz en région parisienne, la première utilisation de ces énergies ayant été l’éclairage public.
 
Initialement dénommée « Musée de l’Electricité, du Gaz et de l’Eclairage Public », elle a échangé en 2002 « Musée » par « Mémoire » pour indiquer clairement que l’Association se veut support de la mémoire, aussi bien de l’évolution des technologies que celle des organisations et des conditions de travail, et que l’ambition de ses membres est de maintenir un fil conducteur entre le passé et un présent bien vivant.

 

L’Association MEGE, grande conservatrice, est inlassablement à l’affût de tous les documents et matériel d’hier (et d’aujourd’hui) concernant l’éclairage public et les distributions d’électricité et de gaz en région parisienne.
 
Ces « Trésors », glanés de toutes parts, sont rassemblés sur notre site du 18ème arrondissement de Paris, au 29 rue Doudeauville. Sur environ 1 000m², est exposé ce patrimoine historique et technique où se mêlent livres, affiches, outillage et matériels. Ce site accueille des groupes de visiteurs uniquement sur rendez-vous.

 

Le site de l'association mérite la visite.

http://megedoudeau.free.fr/index.html

 

Partager cet article
Repost0
12 août 2017 6 12 /08 /août /2017 08:55

C'est un article de la revue La Nature de 1878 qui nous l'apprend. Le vent a poussé des wagons aux USA et bien plus tôt des voitures en Hollande.

 

 

Partager cet article
Repost0
11 août 2017 5 11 /08 /août /2017 08:26

 

A class of the lycée de l’Elorn, in Landerneau, Brittany, France, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages


Northern Finistère, in Brittany, is not really welknown for its chemical industry. Yet, since the 17th century, that is to say when chemistry started to develop, a chemical industry was carried out, non stop, around seaweed.

In the past

The industry of « soda » (sodium carbonate) first developed. This product is extracted from ashes of dried seaweed. It is necessary to make glass and soap. That activity came to an end at the end of the 18th century when new ways were discovered.

It resumed in 1829 after Bernard Courtois, the chemist, had discovered in 1812 a new an useful product in seaweed ashes : iode. It is mainly used in photo-making and medecine. Its production in Brittany stopped in 1952, because of the competition of iodine, extracted from nitrates in Chili.

Today

Today, the extraction of alginates contained in big laminaria has taken over. In 1883, Edward Stanford isolated the algine of seaweed, later Axel Kefting, a Norvegian, extracted algine acid. Its production on a large scale started in 1930. Brittany produces about 2000 tons in its factories in Lannilis and Landerneau. Alginates are thickening and stabilying agents, that are used both in the pharmaceutical industry and food industry, or in that of paper, colouring or moulding products.

The use of seaweed in food, pharmacy or cosmetics is less known., though worthy of interest. Many laboratories in Finistere work in that field for « top quality » products, often meant for export.

The seconde C of the lycée de l’Elorn, in Landerneau, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages.


Our work on the seaweed industry


The story of the seaweed industry, that of soda and iodine, is made lively thanks to the museum of seaweed gatherers in Plouguerneau, which supplied us with the ash from ovens, operated for shows during the summer, so as to analyse it.

The « Centre for the Study and Promotion of Seaweed (C.E.V.A) » in Pleubian looks for the properties of seaweed and implements new uses. We contacted them for the food applications (the making of a « flan »)

Today, many factories work on seaweed. It’s the case for DANISCO and TECHNATURE, which agreed to help us.

DANISCO deals with laminar collected in North-Finistere, it’s one of the largest European producers of alginates. We visited the factory. It supplied us with refined alginate of sodium for our experiments.

TECHNATURE packages alginates and other seaweed extracts, to make casting products, cosmetics, or food products. Its customers are in the U.S.A, as well as in Japan, Spain, or France. The company allowed us to test its products and to prepare new ones, following its advice (face creams).

Our school syllabus is well adapted to a study of seaweed. In a first part, the study of ionic compounds can be made on the seaweed ash. In a second part, the study of organic molecules can be made on alginates. The appliances are varied and entertaining.

We have divided the form into four groups, each responsible for a part of the work and for the links with one of the companies concerned.

- Seaweed ashes. Analysis, extraction of iodine.(in connection with the museum of the seaweed gatherers)

- Extraction of alginates. (in connection with Danisco company)

- The use of alginates for castings . (with Technature).

- The making of a new face cream.(with Technature)

- The making of a flan (a pudding) (with C.E.V.A Pleubian)

- Translations into English ( documentation and reports).

- A video report on our project ( and the making of a poster).


Seaweed in the past
Treating the « soda loaves »

The burning of seaweed

Each year, the museum of seaweed gatherers, in Plouguerneau, on the Northern coast of Finistère organises the burning of seaweed in its old furnaces so as to get ashes with a large amount of soda. We went on the spot, to extract a « soda loaf », in a compact shape. The hot cinders seem to be melting, and are cast in the cells of the furnace, while they are cooling.

The mechanical processing of the ashes :

We first roughly broke the « soda loaf » with a hammer. We, then, crushed the ashes in a mortar with a pestel. Then, we sifted them, to obtain a thin powder.

The washing of the ashes

We left to boil 20g of the ashes in 100 cm3 of water for about 5 min. We filtered it. A solid deposit of about 9g was left (weighed after drying). The solution contains soluble substances, mainly carbonate and iodur ions.


The search for carbonate ions

The carbonate ions, CO32- , represent the main active principle of soda and gives it its basic character.(in the present the word « soude » ,in French, refers to sodium hydroxide).

Experimental file

measure of the pH using pH paper and pHmeter : The solution has a pH=11, so that, its basic character is obvious.

Characterisation of the CO32- ions :

(first method) : action of the calcium chlorur. You get a precipitate of insoluble calcium carbonate according to the reaction :

Ca2++ CO32- -> CaCO3

(second method) : action of the concentrate chlohydric acid. You can notice an important emission of carbon dioxide, according to the reaction :

CO32-+ 2H+-> CO2 + H2O

The extraction of iodine

We extracted iodine from the solution, through the action of Hydrogen Peroxide H2O2 in acid surrounding.

experimental File

- Acidification of the solution using concentrated hydrochloric acid : The first result of the acidification of the solution is to let out carbon dioxide coming from carbonate ions.

- Iodine is let out using hydrogen peroxide : The hydrogen peroxide oxidises iodide ions, iodine appears and turns the solution brown. One can also see a light precipitate of iodine.

- Getting the gassy iodine to appear by heating the solution : a light heating lets out purple vapours of iodine.

Measuring the iodine : this experiment is part of the curriculum of the 1ere S form, so we asked them to measure the iodine in the solution. The iodine is measured with the thiosulphate of sodium. They found 1,29g of iodine in 100g of ash.


Seaweed Today

A visit to two factories processing alginates

In the Landerneau area, two firms process seaweed for theit alginates. The Danisco firm has specialized in extracting alginic acid from raw seaweed. The Technature firm uses alginates to elaborate finished goods.

Danisco :

Mr Pasquier, the manager, conducted our guided tour of the factory. Every year the plant (9000 m2 of workshops and laboratories) processes 6000 tons of dried seaweed to produce 3000 tons of alginates.

The alginates supply numerous industries all over the world. Used as binders and thickeners, they can be found in inks, creams, glues, rubbers, toothpastes. As gelling agents they come in useful to make jams, custards, impression powders. These products ar marketed under the brand name SOBALG.

The Danisco firm provided us with a smal quantity of purified alginic acid so that we could study its properties. The danisco manager also explained to us a great length how they extract the alginates from the seaweed.

We conducted that experiment in our scholl laboratory.

Technature :

We were welcomed by the manager, Mr Le Fur, and the commercial manager, Mr Winckler (today manager of Lessonia). The firm packages the alginates for its different uses : casts, cosmetics, foodstuffs.

The firm has clients all over the world (Euope, the USA, Japan...). The breton products ar renowned for their quality and their purity.

The firm gave us some casting alginates so that we could make a cast.

They also offered us to elaborate a new "beauty mask". We will give more details about these two experiments in the following pages.


How to create a beauty mask

Technature entrusted us with the creation of a beauty mask. It is a new product the company wishes to launch. It’s a product made with tropical fruits, based on casting alginate.

The formula of the « tropical fruit » mask.

Product usedQuantityproperties
Bioprunte (alginate of sodium, sulfate of calcium, salt of phosphorus, neutral charge of diatomees earth.)30gWhen in close contact with the skin, it creates a film. The mask sets into action active agents, and also has a mechanical effect ( it eliminates the dead cells of the skin).
Pinaple Pouder 

Papaye powder
0,15 g

0,15 g
The cells of the skin are constantly replaced (every one to two months). With age, the process slows down, and the dead cells accumulate, which cause the skin to thicken. The dead cells are retained by a ciment of proteins ; it has to be hydrolysed to eliminate the dead cells.
Papaye contains papaïn, an enzym, which acts on the hydrolysis of proteins. Pinaple contains bromeline which plays the same role.
yellow pigment n°5
yellow pigment n°6
0,03g
0,03g
Naturel pigments are used to obtain a pleasant colour of fruit.
Flavours : fruit de soleil, papaye0,015gThey are natural extracts from fruit, with very concentrated effects.
Our work

First, we tested an alginate mask, with no additive, so as to watch the « casting » effect of that product. 
We then tried several formulas, by varying the colours and flavours.
At last, we tested the resulting cast.

How to operate

Dose : 30g of powder for 100g of water

Dilution of the product : Pour the water quickly on the powder. Mix briskly until you get a smooth paste.
Important : water must be at 20°C

How to apply it : Apply it immediately over the face, avoid the eyes. It sets after about six minutes.

It takes about 15 mn to use

Résult

your skin is finer

your complexion 
brighter


Agar-Agar and the formation of colloids

Agar-Agar is a Malaysian word. That product used in Malaysia, was also often used in Japon and the Far East. Agar-Agar comes from various seaweed, in particular from the gelidum species. Those seaweed, after frequent washings, are dried and boiled. The colloid we get is then dehydrated and turned into powder.

Agar-agar has a stong gelling power. If you add two gramms into a quarter of a litre of water, and boil it for five minutes, you get a hard gel, if tou leave it to cool.

At the biology laboratory, Agar-Agar is used to prepare nutrient supports for plants.
At the chemistry laboratory, it can be used to prepare conducting electrolytic bridges in the study of batteries.

We prepared Agar-Agar colloid, coloured with helianthine. Agar-agar is also used to prepare pudding, but for that we used a seaweed from Brittany, Pioka, which contains carrageenans.

Agar-Agar : an excellent gelling agent extracted from red algae


« Pioka » and carrageenans

Pioka is the Breton name of a seawweed that is also called sea « lichen ». It is collected at every low tide, its high price attracts seasonal pickers. Its scientific name is chondrus crispus. The active principle extracted from it is made up of carrageenans. It has a real gelling power in milk. In the traditionnal way, it is used by people along the Northern coast of Brittany to make puddings named « flans ».

The préparation of seaweeds.
After the gathering of seaweeds, they are spread on the dunes, and dried by often turning them. They can be also washed with fresh water to clear them of salt at various remains. At the end of treatment, the seaweeds are white and dry, and can then be preserved.

Just before use. 
One can improve the rising process with several soakings ans rinsings. The seaweeds must completely get rid of their « sea » smell.
Seaweeds today, in food

A recipe of pioka pudding

We have prepared the recipe of this dessert. It was given to us by an elderly person from the Brignogan area in North-Finistere. She herself had seen her parents make it.

N.B : carrageenans of pioka easily give a gel with milk, it gives no gel with water. For that, on should use the agar-agar we also tested (it is also used for puddings).

Our recipe

Take a handful of dried seaweeds per quarter of a litre of milk. Rinse them. Make them boil for five minutes stirring them. Filter the hot milk with a strainer or a skimming ladle. Make it boil again for five minutes with the flavour choose, either chocolate or vanilla ( for exemple, three sponfils of Nesquick per quarter of litre of milk). Pour into bowls. Leave it cool and place it into a fridge.


Conclusion

When we started working on this project, we were not aware chemistry had been concerned with seaweed for so long.

We now, know, that here, people make products that are used all over the world.

Our impression is that the chemists who do that work really enjoy it, they extract from nature the best it can offer. The issue will be to increase the stock of seaweed and no doubt to plan its culture.

As far as our school project is concerned, it developed without our knowing it. The theorical study, the search for information, the experiments at the laboratory, the visit of factories, the elaboration of a new product, the test of an old recipe...all that was part of our project.

By writing this project, we intend to keep track of our work.

Partager cet article
Repost0
10 août 2017 4 10 /08 /août /2017 14:29
  • La Chute de Montmorency en aval de Québec est célèbre.
  •  

La revue "La Nature" de 1886, nous apprend, sous la plume de l’abbé Laflamme, professeur à l’université de Laval, qu’une usine hydroélectrique y a été installée dans les années 1880 en faisant de la ville une des pionnières dans le domaine.

cliquer sur l’image pour agrandir.

Noter que l’abbé Laflamme, auteur de l’article, premier géologue du Canada français, éducateur et vulgarisateur de talent, est considéré comme l’un des initiateurs de l’enseignement scientifique au Québec. Il a fait connaître dans son milieu les progrès scientifiques et technologiques de l’époque et il a préparé le terrain aux réformes de l’enseignement que connaîtra le Québec au xxe siècle.

Voir :http://www.biographi.ca/fr/bio/laflamme_joseph_clovis_kemner_13F.html

Voir encore :HISTOIRE DE L’ÉLECTRICITÉ AU QUÉBEC

Ou encore.

__________________________________________________________________

Les débuts de l'électricité et l’éclairage des rues de la ville de Québec

Un brin d'histoire avec la Société historique de Québec

 

__________________________________________________________________

 

Sur la dynamo Thomson-Houston voir la vidéo.

 

https://youtu.be/FBfmmcf8rfo

 

Sur Eluhi Thomson voir :

https://fr.wikipedia.org/wiki/Elihu_Thomson

 

 

Partager cet article
Repost0
10 août 2017 4 10 /08 /août /2017 07:17

 

Le plan Langevin-Wallon est le nom donné au projet global de réforme de l’enseignement et du système éducatif français élaboré à la Libération conformément au programme de gouvernement du Conseil national de la Résistance (CNR) en date du 15 mars 1944.

 

Élaboré entre novembre 1944 et juin 1947 par une commission ministérielle présidée par le physicien Paul Langevin, puis, après la mort de ce dernier, par le psychologue Henri Wallon, le plan Langevin-Wallon, bien que n’ayant jamais été appliqué en tant que tel, reste, en France, depuis la Libération, l’un des textes de référence essentiels en matière d’éducation.

 

Une Journée est organisée le 15 septembre 2017 par l’Association des descendants et amis de l’historien et homme politique Henri-Alexandre WALLON (1812–1904) et l’École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris). Elle se tiendra très symboliquement à l’Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris) où les 19 membres de la commission se réunissaient régulièrement sous la présidence de Paul Langevin qui était alors directeur de l’Ecole.

 

L’objectif de cette journée est de favoriser la rencontre de tous ceux qui dans des domaines différents, de la recherche à l’éducation populaire, veulent aujourd’hui se nourrir de l’idéal républicain porté par ses auteurs.

 

L'ensemble du plan mérite la lecture. Voir 

 

Chacun pourra mesurer à sa lecture le gouffre qui sépare les objectifs généreux de ses auteurs des médiocres rafistolages opérés depuis par les ministres successifs en charge de l'éducation. Nous nous contenterons ici de son introduction.

 

PRINCIPES GÉNÉRAUX

 

La reconstruction complète de notre enseignement repose sur un petit nombre de principes dont toutes les mesures envisagées dans l'immédiat ou à plus longue échéance seront l'application.

 

Le premier principe, celui qui par sa valeur propre et l'ampleur de ses conséquences domine tous les autres est le principe de justice.

 

Il offre deux aspects non point opposés mais complémentaires : l'égalité et la diversité. Tous les enfants, quelles que soient leurs origines familiales, sociales, ethniques, ont un droit égal au développement maximum que leur personnalité comporte. Ils ne doivent trouver d'autre limitation que celle de leurs aptitudes. L'enseignement doit donc offrir à tous d'égales possibilités de développement, ouvrir à tous l'accès à la culture, se démocratiser moins par une sélection qui éloigne du peuple les plus doués que par une élévation continue du niveau culturel de l'ensemble de la nation.

 

L'introduction de "la justice à l'école" par la démocratisation de l'enseignement mettra chacun à la place que lui assignent ses aptitudes, pour le plus grand bien de tous. La diversification des fonctions sera commandée non plus par la fortune ou la classe sociale mais par la capacité à remplir la fonction. La démocratisation de l'enseignement, conforme à la justice, assure une meilleure distribution des tâches sociales. Elle sert l'intérêt collectif en même temps que le bonheur individuel.

 

L'organisation actuelle de notre enseignement entretient dans notre société le préjugé antique d'une hiérarchie entre les tâches et les travailleurs. Le travail manuel, l'intelligence pratique sont encore trop souvent considérés comme de médiocre valeur. L'équité exige la reconnaissance de l'égale dignité de toutes les tâches sociales, de la haute valeur matérielle et morale des activités manuelles, de l'intelligence pratique, de la valeur technique. Ce reclassement des valeurs réelles est indispensable dans une société démocratique moderne dont le progrès et la vie même sont subordonnés à l'exacte utilisation des compétences.

 

La réforme de notre enseignement doit être l'affirmation dans nos institutions du droit des jeunes à un développement complet.

 

La législation d'une république démocratique se doit de proclamer et de protéger les droits des faibles, elle se doit de proclamer et de protéger le droit de tous les enfants, de tous les adolescents, à l'éducation. Celle-ci prendra pour base la connaissance de la psychologie des jeunes, l'étude objective de chaque individualité. Elle se fera dans le respect de la personnalité enfantine, afin de dégager et de développer en chacun les aptitudes originales. Le droit des jeunes à un développement complet implique la réalisation des conditions hygiéniques et éducatives les plus favorables. En particulier l'effectif des classes devra être tel que le maître puisse utilement s'occuper de chaque élève : il ne devra en aucun cas dépasser 25.

 

La mise en valeur des aptitudes individuelles en vue d'une utilisation plus exacte des compétences pose le principe de l'orientation. Orientation scolaire d'abord, puis orientation professionnelle doivent aboutir à mettre chaque travailleur, chaque citoyen au poste le mieux adapté à ses possibilités, le plus favorable à son rendement. A la sélection actuelle qui aboutit à détourner les plus doués de professions où ils pourraient rendre d'éminents services, doit se substituer un classement des travailleurs, fondé à la fois sur les aptitudes individuelles et les besoins sociaux.

 

C'est dire que l'enseignement doit comporter une part de culture spécialisée de plus en plus large à mesure que les aptitudes se dégagent et s'affirment. Mais la formation du travailleur ne doit en aucun cas nuire à la formation de l'homme. Elle doit apparaître comme une spécialisation complémentaire d'un large développement humain. "Nous concevons la culture générale, dit Paul Langevin, comme une initiation aux diverses formes de l'activité humaine, non seulement pour déterminer les aptitudes de l'individu, lui permettre de choisir à bon escient avant de s'engager dans une profession, mais aussi pour lui permettre de rester en liaison avec les autres hommes, de comprendre l'intérêt et d'apprécier les résultats d'activités autres que la sienne propre, de bien situer celle-ci par rapport à l'ensemble."

 

La culture générale représente ce qui rapproche et unit les hommes tandis que la profession représente trop souvent ce qui les sépare. Une culture générale solide doit donc servir de base à la spécialisation professionnelle et se poursuivre pendant l'apprentissage de telle sorte que la formation de l'homme ne soit pas limitée et entravée par celle du technicien. Dans un état démocratique, où tout travailleur est citoyen, il est indispensable que la spécialisation ne soit pas un obstacle à la compréhension de plus vastes problèmes et qu'une large et solide culture libère l'homme des étroites limitations du technicien.

 

C'est pourquoi le rôle de l'école ne doit pas se borner à éveiller le goût de la culture pendant la période de la scolarité obligatoire, quelle qu'en soit la durée. L'organisation nouvelle de l'enseignement doit permettre le perfectionnement continu du citoyen et du travailleur. En tout lieu, des immenses agglomérations urbaines jusqu'aux plus petits hameaux, l'école doit être un centre de diffusion de la culture. Par une adaptation exacte aux conditions régionales et aux besoins locaux, elle doit permettre à tous le perfectionnement de la culture. Dépositaire de la pensée, de l'art, de la civilisation passée, elle doit les transmettre en même temps qu'elle est l'agent actif du progrès et de la modernisation. Elle doit être le point de rencontre, l'élément de cohésion qui assure la continuité du passé et de l'avenir.

 

Voir aussi :

 

6° Education morale et civique ; formation de l'homme et du citoyen

 

__________________________________________________________________________

 

Sur Langevin on peut lire encore : 

 

Paul Langevin et l'histoire des sciences pour enseigner les sciences.

 

__________________________________________________________________________

 

 

 

 

Partager cet article
Repost0
2 août 2017 3 02 /08 /août /2017 12:01

1926.

 

"Le sujet de cette conférence est quelque peu abstrait, et je m'en excuse, mais son choix a été dicté par le désir de vous communiquer quelques réflexions personnelles et de provoquer des observations sur l'enseignement des sciences {en particulier des sciences expérimentales qui sont spécialement de mon domaine), sur le rôle que peut et doit y jouer le point de vue historique et de son importance dans la préparation de ceux qui sont appelés à enseigner les sciences.

 

Il faut reconnaître tout d'abord que, dans cet enseignement, on néglige à peu près entièrement le point de vue historique, alors qu'il en est tenu grand compte dans d'autres branches comme la littérature et la philosophie. L'enseignement de la musique lui-même vient de voir son programme augmenté, dans les établissements secondaires, d'un aperçu des « grandes étapes » et des « grandes figures » de l'histoire de cet art. Or, dans l'enseignement des sciences, on ne saurait que gagner à introduire de même le point de vue historique." 

 

Ainsi s'exprimait Paul Langevin en introduction de sa conférence sur "la valeur éducative de l'histoire des sciences", en 1926. 

 

Extrait :  "Ce que nous proposerons ici sera de mettre en évidence tout ce que l'enseignement scientifique perd à être uniquement dogmatique, à négliger le point de vue historique.

 

En premier lieu il perd de l'intérêt. L'enseignement dogmatique est froid, statique, et aboutit à cette impression absolument fausse que la science est une chose morte et définitive. Personnellement, si j'en étais resté aux impressions éprouvées à la suite des premières leçons de sciences de mes professeurs - à qui je garde cependant le souvenir le plus reconnaissant - si je n'avais pris un contact ultérieur ou différent avec la réalité, j'aurais pu penser que la science était faite, qu'il ne restait plus rien à découvrir, alors que nous en sommes à peine aux premiers balbutiements dans la connaissance du monde extérieur. Croire qu'il n'y a plus que des conséquences à tirer de principes définitivement acquis est une idée absolument erronée et qui risque de faire perdre toute valeur éducative à l'Enseignement scientifique.

 

Ce défaut, général dans tous les pays, est encore plus sensible en France où, par une coquetterie déplacée, on hésite à introduire dans l'enseignement les notions nouvelles qui, à un degré plus ou moins grand, sont encore en état de développement. Seules les théories ayant fait, au moins en apparence, leurs preuves ont droit de cité dans nos livres classiques ; il en résulte qu'en réalité celles qui sont déjà périmées sont presque les seules qu'on puisse y rencontrer, tant est rapide encore le changement continuel de nos idées les plus fondamentales.

 

Or pour contribuer à la culture générale et tirer de l'enseignement des sciences tout ce qu'il peut donner pour la formation de l'esprit, rien ne saurait remplacer l'histoire des efforts passés, rendue vivante par le contact avec la vie des grands savants et la lente évolution des idées. Par ce moyen seulement on peut préparer ceux qui continueront "

 

Ce texte, constamment rappelé, reste une référence qu'il est intéressant de suivre dans le siècle qui a suivi.

 

XXXXXXXXXXXXXXXX

 

1960.

 

La revue "La Nature" fait le compte rendu d'un colloque réuni à l'initiative de l'Association Paul Langevin" consacré à l'histoire des sciences dans l'enseignement et l'éducation.

 

 

 

 

Extrait : "Une discussion présidée par René Lucas, président de l'association, révéla le plein accord des nombreux spécialistes et enseignants en faveur de l'introduction de l'histoire des sciences dans l'enseignement secondaire et aussi, sous une forme anecdotique, dans l'enseignement primaire. Des professeurs d'histoire et de philosophie sont intervenus pour montrer combien leur enseignement gagnerait en intérêt et en profondeur si, en enseignant les sciences, on montrait non seulement l'évolution interne des idées, mais aussi l'influence des techniques et conditions historiques sur l'évolution de la pensée scientifique"

 

XXXXXXXXXXXXXXXXXXX

 

1989...1994.  Les journées Langevin à Brest.

 

De 1989 à 1994 sont organisées à la faculté des sciences à Brest, à l'initiative de Jean Rosmorduc professeur d'histoire des sciences à l'Université, des "Journées Langevin" consacrées à l'enseignement de l'histoire des sciences. Lors des deuxièmes journées Langevin en 1990, Gérard Borvon, enseignant au lycée de l'Elorn à Landerneau, expose des "Exercices historiques en classe de sciences".

 

" rien ne vaut d'aller aux sources, de se mettre en contact aussi fréquent et complet que possible avec ceux qui ont fait la science et qui en ont le mieux représenté l'aspect vivant "  écrivait Langevin.

 

Gérard Borvon montre que ces sources sont souvent facilement accessibles (ce qui est encore plus vrai avec le développement d'internet) et propose de les utiliser en classe (voir ci dessous).

 

XXXXXXXXXXXXXXXXXXX

 

Tentatives de mise en oeuvre.

 

 

L’histoire des sciences ne doit pas être un simple ornement. Utilisée comme un outil pour faire progresser le cours elle évite le piège du dogmatisme qui est à l’opposé de la démarche scientifique dans le même temps qu’elle inscrit les sciences comme une part entière de la culture humaine.

 

 

On trouvera ici quelques expériences tentant de mettre en oeuvre cette conception.

 

 

Ou encore : des rayons X à la photographie et au cinéma.

 

 

 

 

XXXXXXXXXXXXXXXXXX

 

 

2005.

 

Le thème est repris par Bernadette Bensaude-Vincent, historienne des sciences, dans la revue d'histoire des sciences sous le titre : Paul Langevin : L'histoire des sciences comme remède à tout dogmatisme

 

Le texte, extrêmement riche, s'appuie sur la conférence de Paul Langevin "L'esprit de l'enseignement scientifique" de 1904. Il se conclut par une citation de Langevin extraite de sa conférence sur "La pensée et l'action" datée de 1946.

 

 
2017 ?
 
 
Partager cet article
Repost0
28 juillet 2017 5 28 /07 /juillet /2017 16:15

On connaît Yan D'Argent comme peintre. C'est pourtant comme illustrateur qu'il exprime tout son talent, en particulier dans le domaine des sciences. Chaque dessin est une mise en scène de personnages en mouvement ou dans des attitudes de la vie courante. A notre époque il aurait été un excellent auteur de bande dessinée.

L'essentiel de ces illustration est extrait de : Louis Figuier, Les Merveilles de la Science.

 

William Gilbert dans son cabinet

 

 

Stephen Grey

 

 

Franklin dans son laboratoire.

 

 

Chapeau paratonnerre.

 

 

Mort de Richmann.

 

 

Volta et sa pile.

 

 

Niepce et Daguerre.

 

Salomon de Caus à Paris.

 

 

Expérience de Périer au Puy-de-Dôme.

 

 

Le désespoir de Papin.

 

 

Watt et le "cercle des lunatiques".

 

 

Olivier Evans.

 

 

La mort de John Fitch.

 

 

Fulton à Brest.

Voir encore

 

 

L'Elise premier navire à vapeur entre l'Angleterre et la France.

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens