Overblog
Suivre ce blog Administration + Créer mon blog
3 décembre 2013 2 03 /12 /décembre /2013 15:31

Notre époque charge le dioxyde de carbone, le CO2, d’une lourde malédiction. C’est l’ennemi numéro un de notre environnement, le coupable, clairement désigné, de "crime climatique".

 

Qui peut encore le nier ? Mais qui peut refuser de voir que la dangereuse augmentation du CO2 dans l’atmosphère est le résultat de l’emballement d’un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d’années et les disperse sous forme d’objets inutiles et de polluants multiples.

 

Qui, dans ce contexte, se souvient encore que le CO2 est d’abord l’aliment des plantes nécessaires à notre alimentation et que celles-ci, de plus, libèrent, en échange de leur consommation de CO2, l’oxygène que nous respirons à plein poumons ?

 

L’histoire de la découverte du dioxyde de carbone et de son rôle dans le fonctionnement du vivant est une aventure à rebondissements qui mérite d’être contée.

 

Après Van Helmont et Hales : Joseph Black.


Joseph Black (1728-1799) et l’air fixe.

 

Joseph Black est né à Bordeaux, où ses parents étaient négociants en vins. Il s’inscrivit à l’Université de Glasgow à l’âge de dix-huit ans, et quatre ans plus tard partit terminer ses études de médecine à Édimbourg.

 

Il y est l’élève de William Cullen, médecin et professeur écossais. Celui-ci dispose d’un laboratoire bien équipé, en particulier pour les mesures des masses et des volumes gazeux.

 

A la demande de son professeur, il s’attache à étudier l’action et les propriétés chimiques de la "magnésie blanche" (carbonate de magnésium), utilisée comme laxatif. Cette étude l’amène à étudier, de façon quantitative, la calcination de la craie et sa transformation en chaux vive.

 

voir : (J.Black,“Expériences sur la magnésie blanche, la chaux vive, et sur d’autres substances alkalines" p.210).

 

Il constate que cette opération s’accompagne d’une perte de poids de la chaux obtenue.

 

Dans le même temps un gaz se dégage auquel il donne le nom, déjà utilisé par Hales, d’air fixe car "fixé" dans la craie.

 

JPEG - 47.8 ko

" Je lui ai donné le nom d’air fixe, dit-il, et peut-être très improprement, mais j’ai pensé préférable d’utiliser un nom familier en philosophie, que d’inventer un nouveau nom avant que nous soyons mieux informés de la nature et des propriétés de cette substance, ce qui sera probablement le sujet de mes prochaines recherches."

 

voir : Experiments upon magnesia alba, quick-lime, and other alcaline substances, p70

 

Son choix de conserver ce nom d’air fixe, "familier en philosophie", sera approuvé par ses contemporains qui, jusqu’à Lavoisier, continueront à qualifier "d’air fixe" le gaz que nous désignons aujourd’hui comme dioxyde de carbone (CO2 ).

 

Cette réaction de calcination peut se traduire par les équations :

 

Craie → Chaux vive + Air fixe

 

carbonate de calcium → Oxyde de Calcium + dioxyde de Carbone

 

CaCO3 → CaO + CO2

 

Ainsi la craie (pour nous du carbonate de calcium CaCO3) résulterait de la combinaison de la chaux vive (oxyde de calcium CaO) et de l’air fixe (CO2). Sa calcination aurait pour effet de libérer cet "air fixe" en le séparant de la chaux.

 

Notons que le sens initial du mot calciner est : transformer en chaux.


JPEG - 71.8 ko

Four à chaux (encyclopédie)


Une autre expérience vient confirmer cette vue.

 

Black et ses compatriotes savent que la chaux vive est très avide d’eau avec laquelle elle réagit avec un fort dégagement de chaleur pour donner de la "chaux éteinte", notre hydroxyde de calcium Ca(OH)2, si utile pour différents usages dont la construction de murs résistants. Cette chaux éteinte peut se dissoudre partiellement dans l'eau pour donner une solution incolore : l'eau de chaux. Si cette eau de chaux est laissée à l'air libre, une pellicule se forme à sa surface. Black constate qu'il s'agit de calcaire dont il imagine qu'il s'est reformé à partir de la chaux et de l'air fixe présent dans l'atmosphère.

 

Précipitation du calcaire :

 

Chaux dissoute + air fixe → Calcaire

 

Quel est l'écolier qui n'a pas hérité de cette expérience de Joseph Black : en soufflant au moyen d'une pipette dans un verre d'eau de chaux incolore, on observe qu'elle se trouble et qu'un précipité blanc de calcaire insoluble se dépose au fond du récipient sous l'action du gaz carbonique contenu dans l'air expiré. Ce nouveau calcaire pourrait, à son tour, être calciné et redonner de la chaux et de l'air fixe.


 


Cet air fixe (notre CO2), facilement caractérisable par sa réaction avec l’eau de chaux, Black l’observe aussi dans l’action d’un acide sur la craie et également dans un grand nombre d’autres opérations. Par exemple, comme Van Helmont, dans la combustion du charbon ou dans les fermentations.

 

Ainsi se précisent les contours de cet être nouveau, l’air fixe, aux propriétés très différentes de celles du classique air atmosphérique. Notons qu’il est caractérisé, au premier abord, par le fait qu’il n’autorise ni les combustions ni la vie animale. Encore désigné sous le nom d’air méphitique, il commence mal sa nouvelle vie dans l’univers des corps chimiques.

 

C’est, cependant, un nouveau "principe" dont il convient d’étudier l’ensemble des propriétés chimiques. Dans cette tâche Black sera relayé par plusieurs de ses compatriotes.

 

Parmi ceux-ci, Henry Cavendish (1731-1810).


pour aller plus loin voir :

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone
et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 


Voir aussi :

 

Une brève histoire du CO2. De Van Helmont à Lavoisier.

Partager cet article
Repost0
3 décembre 2013 2 03 /12 /décembre /2013 15:09

 

 

Notre époque charge le dioxyde de carbone, le CO2, d’une lourde malédiction. C’est l’ennemi numéro un de notre environnement, le coupable, clairement désigné, de "crime climatique".

 

Qui peut encore le nier ? Mais qui peut refuser de voir que la dangereuse augmentation du CO2 dans l’atmosphère est le résultat de l’emballement d’un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d’années et les disperse sous forme d’objets inutiles et de polluants multiples.

 

Qui, dans ce contexte, se souvient encore que le CO2 est d’abord l’aliment des plantes nécessaires à notre alimentation et que celles-ci, de plus, libèrent, en échange de leur consommation de CO2, l’oxygène que nous respirons à plein poumons ?

 

L’histoire de la découverte du dioxyde de carbone et de son rôle dans le fonctionnement du vivant est une aventure à rebondissements qui mérite d’être contée.

 

Après Van Helmont, Hales, Joseph Black : Priestley.

 

 

 


 

Joseph Priestley, théologien, philosophe, homme politique britannique est aussi physicien, auteur d’une remarquable "Histoire de l’électricité". Il est également connu pour ses travaux en chimie et la place importante qu’il occupe dans la "chasse aux airs".

 
Mais avant de parler de Priestley, un mot au sujet de Henry Cavendish (1731-1810).

 

Deuxième fils du Duc de Devonshire, Henry Cavendish, reçoit, de son oncle, un riche héritage qui lui permet de constituer un laboratoire bien équipé qu’il utilise avec une rigueur peu commune parmi ses contemporains. ___________________________________________________________

matériel de laboratoire de Cavendish.


En 1766, il présente devant l’Association Royale de Londres une communication sur les airs factices.

 

Son exposé traite de l’air fixe tel que le définit Black, à savoir : "cette espèce particulière d’air factice qui est extrait des substances alcalines par dissolution dans les acides ou par calcination" (Philosophical Transactions, 1766, p141).

 

Si la description de l’air inflammable (notre hydrogène) constitue, par sa nouveauté, la partie la plus remarquable du travail de Cavendish, nous retiendrons qu’il multiplie également les expériences sur l’air fixe. Il l’obtient par l’action de l’esprit de sel (l’acide chlorhydrique) sur le marbre.

 

Il en étudie d’abord la solubilité dans l’eau. Elle est importante. Cette observation sera retenue quand il faudra, ensuite, expliquer la richesse de la vie aquatique. Il constate aussi, entre autres observations, que l’air fixe se dissout plus facilement dans l’eau froide. Une observation qui nous concerne dans cette époque présente où l’augmentation de la température des océans limite leur rôle de "pièges à carbone".

 

En utilisant une vessie animale, Cavendish mesure la densité de l’air fixe. Ayant constaté que l’air ordinaire est 800 fois moins dense que l’eau, il trouve que l’air fixe ne l’est que 511 fois moins. Il en déduit que l’air fixe a une densité de 1,56 par rapport à l’air ordinaire (à comparer à la valeur de 1,52 actuellement admise).

 

Le résultat mérite d’être noté, l’air fixe, plus dense que l’air se concentre donc dans les parties basses des enceintes où il est produit. Ceci explique l’asphyxie des ouvriers dans les fosses d’aisance ou des vignerons dans les cuves mal aérées, ou encore celle des animaux dans les grottes désignées comme "grotte du chien" : c’est au raz du sol que le gaz "méphitique" menace. Cette donnée intéresse également les expérimentateurs qui savent qu’ils peuvent conserver l’air fixe dans un flacon ouvert dont l’ouverture est dirigée vers le haut, disposition commode pour leurs expériences.

 

Toujours attaché à mesurer, Cavendish cherche à déterminer la quantité d’air fixe contenue dans le marbre. Le fort pourcentage de CO2 trouvé (40,7% de la masse) est proche de la valeur admise aujourd’hui.

 

Le marbre et la craie, décomposés par un acide, deviendront ainsi l’une des sources essentielles de la production d’air fixe.

 

C’est ce procédé qui sera utilisé par Priestley pour son étude de l’air fixe.


 
Joseph Priestley (1733-1804), air fixe et air phlogistiqué.

 

En mars 1772 il présente devant l’Académie Royale de Londres ses Observations sur différentes espèces d’air.


Cliquer sur l’image pour accéder au texte (voir page 292).


 

Habitant à proximité d’une brasserie, il multiplie d’abord les expériences sur l’air fixe, le gaz carbonique, qui se dégage de la fermentation du malt.


JPEG - 57.5 ko

Cuve d’une brasserie (encyclopédie)


Constatant sa capacité à se dissoudre dans l’eau il met au point des méthodes de préparation d’eaux gazeuses qui, dit-il, peuvent rivaliser avec "l’eau naturelle de Pyrmont" qui est une eau minérale, importée d’Allemagne, très en vogue à cette époque. On pourra juger de cette popularité à la lecture d’un article publié dans la Revue médicale des grands hôpitaux de Paris en 1829 :

 

"On compte peu de bains en Europe qui aient obtenu autant de vogue et de célébrité. Il nous suffira de dire qu’en 1556 cette célébrité devint telle, qu’en moins d’un mois on fut obligé de dresser un camp pour recevoir plus de dix mille personnes, qui s’y rendirent de l’Allemagne, de l’Angleterre, de la France, du Danemark, de la Norvège, de la Suède, de l’Italie, de la Russie, de la Pologne ; et enfin cet établissement était si réputé par les vertus de ses eaux, de ses fêtes, ses bals, ses spectacles, etc., qu’avant la révolution une demoiselle de condition se réservait, presque toujours dans son contrat de mariage, d’être conduite, au moins une fois, aux bains de Pyrmont".

 

Pourquoi ne pas imaginer, comme le fait Priestley, qu’une "eau de Pyrmont" à bon marché, préparée à base de craie et d’acide sulfurique, pourrait avoir, elle-même, un avenir commercial ? C’est un industriel allemand, Johann Jacob Schweepe (1740-1821), qui en fera le pari et déposera, en 1783, un brevet pour une boisson médicinale utilisant le procédé de gazéification de Priestley et qui créera, à Londres, la fabrique d’une eau gazeuse diffusée plus tard sous la marque Schweepes. Pendant ce temps, une observation d’une tout autre portée va mobiliser Priestley.

 

Les plantes ne fonctionnent pas comme les animaux !

 

Il est connu que quand on enferme une bougie dans une enceinte pleine d’air, celle-ci fini par s’éteindre. De même un animal y meurt rapidement. Mais que se passe-t-il quand on y met une plante ? Va-t-elle dépérir à son tour ?

 

"On pourrait imaginer, écrit Priestley, que comme l’air commun est autant nécessaire à la vie végétale qu’à la vie animale, les plantes comme les animaux devraient être affectés de la même manière. J’avais moi-même cette intuition quand je mis pour la première fois un plan de menthe dans un flacon de verre renversé sur une cuve à eau. Mais quand il a continué à y pousser pendant quelques mois, je trouvai que l’air du flacon n’éteignait pas une chandelle et qu’il n’avait aucun effet négatif sur une souris que j’y avais mise."

 

Priestley mesure l’importance de l’observation.

 

"Je me flatte, écrit-il, d’avoir découvert accidentellement une méthode pour restaurer l’air qui a été pollué par la combustion des chandelles et d’avoir découvert un des remèdes que la nature emploie dans ce but. C’est la végétation.

 

 

Par quel procédé la nature agit-elle pour produire un effet aussi remarquable, je ne prétends pas l’avoir découvert, mais nombre de faits se déclarent en faveur de cette hypothèse".

 

Priestley s’emploie alors à multiplier les observations sur la croissance des plantes dans l’air confiné d’une enceinte de verre. Ayant constaté qu’une chandelle pouvait brûler dans l’air où avait poussé une plante, il imagine qu’une plante pourrait même rendre sa qualité à l’air où avait déjà brûlé une bougie.

 

Priestley note que l’expérience qu’il réalise pour répondre à cette question débute le 17 août 1771. Il place un plan de menthe dans une enceinte où une chandelle a brûlé jusqu’à s’éteindre et trouve que le 27 du même mois une autre chandelle qu’on y place y brûle parfaitement.

 

D’autres plants que ceux de menthe sont testés. Constat ? Ce n’est pas l’émanation odorante de la menthe qui purifie l’air, la preuve : les épinards semblent même être bien plus efficaces.

 

Ces premiers résultats sont communiqués à Franklin, avec qui Priestley est en correspondance régulière. Celui-ci en tire argument pour dénoncer la "rage" qui a gagné ses compatriotes et qui consiste à abattre les arbres qui se trouvent autour des habitations sous prétexte que leur voisinage serait malsain. Il est persuadé du contraire car les Américains, dit-il, vivent au milieu des bois et "personne dans le monde ne jouit d’une meilleure santé et n’est plus prolifique". La déforestation… déjà une affaire de santé publique.

 

Dans la même lettre, Franklin émettait l’hypothèse que, dans la réaction de purification de l’air, les plantes agissaient en retirant quelque chose de l’air vicié et non en y ajoutant quelque chose.

 

En retirer quelque chose ? On sait à présent que, effectivement, les plantes absorbent "quelque chose" : le dioxyde de carbone présent dans l’air. Mais pour Priestley et Franklin ce "quelque chose" ne pouvait être que le "phlogistique" libéré par la respiration animale ou par les putréfactions et qui avait pour effet d’empoisonner l’air. La théorie du "phlogistique", ce principe du feu contenu dans les corps combustibles, dominait alors dans l’esprit des chimistes.

 

Priestley et Franklin ne voient pas non-plus le fait le plus important : les plantes ajoutent également "quelque chose", dans l’air où elles poussent. Quelque chose d’essentiel à la vie : l’oxygène.

 

L’air fixe. Poison ou remède ?

 

Revenons sur les "observations sur les différentes espèces d’air", mémoire présenté par Priestley devant la Société Royale des Sciences en 1772.

 

Ayant su voir les propriétés des plantes pour purifier l’air vicié, il décide, à présent, de chercher d’autres procédés pour y parvenir. Disons le tout de suite, cet épisode nous montrera un savant prestigieux se laissant entraîner, par ses convictions, sur des voies hasardeuses.

 

Des souris font les frais de ses multiples essais. Non seulement il observe la façon et le temps qu’elles mettent à mourir dans un air confiné suivant qu’elles sont petites, grosses, jeunes ou vieilles, mais pour obtenir un air réellement putride, il les y laisse se décomposer pendant plusieurs jours après leur mort. Les animaux qu’il y introduit ensuite n’y vivent évidemment pas longtemps.

 

Il teste ensuite différentes façons de traiter l’air vicié renfermé dans l’enceinte et croit constater qu’en y introduisant de l’air fixe (rappelons à nouveau qu’il s’agit du dioxyde de carbone) la putréfaction semble arrêtée et, plus surprenant, Priestley va même jusqu’à considérer que la qualité de l’air s’est améliorée.

 

Très pratique, et persuadé d’avoir fait une nouvelle découverte utile à l’humanité, il en propose une première application à grande échelle : "si l’air fixe tend à corriger l’air qui a été pollué par la putréfaction ou la respiration d’un animal, les fours à chaux, qui libèrent de grandes quantités d’air fixe, seraient sains dans le voisinage des cités populeuses dont l’atmosphère est riche en effluves putrides".

 

Combattre le mal par le mal, neutraliser les effluves putrides des villes par les exhalaisons méphitiques des fours à chaux, voilà une proposition qui aurait manifestement mérité l’application d’un "principe de précaution" !

 

Notons que cette indulgence vis-à-vis du gaz carbonique n’était sans doute pas étrangère au fait que c’est en utilisant ce gaz qu’il avait proposé de fabriquer une "eau de Pyrmont" artificielle, cette eau minérale dont personne ne mettait en doute les propriétés médicinales. Il s’adresse donc aux médecins pour leur proposer des traitements à base d’air fixe.

 

"Je serais amené à penser aussi, dit-il, que les médecins pourraient profiter de l’utilisation de l’air fixe dans plusieurs maladies putrides, dans la mesure où on pourrait facilement l’administrer sous forme de clystère". Rappelons qu’un "clystère" est un "lavement intestinal" et que le traitement consisterait ici à insuffler un gaz au lieu du liquide habituellement administré dans ce genre d’intervention. Mais, prévient Priestley, par ce moyen il n’y aurait pas à craindre de gonflement des intestins dans la mesure où cet air fixe est "immédiatement absorbé par n’importe quel fluide ou quelle substance humide".

 

Il se pourrait aussi, pense-t-il, qu’il puisse être absorbé par les pores de la peau. Sans doute se souvient-il de ses premières observations dans une brasserie, d’où l’idée spectaculaire de suspendre une personne, "excepté la tête" précise-t-il, au-dessus d’une cuve pleine d’un liquide en fermentation. "Si le corps était exposé presque nu, ajoute-t-il, il y aurait peu de danger dû au froid, et l’air, ayant un accès plus libre, produirait un meilleur effet".

 

"N’étant pas médecin, je ne cours aucun risque en lançant cette hasardeuse, et peut-être bizarre, proposition" écrit-il.

 

Hasardeux et bizarre en effet !

 

Pourtant Priestley réussit à convaincre deux médecins, les docteurs Hird et Crowther, de l’opportunité de tenter l’expérience en administrant à leurs patients des lavements à l’air fixe et en leur faisant boire de grandes quantités de liquides fortement imprégnées de ce gaz. Naturellement le compte-rendu de l’un des médecins, publié par Priestley en annexe de son mémoire, annonçait des résultats positifs.

 

Vraiment bizarre ?

 

Pourtant, tout dans ces observations était-il si hasardeux, si bizarre ?

Le traitement proposé à une personne atteinte de maladie putride n’a sans doute pas eu réellement l’efficacité escomptée mais on sait aujourd’hui que les principaux micro-organismes responsables de la putréfaction des tissus animaux sont des bactéries aérobies et que l’une des méthodes préconisées pour le conditionnement des viandes est de faire cette opération sous atmosphère enrichie en gaz carbonique.

 

Notons aussi que la "carboxythérapie", à base de cures "d’eau gazeuse", de bains "carbo gazeux" et même d’injection sous-cutanée de CO2, a été introduite dans l’arsenal de certaines stations thermales.

 

Vous avez dit bizarre ?


Carboxythérapie

hier le clystère

aujourd’hui la seringue


 

Au moins serons nous tentés de considérer avec indulgence les conclusions aventureuses de Priestley en constatant qu’il avait quand même été, dans ce domaine, un bon, et peut-être utile, observateur.

 

Notons aussi le fascicule édité par Priestley sur la méthode de préparation d’une "eau de Pyrmont".


JPEG - 54.7 ko

 
 

Après Van Helmont, Hales, Black, Cavendish et Priestley, nous allons rencontrer le biologiste Suisse Charles Bonnet.


pour aller plus loin voir :

 

 

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…
 

Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

 

 


Voir aussi :

 

Une brève histoire du CO2. De Van Helmont à Lavoisier.

Partager cet article
Repost0
3 décembre 2013 2 03 /12 /décembre /2013 14:39

Notre époque charge le dioxyde de carbone, le CO2, d’une lourde malédiction. C’est l’ennemi numéro un de notre environnement, le coupable, clairement désigné, de "crime climatique".

Qui peut encore le nier ? Mais qui peut refuser de voir que la dangereuse augmentation du CO2 dans l’atmosphère est le résultat de l’emballement d’un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d’années et les disperse sous forme d’objets inutiles et de polluants multiples.

Qui, dans ce contexte, se souvient encore que le CO2 est d’abord l’aliment des plantes nécessaires à notre alimentation et que celles-ci, de plus, libèrent, en échange de leur consommation de CO2, l’oxygène que nous respirons à plein poumons ?

L’histoire de la découverte du dioxyde de carbone et de son rôle dans le fonctionnement du vivant est une aventure à rebondissements qui mérite d’être contée.

Après Van Helmont, Hales, Joseph Black, Priestley, Charles Bonnet, Jan Ingenhousz, Jean Senebier : Lavoisier.


Dans un mémoire lu le 3 mai 1777 à l’Académie des Sciences, Lavoisier traite des "expériences sur la respiration des animaux et sur les changements qui arrivent à l’air en passant par leurs poumons".

 

Chacun connaît l’importance de la respiration pour le maintien de la vie humaine et pourtant, nous dit Lavoisier, "nous connaissons peu l’objet de cette fonction singulière". Cet "objet", c’est l’air mais, ajoute-t-il, "toutes sortes d’air, ou plus exactement toutes sortes de fluides élastiques, ne sont pas propres à l’entretenir, et il est un grand nombre d’airs que les animaux ne peuvent respirer sans périr".

 

Lavoisier connaît les travaux de Hales, il est surtout admiratif des expériences de Priestley qui "a reculé beaucoup plus loin les bornes de nos connaissances… par des expériences très ingénieuses, très délicates et d’un genre très neuf". Lavoisier considère que son apport essentiel aura été de prouver que "la respiration des animaux avait la propriété de phlogistiquer l’air, comme la calcination des métaux et plusieurs procédés chimiques". Ou pour être plus bref : que la respiration est une combustion !

 

Lui-même veut le vérifier. Un moineau est placé sous une cloche pleine d’air renversée sur une cuve à mercure. Près d’une heure plus tard il ne bouge plus. L’air qui reste éteint une flamme. Un nouveau moineau qu’on y enferme n’y vit que quelques instants.

 

Cet "air vicié" présente une propriété qu’on ne trouve pas dans la simple "mofette" à laquelle Lavoisier donnera plus tard le nom d’Azote. Il précipite l’eau de chaux. Par ailleurs, une partie de cet air vicié est absorbée par une solution d’alkali fixe caustique (de la potasse). Par ces propriétés Lavoisier reconnaît cet air que les chimistes désignent comme "l’air fixe".

 

Le terme ne lui convient pas. Dans une note il s’en explique.

 

Quand l’air fixe devient acide crayeux aériforme.

 

" Il y a déjà longtemps que les physiciens et les chimistes sentent la nécessité de changer la dénomination très-impropre d’air fixe, air fixé, air fixable ; je lui ai substitué, dans le premier volume de mes Opuscules physiques et chimiques, le nom de fluide élastique ; mais ce nom générique, qui s’applique à une classe de corps très-nombreux, ne pouvait servir qu’en en attendant un autre.

 

Aujourd’hui, je crois devoir imiter la conduite des anciens chimistes ; ils désignaient chaque substance par un nom générique qui en exprimait la nature, et ils le spécifiaient par une seconde dénomination qui désignait le corps d’où ils avaient coutume de la tirer ; c’est ainsi qu’ils ont donné le nom d’acide vitriolique à l’acide qu’ils retiraient du vitriol ; le nom d’acide marin à celui qu’ils tiraient du sel marin, etc.

 

Par une suite de ces mêmes principes, je nommerai acide de la craie, acide crayeux, la substance qu’on a désignée jusqu’ici sous le nom d’air fixe ou air fixé, par la raison que c’est de la craie et des terres calcaires que nous tirons le plus communément cet acide, et j’appellerai acide crayeux aériforme celui qui se présentera sous forme d’air."

 

"Acide crayeux aériforme", propose donc Lavoisier, à un moment où, pourtant, il ne sait rien encore de la composition chimique de la craie. Plus tard c’est l’acide lui-même qui contribuera à donner son nom à la craie (carbonate de calcium) dans la nomenclature chimique. Nous en reparlerons.

 

Pour le moment le chimiste s’interroge sur le mécanisme de la respiration. Il a constaté une faible diminution du volume de l’air dans la cloche. Deux hypothèses se présentent.

 

-  Il est possible, dit-il, "que l’air éminemment respirable qui est entré

dans le poumon en ressorte en acide crayeux aériforme". Ce qui expliquerait la faible diminution du volume de l’air dans la cloche, l’air fixe étant supposé "moins élastique" que l’air ordinaire.

 

-  Il est possible aussi "qu’une portion de l’air éminemment respirable reste dans le poumon et qu’elle se combine avec le sang".

 

Les deux propositions se révèleront partiellement justes. Pour appuyer la seconde Lavoisier rappelle que Priestley lui-même, a exposé du sang à l’air éminemment respirable et à l’acide crayeux aériforme. Dans le premier cas le sang a pris une couleur rouge-vermeil, dans le second cas il est devenu noir. La remarque ne manque pas de pertinence mais il faudra encore de longues années avant qu’elle trouve sa justification.

 

Pour le moment, la nature de l’acide crayeux reste à élucider.

 

De l’acide crayeux aériforme à l’acide charbonneux.

 

Quatre ans se sont passés. Lavoisier a abandonné le phlogistique. Dans les publications de l’Académie des Sciences pour l’année 1781, on peut lire son "Mémoire sur la formation de l’acide nommé air fixe ou acide crayeux et que je désignerai désormais sous le nom d’acide du charbon".

 

Lavoisier rappelle d’abord sa conception de la combustion des métaux, à savoir la combinaison de ceux-ci avec la partie respirable de l’air qu’il désigne à présent comme principe oxygine (générateur d’acide) et qui deviendra gaz oxygène dans la Nomenclature qu’il publiera avec Guyton de Morveau, Fourcroy et Berthollet en 1787.

 

En même temps que de celle des métaux, Lavoisier s’est intéressé aux combustions du phosphore et du soufre. Celles-ci l’ont conduit aux acides phosphorique et sulfurique. Poursuivant avec la même logique, il décide de s’intéresser au plus anciennement connu des combustibles : le charbon.

 

Ce corps pose problème. Si les chimistes savent obtenir du soufre et du phosphore dans un état de quasi-pureté, il n’en va pas de même du charbon. Sa distillation laisse échapper un ensemble de gaz parmi lesquels un air inflammable aqueux qui prendra ensuite le nom d’hydrogène. Dans ses cendres on trouve des terres insolubles et de l’alkali fixe (de la potasse) soluble. D’où la précision de Lavoisier :

 

"Pour éviter toute équivoque, je distinguerai, dans ce mémoire, le charbon d’avec la substance charbonneuse ; j’appellerai charbon ce que l’on a coutume de désigner sous cette dénomination dans les usages de la société, c’est-à-dire un composé de substance charbonneuse, d’air inflammable aqueux, d’une petite portion de terre et d’un peu d’alcali fixe ; j’appellerai, au contraire, substance charbonneuse le charbon dépouillé d’air inflammable aqueux, de terre et d’alcali fixe".

 

C’est donc la "substance charbonneuse" qui se combine au principe oxygine de l’air dans la combustion du charbon. Abandonnant le nom "d’acide crayeux" qu’il lui avait précédemment donné, Lavoisier donne le nom "d’acide charbonneux" au gaz résultant de cette combustion.

 

Afin de déterminer les proportions de substance charbonneuse et de principe oxygine dans cet acide charbonneux, Lavoisier, aidé de Laplace et Meusnier, se livre à une multitude d’expériences qui l’amènent aux proportions :

 

Principe oxygine : 72,125 livres

 

Matière charbonneuse : 27,875 livres

 

Total de l’acide charbonneux : 100,000 livres

 

La lectrice ou le lecteur qui mobiliserait ses souvenirs scolaires pourrait vérifier qu’avec nos données actuelles (valeurs "arrondies" : 12g de carbone pour 32g d’oxygène dans les 44g d’une "mole" de CO2 soit 22,4l gazeux,), les 27,875% de carbone mesurés par Lavoisier sont très proches des 27,3% que nous donnent nos calculs.

 

En cette année 1781, l’air fixe, rebaptisé acide crayeux, est donc devenu acide charbonneux. Pourtant, si on connaît à présent sa composition, il attend encore son nom définitif.

 

Quand l’acide charbonneux devient gaz acide carbonique et quand naît le carbone.

 

Nous devons évoquer ici la Nomenclature Chimique. Notons, pour mieux la situer, qu’elle prend son origine au début des années 1780, moment où la nécessité se fait jour d’une réforme dans la façon de nommer les corps chimiques.

 

C’est d’abord Louis-Bernard Guyton de Morveau (1737-1816), avocat au parlement de Dijon et chimiste reconnu internationalement qui publie dans le Journal de Physique de l’abbé Rozier, en 1782, un mémoire "Sur les dénominations chymiques, la nécessité d’en perfectionner le système et les règles pour y parvenir".

 

Le constat est simple : cette science qui a enfin réussi à s’imposer dans les Académies utilise une langue à peine sortie des grimoires des alchimistes. "Il n’est point de science, regrette-t-il, qui exige plus de clarté, plus de précision, & on est d’accord qu’il n’en est point dont la langue soit aussi barbare, aussi vague, aussi incohérente".

 

En France, d’autres chimistes partagent le même objectif et une autre réforme du vocabulaire est en marche : celle de Lavoisier et de ses collègues académiciens qui s’appuient sur une base théorique, celle du principe oxygine, très différente de celle de Guyton de Morveau partisan du phlogistique.

 

La concurrence est sévère. La théorie de Lavoisier semble même avoir des partisans parmi les collègues Bourguignons de Guyton de Morveau, mais cela n’empêche pas celui-ci de se montrer circonspect :

 

"Nous aurons plus d’une fois occasion de dire, & particulièrement aux articles Acide Vitriolique, Acide Saccharin, Phlogistique, &c. &c. que nous sommes bien éloignés d’adopter en entier l’explication dans laquelle ce savant Chymiste croit pouvoir se passer absolument du Phlogistique" (Encyclopédie méthodique, article chymie, p29).

 

Pourtant, trois ans plus tard, c’est avec Lavoisier qu’il présentera la Méthode de Nomenclature Chimique qui bannira le phlogistique de l’univers de la chimie.

 

Influent à l’Académie des sciences, Lavoisier (1743-1794) a su attirer autour de lui des collaborateurs efficaces et enthousiastes qui soutiennent sa théorie : Antoine-François Fourcroy (1755-1809), Claude Louis Berthollet (1748-1822), Jean Henri Hassenfratz (1755-1827), Pierre Auguste Adet (1763-1834).

 

C’est ce groupe, réuni autour de Lavoisier, qui accueille Guyton de Morveau quand il vient à Paris en février 1787 avec son projet de nomenclature déjà bien avancé. Avec lui, ils rédigent la nouvelle "Méthode de Nomenclature Chimique" présentée à l’assemblée publique de l’Académie des Sciences du 17 avril 1787.

 

Guyton de Morveau est chargé d’en présenter les nouveaux termes. L’oxygène, l’hydrogène et l’azote sont les premiers nommés. Concernant le nom des acides, l’un d’entre eux pose problème.

 

"Aucun n’a reçu autant de noms différents que ce gaz, auquel M. Black donna d’abord le nom d’air fixe, en se réservant expressément de changer dans la suite cette dénomination, dont il ne se dissimulait pas l’impropriété. Le peu d’accord des chimistes de tous les pays sur ce sujet nous laissait, sans doute, une liberté plus entière, puisqu’il nous montrait la nécessité de présenter enfin des motifs capables de décider l’unanimité : nous avons usé de cette liberté suivant nos principes.

 

Quand on a vu former l’air fixe par la combinaison directe du charbon et de l’air vital, à l’aide de la combustion, le nom de cet acide gazeux n’est plus arbitraire, il se dérive nécessairement de son radical, qui est la pure matière charbonneuse ; c’est donc l’acide carbonique, ses composés avec les bases sont des carbonates ; et, pour mettre encore plus de précision dans la dénomination de ce radical, en le distinguant du charbon dans l’acceptation vulgaire, en l’isolant par la pensée, de la petite portion de matière étrangère qu’il recèle ordinairement, et qui constitue la cendre, nous lui adaptons l’expression modifiée de carbone, qui indiquera le principe pur, essentiel du charbon, et qui aura l’avantage de le spécifier par un seul mot, de manière à prévenir toute équivoque."

 

De façon paradoxale, c’est donc l’acide carbonique, que nous désignons actuellement comme gaz carbonique dans le langage courant ou dioxyde de carbone dans une langue plus savante, qui a donné son nom au carbone !

 

La remarque n’est pas anodine. C’est le dioxyde de carbone, l’ancien "gas silvestre" ou "air fixe", qui relie la craie la plus blanche à la noirceur du charbon. Le charbon, bois fossilisé, faisant lui-même le lien entre le minéral et le végétal. Comment aurions-nous pu décrire ce "cycle du carbone" qui associe matière inerte et matière animée ; que serait devenue la "chimie organique", si Lavoisier s’en était tenu à son choix initial "d’acide crayeux aériforme" ?

 

Ce choix étant fait, la réaction de combustion du carbone peut désormais s’écrire dans une formulation qui nous est compréhensible.

 

Carbone + oxygène → gaz acide carbonique

 

Le mot carbone est entré dans le langage quotidien et est partout compris dans le monde. Pourtant, nous verrons, à présent, qu’il ne s’est cependant pas imposé sans de fortes réticences.

 
XXXXXXXXXXX
 
De l’offensive anti-carbone à la victoire de CO2.

 

Le 17 avril 1787, est donc la date à laquelle Lavoisier, Guyton de Morveau, Fourcroy et Berthollet présentent le "Mémoire sur la nécessité de réformer et de perfectionner la nomenclature de la chimie" à la séance publique de l’Académie Royale des Sciences.

 

Une réception "nuancée" de la part des académiciens français.

 

Baumé, Cadet, Darcet, et Sage, sont les quatre académiciens auxquels revient la charge de présenter le "Rapport sur la Nouvelle Nomenclature". Le moins qu’on puisse dire est qu’ils ne sont pas réellement enthousiastes et qu’en ces années qui précèdent une tempête politique, ils sont loin de souhaiter le "matin du grand soir" d’une révolution chimique.

 

"Ce n’est pas encore en un jour qu’on réforme, qu’on anéantit presque une langue déjà entendue, déjà répandue, familière même dans toute l’Europe, & qu’on lui en substitue une nouvelle d’après des étymologies, ou étrangères à son génie, ou prises souvent dans une langue ancienne, déjà presque ignorée des savants, & dans laquelle il ne peut y avoir ni trace, ni notion quelconque des choses, ni des idées qu’on doit leur signifier".

 

Le problème majeur est l’avènement de l’oxygène au détriment du phlogistique. Pourquoi choisir l’aventure, estiment les rapporteurs, quand l’ancien système s’avère encore utile ?

 

"La théorie ancienne qu’on attaque aujourd’hui est incomplète sans doute ; mais celle qu’on lui substitue n’a-t-elle pas ses embarras, ses difficultés ? Dans l’ancienne, nombre de phénomènes s’expliquent comme on peut, à l’aide du phlogistique… Dans la nouvelle c’est l’oxygène réuni aux bases acidifiables, qui forme ces mêmes acides ; mais qui nous dira ce qu’est l’oxygène ? Ce qu’est ce radical acide ? "

 

Qui nous dira ce qu’est l’oxygène ? Manifestement les Académiciens ne semblent pas avoir trouvé la réponse dans les mémoires des nomenclateurs. S’ils trouvent quand même quelques avantages à la nouvelle théorie, c’est ceux qu’elle doit à la précision et au calcul "auxquels la perfection de nos appareils a fourni l’analyse".

 

Ils choisissent donc de ne pas choisir :

 

"Nous dirons seulement que lorsque nous nous sommes permis ces réflexions, nous n’avons pas plus prétendu combattre la théorie nouvelle que défendre l’ancienne…

 

Nous pensons donc qu’il faut soumettre cette théorie nouvelle, ainsi que sa nomenclature, à l’épreuve du temps, au choc des expériences, au balancement des opinions qui en est la suite ; enfin au jugement du public, comme au seul tribunal d’où elles doivent & puisse ressortir.

 

Alors ce ne sera plus une théorie, cela deviendra un enchaînement de vérités, ou une erreur. Dans le premier cas, elle donnera une base solide de plus aux connaissances humaines ; dans le second elle rentrera dans l’oubli avec toutes les théories & les systèmes de physique qui l’auront précédée".

 

La faire rentrer dans l’oubli, tel est l’objectif des phlogisticiens qui ne ménagent pas leurs critiques.

 

Des mots durs, barbares, qui choquent l’oreille.

 

Le "Journal d’observations sur la Physique, l’Histoire naturelle et sur les Arts et Métiers", nommé plus simplement "Journal de Physique de l’abbé Rozier" est "la" revue scientifique européenne du moment. Guyton de Morveau, Lavoisier, Fourcroy y publient régulièrement. En septembre 1787 elle rend compte, d’une façon relativement neutre, de la nouvelle Nomenclature qui vient d’être publiée à Paris. Dans cette première présentation, le seul commentaire retenu est celui des commissaires de l’Académie. Mais l’attaque ne tardera pas.

 

Jean-Claude de la Métherie, directeur de la revue et l’un de ses principaux rédacteurs, ne perd pas de temps. Dès le mois d’octobre, il publie un "Essai sur la nomenclature chimique". La critique, radicale, s’y énonce en cinq points.

 

1°) Les changements de nom doivent se faire peu à peu, avec sagesse et circonspection alors que cette nomenclature propose de changer tout de suite la plupart des mots et "cela ne s’est jamais fait, ni ne peut se faire dans aucune partie de la langue".

 

2°) On doit s’éloigner le moins possible des mots anciens, ce qui n’est manifestement pas le cas, les auteurs de la nomenclature revendiquant le droit de changer "la langue que nos maîtres ont parlée" en ne faisant grâce à aucune dénomination qui leur semblerait impropre.

 

3°) On "consultera autant qu’on pourra l’analogie". Or comment imaginer du charbon dans le gaz incolore appelé "carbonique" ou dans la craie la plus blanche ?

 

4°) "On ne doit point négliger l’harmonie des mots, & on ne peut absolument s’écarter du génie de la langue. Un mot nouveau ne doit être ni dur, ni barbare, surtout dans un moment où on adoucit tous les mots, & sans doute trop. Les oreilles sont si délicates qu’on ne dit plus paille, cheval, &c. On prononce pâie, zeval, zeveux, &c."

 

Or, ajoute De la Métherie, la nomenclature emploie ces mots " durs, barbares qui choquent l’oreille, & ne sont nullement dans le génie de la langue française, tels que carbonate, nitrate, sulfate, &c… aussi la plus grande partie des savants français, & nos plus grands écrivains, tel que M. de Buffon, les ont blâmés dès l’instant qu’on les a proposés".

 

5°) Cinquième point : une nomenclature ne doit pas reposer sur des idées systématiques "car autrement chaque école ayant un système différent, aura une nomenclature différente". Or, ses auteurs l’affirment eux-mêmes, le propre de leur nomenclature est qu’elle repose sur un ensemble d’idées philosophiques. Élément supplémentaire à charge : celles-ci sont "regardées comme fausses par le plus grand nombre des savants, qui par conséquent ne peuvent se servir de ces mots ".

 

La critique n’épargne aucune proposition. Pourquoi azote et non pas ammoniacogène dans la mesure où cet élément est également présent dans l’ammoniac. Pourquoi hydrogène et pas éléogène car le "gaz inflammable" est également présent dans les huiles. Et, en ce qui concerne l’objet de ce livre, quel intérêt à remplacer charbon par carbone ?

 

Ce premier article libère la parole des lecteurs de la revue. Chacun en rajoute en témoignage d’indignation.

 

La guerre est déclarée.

 

Dans le numéro de décembre 1787 du journal de physique, le premier à intervenir souhaite rester anonyme. "La chimie est maintenant à la mode", dit-il, "Nos belles dames, longtemps avant que le lycée leur en offrît des leçons, avaient paru sur les bancs des diverses écoles". C’est pourquoi la nouvelle Nomenclature "était attendue avec impatience". D’où sa déception et le sentiment d’avoir été victime d’une publicité mensongère : "plus les noms placés à la tête de cet ouvrage sont propres à exciter l’intérêt du lecteur, moins ils sollicitent leur indulgence".

 

Et d’indulgence, il n’en a pas ! Il reproche, en particulier, à ces illustres scientifiques, leur mauvais usage du grec. Comment oser mutiler "les beautés" de cette langue en fabriquant des mots dont la moitié est empruntée au latin, l’autre au grec. Et surtout, observe-t-il, quand on maîtrise si mal la langue. Oxygène et hydrogène, écrit-il, "signifient précisément le contraire de ce qu’ont voulu les Auteurs de la Nomenclature. La traduction du premier mot est engendré par l’acide & non générateur de l’acide ; celle du second engendré par l’eau et non générateur d’eau". Chez les Grecs, ajoute-t-il, "Diogène voulait dire fils de Jupiter" et, dans le vocabulaire usuel, homogène signifie "généré de façon identique" et non pas "générateur des mêmes choses".

 

Quant à quelques mots "un peu ridicules", ajoute-t-il, tels que "carbone, carbonique, carbonate, &c. je n’en parlerai point ; c’est les premiers, c’est peut-être les seuls dont le public fera justice".

 

Notre auteur anonyme n’avait manifestement rien d’un Nostradamus. Qui peut imaginer qu’il fut un temps où "carbone" ne faisait pas partie du langage commun et qu’il n’a été imposé, il y a seulement un peu plus de deux siècles, que par un quarteron de chimistes français.

 

Pourtant "Carbone" a été une des cibles principales des adversaires de la nomenclature.

 

Oubliez ces carbonates, ces carbures…

 

Étienne-Claude de Marivetz, qui signe en faisant état de son titre de baron, vient tresser des couronnes au directeur du Journal de Physique, le "véritable journal des Savants", pour son combat contre la Nomenclature. Il fallait, dit-il, "que les Étrangers apprissent que cette innovation n’avait été reçue que dans peu de laboratoires ; il fallait que les générations futures, en lisant avec étonnement ce dictionnaire, apprissent comment furent accueillis ces muriates, ces carbonates, ces carbures, ces sulfates, ces sulfites, ces sulfures, ces phosphates, ces phosphures, ces oxydes, &c. &c. &c. Il fallait que l’on sût que ces mots bizarres ne furent reçus que dans le jargon des adeptes qui les avaient imaginés".

 

Bien vite, conclut-il, "les carbonates et les carbures auront été oubliés" et on ne lira plus cette nomenclature "que comme on lit encore l’Histoire de Pantalon-Phoebus".

 

L’éloge historique de Pantalon-Phoebus est un texte extrait du "Dictionnaire néologique à l’usage des beaux-esprits du siècle" publié en 1726 par l’abbé Desfontaines sous couvert d’un "avocat de Province". Il s’agit d’un dictionnaire destiné à répandre dans la Province le beau parlé parisien et dans lequel un cabaretier devenait un "marchand d’ivresse" et une soupe un "phénomène potager". Le dictionnaire en question ne pouvait évidemment que provoquer l’ironie des lecteurs de la fin du siècle.

 

Oublié, est donc Pantalon-Phoebus, mais le baron de Marivetz lui-même n’attirerait plus l’attention s’il n’avait été l’un des pourfendeurs des carbonates et carbures.

 

Christophe Opoix, Maître en Pharmacie à Provins, a été, en cette année 1787, reçu à l’Académie d’Arras, alors sous la présidence de Maximilien de Robespierre. Il constate d’abord que les chimistes des générations antérieures ont su trouver les mots aptes à attirer un public nombreux. La chimie "a fait partie de la bonne éducation, & les femmes mêmes ont fréquenté assidument les amphithéâtres sans s’y trouver étrangères ou déplacées".

 

Il s’en prend, ensuite, ouvertement à Lavoisier, le "brillant orateur de la nouvelle doctrine" :

 

"Je le sais, un nombreux auditoire applaudit encore à ces Messieurs, et semblent leur répondre d’un grand succès ; mais quand la mode, la nouveauté & l’enthousiasme seront passées, quand on ne frappera plus les yeux à grands frais par des appareils nouveaux et imposants ; quand le brillant orateur de la nouvelle doctrine cessera de la soutenir de son éloquence facile et séduisante, quand la science dépouillée de ces secours étrangers, n’offrira plus qu’un squelette hideux, qu’un travestissement bizarre, qu’un extérieur repoussant, comptera-t-on le même nombre d’auditeurs ? "

 

Et naturellement, il ne donne pas, lui non plus, beaucoup de chances de survie à la nomenclature :

 

"Voulez vous savoir ce que je prévois avec regret ? Dans peu d’années les amphithéâtres seront déserts, & la science entièrement négligée. Les gens du monde pourront-ils accommoder leurs oreilles à l’étrange dissonance & à la barbarie des termes ? Auront-ils le courage de surmonter cette barrière qui va séparer la science de la Chimie de toutes les autres ? Les personnes studieuses qui, par goût, se destinent aux sciences, mais qui ne sont encore déterminées par aucune, préfèreront-elles une science qui n’aurait plus de rapport avec aucune autre, & que quelques personnes réunies peuvent au premier instant changer à ne la rendre plus reconnaissable ? "

 

A son tour, un professeur de Chimie de Madrid témoigne : "La nouvelle Nomenclature choque trop les oreilles espagnoles pour qu’elles puissent s’y accommoder. La langue espagnole ne se prête pas à de pareilles innovations. Aussi un apothicaire de Madrid qui voulut employer le mot carbonate, a été surnommé docteur Carbonato…"

 

Après de telles charges, qui oserait encore défendre la réforme proposée et qui parierait sur l’avenir des mots carbone, carbonate, carbonique ?

 

Et pourtant carbone, carbonique et carbonates se sont imposés.


XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


De l’eau et du dioxyde de carbone : enfin Lavoisier sait de quoi se nourrissent les plantes.

 

Dans un mémoire, daté de 1786 sur "la décomposition de l’eau par les substances végétales et animales", Lavoisier interprète à son tour les expériences de Ingenhousz et de Senebier sur la respiration diurne des plantes. Son vocabulaire nous est plus familier. Le phlogistique est oublié. L’air déphlogistiqué est devenu l’oxygène, l’air fixe a pris le nom d’acide carbonique (notre dioxyde de carbone).

 

Les différentes analyses qu’il a réalisées lui ont montré que trois corps essentiels composent les plantes : le carbone, l’oxygène et l’hydrogène. Si le carbone et l’oxygène peuvent provenir du dioxyde de carbone, l’hydrogène ne peut provenir que de l’eau.

 

"il ne peut y avoir de végétation sans eau et sans acide carbonique, affirme-t-il, ces deux substances se décomposent mutuellement dans l’acte de la végétation".

 

Ainsi se trouvent rassemblées les découvertes de Van Helmont sur le rôle de l’eau et celles des chasseurs d’air depuis Hales. Quant au mécanisme du phénomène, il devient limpide :

 

"l’hydrogène quitte l’oxygène pour s’unir au charbon, pour former les huiles, les résines, et pour constituer le végétal ; en même temps, l’oxygène de l’eau et de l’acide carbonique se dégage en abondance, comme l’ont observé MM. Priestley, Ingenhousz et Senebier, et il se combine avec la lumière pour former du gaz oxygène".


XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX


 

Aujourd’hui.

 

La chlorophylle, récepteur de la lumière solaire et première étape du processus de la photosynthèse, a été isolée en 1816 par Joseph Bienaimé Caventou et Joseph Pelletier tous deux pharmaciens et chimistes. Nous ne donnerons pas ici la description détaillée de la réaction, extrêmement complexe, de photosynthèse. Son bilan peut s’écrire :

 

6CO2 + 12H2O + lumière → C6H12O6 + 6O2+ 6H2O.

 

La formule C6H12O6 est celle des molécules de glucose dont les polymères sont, en autres, l’amidon et la cellulose composants des organismes végétaux. L’intuition de Lavoisier s’est donc vérifiée à ceci près que les chimistes qui lui ont succédé ont montré que les molécules de dioxygène dégagées dans l’air provenaient uniquement de l’eau.

 

N’oublions pas cependant le phénomène que Lavoisier a omis d’étudier : la plante ne fait pas que se nourrir. Elle "respire" également par un mécanisme qui s’apparente à la respiration animale et dont le bilan de la réaction est inverse. Le glucose accumulé et l’oxygène de l’air absorbé réagissent en fournissant à la plante l’énergie et les matériaux nécessaires à son fonctionnement et à sa croissance tout en libérant du dioxyde de carbone.

 

Le bilan de l’absorption de CO2 par la photosynthèse et d’émission de O2 reste cependant positif. Globalement les plantes sont donc des "pièges" à dioxyde de carbone et des sources d’oxygène.


 

pour aller plus loin voir :

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une
chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole. Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

 

Voir aussi :

 

Une brève histoire du CO2. De Van Helmont à Lavoisier.

Partager cet article
Repost0
29 novembre 2013 5 29 /11 /novembre /2013 13:25

Les piles ont un mérite : elles fournissent un courant de façon continue. Elles ont aussi un inconvénient : elles ne permettent pas l’accès à des tensions de plusieurs milliers de volts.

 

Or la médecine reste fidèle à ces chocs électriques qui, même quand ils ne guérissent pas, sont l’affichage d’une supposée haute technicité.

 

C’est pourquoi les machines électrostatiques ont sans cesse été perfectionnées pendant tout le 19ème siècle. La machine de Wimshurst en est le plus bel aboutissement. Dans les années 1880 elle se répand dans tous les cabinets des médecins aussi bien que dans les laboratoires des universités et des lycées où nous la trouvons encore aujourd’hui.


Machine de Wimshurst, dans son coffret, munie de ses accessoires.
La Nature. Revue des sciences et de leurs applications aux arts et à l’industrie. 1887.


La bobine de Ruhmkorff.

 

Un nouvel instrument va bientôt lui faire concurrence : la bobine de Ruhmkorff. Celle-ci est le résultat d’efforts dispersés.

 

On prête généralement à Joseph Henry, professeur à l’Académie d’Albany, la première observation, en 1832, d’étincelles de rupture. Le montage qui l’amène à cette observation est constitué de deux fils longs de plusieurs mètres reliés à quelques éléments de pile. Le circuit est fermé par un godet empli de mercure. Si l’un des fils est brusquement retiré de ce godet, une étincelle éclate entre le mercure et le fil.

 

Tout se passe comme si le courant faisait preuve d’inertie et tendait à se maintenir après l’ouverture. Henry désigne ce phénomène par le terme "d’extra-courant de rupture". Il constate que celui-ci est encore plus violent quand le fil est enroulé en spires jointes et en particulier quand on introduit un noyau de fer doux dans l’axe de ces spires. Faraday, un an plus tôt, avait découvert l’induction d’un circuit sur un autre circuit proche lors de l’ouverture ou de la fermeture du premier.

 

Henry venait de découvrir le phénomène "d’auto-induction", induction d’un circuit sur lui-même.

 

L’apparition d’étincelles, preuve de l’existence d’une haute tension entre le mercure et le fil lors de la rupture, intéresse les médecins et fabricants de matériels scientifiques. On prête à Charles Grafton Page, médecin et compatriote de Henry, la fabrication d’un "autotransformateur" constitué d’une seule bobine dont une première partie, alimentée par les piles, constitue le primaire et où le secondaire, où se produisent les étincelles, est constitué par le reste de la bobine.

 

Bientôt les deux circuits seront séparés et la bobine prend sa forme plus élaborée entre les mains de Heinrich Daniel Ruhmkorff (1803-1877).

 

Portait de Ruhmkorff. La Nature 1878.

 

Né en Allemagne, Ruhmkorff vient à Paris pour y apprendre et y exercer le métier de fabricant d’instruments scientifiques de précision. Son chef d’œuvre est cette fameuse bobine d’induction à laquelle sera bientôt associé son seul nom, faisant oublier du même coup tous ceux, nombreux, qui y ont apporté leur contribution.

 

Louis Figuier, dans les Merveilles de la Science, en donne la description suivante :

 

" Le corps de la bobine, S, est en carton mince, et les rebords en bois vernis de gomme laque. Sur le cylindre de carton, se trouvent enroulées deux hélices de fil de cuivre, parfaitement isolées. Une de ces hélices est composée de gros fil (d’environ 2 millimètres) ; l’autre, de fil très fin (dans un autre passage Louis Figuier dira qu’il peut atteindre jusqu’à 30 kilomètres de longueur). Les bouts de ces quatre fils sortent des rebords de la bobine par quatre trous a, b, c, d. Les extrémités du fil fin se rendent aux boutons A, B, montés sur des colonnes de verre. Les extrémités du gros fil viennent aboutir à deux petites bornes métalliques, qui communiquent avec les deux pôles de la pile.".


"La bobine de Ruhmkorff."
"Louis Figuier, Les Merveilles de la Science".


Une pièce importante du montage est le "vibreur" qui établit et supprime le courant au primaire. Celui-ci, mis au point par Foucault, comporte une lame portant deux contacts qui plongent dans deux godets de mercure qui ferme le circuit alimentant un électroaimant. Celui-ci attire la lame et ouvre le circuit. Cette ouverture ramenant la lame à sa position initiale, il s’en suit une vibration entretenue qui peut atteindre plusieurs centaines d’ouvertures et de fermetures par seconde. Un condensateur, évitant les étincelles de rupture au primaire, complète le montage.

 

La puissance obtenue est extraordinaire. Des étincelles de plus de trente centimètres peuvent être obtenues au secondaire. Les commotions produites sont d’une extrême violence. Des expérimentateurs peu prudents le vérifieront à leurs dépens. Un collaborateur de Ruhmkorff se trouve ainsi renversé par une décharge qui le laisse dans un état d’extrême faiblesse pendant plusieurs jours. Seules des batteries de bouteilles de Leyde avaient, jusqu’à présent produit de tels effets. Mais, avantage de la bobine de Ruhmkorff sur les bouteilles de Leyde, celle-ci ne se décharge pas et produit des hautes tensions permanentes.

 

Les expériences se multiplient. Des blocs de verre de 10 centimètres d’épaisseur sont percés par l’étincelle. Les métaux et les terres les plus réfractaires y sont fondus.

 

Application utile autant que spectaculaire : la bobine peut enflammer plusieurs explosifs de façon simultanée rendant ainsi les travaux des mines et des carrières plus efficaces (la dynamite a récemment été brevetée par Alfred Nobel). Cette pratique vient, hélas, enrichir l’arsenal guerrier et la bobine est célébrée pour avoir permis, en octobre 1860, de faire sauter le fort de Peï-ho pendant l’expédition de Chine et la "guerre de l’opium" qui se termina par le sac du Palais d’été.


Explosion du fort de Pë-ho

"Louis Figuier, Les Merveilles de la Science".


Plus pacifique est l’utilisation de la bobine par les médecins qui en font la nouvelle thérapie à la mode. Mais la bobine se donne aussi en spectacle. On se souvient de l’abbé Nollet faisant sauter en l’air une compagnie de soldats des gardes françaises au moyen de la bouteille de Leyde. A un siècle de distance les démonstrateurs forains des ponts de Paris renouvellent le spectacle.


Démonstration de choc électrique par la bobine de Ruhmkorff
La Nature. Revue des sciences et de leurs applications aux arts et à l’industrie. 1889.


Juste reconnaissance, Ruhmkorff se voit attribuer, en 1864, le prix Volta. Les 50 000 francs de ce prix, créé par Napoléon après la visite de Volta à Paris pour récompenser la meilleure application de la pile, n’avaient encore jamais été attribués. Rétabli en 1852 par Napoléon III, Ruhmkorff est le premier à le recevoir.

 

Son générateur à haute tension, qui figure dans le moindre laboratoire, est aussi une source de recherches nouvelles que les plus habiles et les plus volontaires sauront mettre à profit.

 

On lui devra, entre autres, la découverte des ondes hertziennes, des rayons cathodiques puis des rayons X.

___________________________________________________________

Sur Ruhmkorff voir aussi dans la Nature 1878 premier semestres page 97

http://cnum.cnam.fr/GIFS/4KY28.10/0101.T.97.966.1417.gif


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.

Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté
des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

 

XXXXXXXXXXXXXXX


Quand la bobine inspire le théâtre.

 

Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 20:54

A class of the lycée de l’Elorn, in Landerneau, Brittany, France, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages


Northern Finistère, in Brittany, is not really welknown for its chemical industry. Yet, since the 17th century, that is to say when chemistry started to develop, a chemical industry was carried out, non stop, around seaweed.

 
In the past

 

The industry of « soda » (sodium carbonate) first developed. This product is extracted from ashes of dried seaweed. It is necessary to make glass and soap. That activity came to an end at the end of the 18th century when new ways were discovered.

 

It resumed in 1829 after Bernard Courtois, the chemist, had discovered in 1812 a new an useful product in seaweed ashes : iode. It is mainly used in photo-making and medecine. Its production in Brittany stopped in 1952, because of the competition of iodine, extracted from nitrates in Chili.

 
Today

 

Today, the extraction of alginates contained in big laminaria has taken over. In 1883, Edward Stanford isolated the algine of seaweed, later Axel Kefting, a Norvegian, extracted algine acid. Its production on a large scale started in 1930. Brittany produces about 2000 tons in its factories in Lannilis and Landerneau. Alginates are thickening and stabilying agents, that are used both in the pharmaceutical industry and food industry, or in that of paper, colouring or moulding products.

 

The use of seaweed in food, pharmacy or cosmetics is less known., though worthy of interest. Many laboratories in Finistere work in that field for « top quality » products, often meant for export.

 

The seconde C of the lycée de l’Elorn, in Landerneau, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages.


 
Our work on the seaweed industry


The story of the seaweed industry, that of soda and iodine, is made lively thanks to the museum of seaweed gatherers in Plouguerneau, which supplied us with the ash from ovens, operated for shows during the summer, so as to analyse it.

 

The « Centre for the Study and Promotion of Seaweed (C.E.V.A) » in Pleubian looks for the properties of seaweed and implements new uses. We contacted them for the food applications (the making of a « flan »)

 

Today, many factories work on seaweed. It’s the case for DANISCO and TECHNATURE, which agreed to help us.

 

DANISCO deals with laminar collected in North-Finistere, it’s one of the largest European producers of alginates. We visited the factory. It supplied us with refined alginate of sodium for our experiments.

 

TECHNATURE packages alginates and other seaweed extracts, to make casting products, cosmetics, or food products. Its customers are in the U.S.A, as well as in Japan, Spain, or France. The company allowed us to test its products and to prepare new ones, following its advice (face creams).

 

Our school syllabus is well adapted to a study of seaweed. In a first part, the study of ionic compounds can be made on the seaweed ash. In a second part, the study of organic molecules can be made on alginates. The appliances are varied and entertaining.

 

We have divided the form into four groups, each responsible for a part of the work and for the links with one of the companies concerned.

 

- Seaweed ashes. Analysis, extraction of iodine.(in connection with the museum of the seaweed gatherers)

 

- Extraction of alginates. (in connection with Danisco company)

 

- The use of alginates for castings . (with Technature).

 

- The making of a new face cream.(with Technature)

 

- The making of a flan (a pudding) (with C.E.V.A Pleubian)

 

- Translations into English ( documentation and reports).

 

- A video report on our project ( and the making of a poster).


 
Seaweed in the past
 
Treating the « soda loaves »

The burning of seaweed

Each year, the museum of seaweed gatherers, in Plouguerneau, on the Northern coast of Finistère organises the burning of seaweed in its old furnaces so as to get ashes with a large amount of soda. We went on the spot, to extract a « soda loaf », in a compact shape. The hot cinders seem to be melting, and are cast in the cells of the furnace, while they are cooling.

 
The mechanical processing of the ashes :

We first roughly broke the « soda loaf » with a hammer. We, then, crushed the ashes in a mortar with a pestel. Then, we sifted them, to obtain a thin powder.

 
The washing of the ashes

We left to boil 20g of the ashes in 100 cm3 of water for about 5 min. We filtered it. A solid deposit of about 9g was left (weighed after drying). The solution contains soluble substances, mainly carbonate and iodur ions.


 
The search for carbonate ions

The carbonate ions, CO32- , represent the main active principle of soda and gives it its basic character.(in the present the word « soude » ,in French, refers to sodium hydroxide).

Experimental file

 

measure of the pH using pH paper and pHmeter : The solution has a pH=11, so that, its basic character is obvious.

 

Characterisation of the CO32- ions :

 

(first method) : action of the calcium chlorur. You get a precipitate of insoluble calcium carbonate according to the reaction :

 

Ca2++ CO32- -> CaCO3

 

(second method) : action of the concentrate chlohydric acid. You can notice an important emission of carbon dioxide, according to the reaction :

 

CO32-+ 2H+-> CO2 + H2O

 
The extraction of iodine

 

We extracted iodine from the solution, through the action of Hydrogen Peroxide H2O2 in acid surrounding.

 

experimental File

 

- Acidification of the solution using concentrated hydrochloric acid : The first result of the acidification of the solution is to let out carbon dioxide coming from carbonate ions.

 

- Iodine is let out using hydrogen peroxide : The hydrogen peroxide oxidises iodide ions, iodine appears and turns the solution brown. One can also see a light precipitate of iodine.

 

- Getting the gassy iodine to appear by heating the solution : a light heating lets out purple vapours of iodine.

 

 

Measuring the iodine : this experiment is part of the curriculum of the 1ere S form, so we asked them to measure the iodine in the solution. The iodine is measured with the thiosulphate of sodium. They found 1,29g of iodine in 100g of ash.


Seaweed Today

 
A visit to two factories processing alginates

 

In the Landerneau area, two firms process seaweed for theit alginates. The Danisco firm has specialized in extracting alginic acid from raw seaweed. The Technature firm uses alginates to elaborate finished goods.

 

Danisco :

 

Mr Pasquier, the manager, conducted our guided tour of the factory. Every year the plant (9000 m2 of workshops and laboratories) processes 6000 tons of dried seaweed to produce 3000 tons of alginates.

 

The alginates supply numerous industries all over the world. Used as binders and thickeners, they can be found in inks, creams, glues, rubbers, toothpastes. As gelling agents they come in useful to make jams, custards, impression powders. These products ar marketed under the brand name SOBALG.

 

The Danisco firm provided us with a smal quantity of purified alginic acid so that we could study its properties. The danisco manager also explained to us a great length how they extract the alginates from the seaweed.

 

We conducted that experiment in our scholl laboratory.

 

Technature :

 

We were welcomed by the manager, Mr Le Fur, and the commercial manager, Mr Winckler (today manager of Lessonia). The firm packages the alginates for its different uses : casts, cosmetics, foodstuffs.

 

The firm has clients all over the world (Euope, the USA, Japan...). The breton products ar renowned for their quality and their purity.

 

The firm gave us some casting alginates so that we could make a cast.

 

They also offered us to elaborate a new "beauty mask". We will give more details about these two experiments in the following pages.


 
How to create a beauty mask

 

Technature entrusted us with the creation of a beauty mask. It is a new product the company wishes to launch. It’s a product made with tropical fruits, based on casting alginate.

 

The formula of the « tropical fruit » mask.

 

 

Product used Quantity properties
Bioprunte (alginate of sodium, sulfate of calcium, salt of phosphorus, neutral charge of diatomees earth.) 30g When in close contact with the skin, it creates a film. The mask sets into action active agents, and also has a mechanical effect ( it eliminates the dead cells of the skin).
Pinaple Pouder

Papaye powder
0,15 g

0,15 g
The cells of the skin are constantly replaced (every one to two months). With age, the process slows down, and the dead cells accumulate, which cause the skin to thicken. The dead cells are retained by a ciment of proteins ; it has to be hydrolysed to eliminate the dead cells.
Papaye contains papaïn, an enzym, which acts on the hydrolysis of proteins. Pinaple contains bromeline which plays the same role.
yellow pigment n°5
yellow pigment n°6
0,03g
0,03g
Naturel pigments are used to obtain a pleasant colour of fruit.
Flavours : fruit de soleil, papaye 0,015g They are natural extracts from fruit, with very concentrated effects.
 
Our work

 

First, we tested an alginate mask, with no additive, so as to watch the « casting » effect of that product.
 

We then tried several formulas, by varying the colours and flavours.
At last, we tested the resulting cast.

 
How to operate

 

Dose : 30g of powder for 100g of water

 

Dilution of the product : Pour the water quickly on the powder. Mix briskly until you get a smooth paste.
Important : water must be at 20°C

 

How to apply it : Apply it immediately over the face, avoid the eyes. It sets after about six minutes.

 

It takes about 15 mn to use

 

 

Résult

 

your skin is finer

your complexion brighter


Agar-Agar and the formation of colloids

 

Agar-Agar is a Malaysian word. That product used in Malaysia, was also often used in Japon and the Far East. Agar-Agar comes from various seaweed, in particular from the gelidum species. Those seaweed, after frequent washings, are dried and boiled. The colloid we get is then dehydrated and turned into powder.

 

Agar-agar has a stong gelling power. If you add two gramms into a quarter of a litre of water, and boil it for five minutes, you get a hard gel, if tou leave it to cool.

 

At the biology laboratory, Agar-Agar is used to prepare nutrient supports for plants.


At the chemistry laboratory, it can be used to prepare conducting electrolytic bridges in the study of batteries.

 

We prepared Agar-Agar colloid, coloured with helianthine. Agar-agar is also used to prepare pudding, but for that we used a seaweed from Brittany, Pioka, which contains carrageenans.

 

Agar-Agar : an excellent gelling agent extracted from red algae


« Pioka » and carrageenans

 

Pioka is the Breton name of a seawweed that is also called sea « lichen ». It is collected at every low tide, its high price attracts seasonal pickers. Its scientific name is chondrus crispus. The active principle extracted from it is made up of carrageenans. It has a real gelling power in milk. In the traditionnal way, it is used by people along the Northern coast of Brittany to make puddings named « flans ».

 

The préparation of seaweeds.
 

After the gathering of seaweeds, they are spread on the dunes, and dried by often turning them. They can be also washed with fresh water to clear them of salt at various remains. At the end of treatment, the seaweeds are white and dry, and can then be preserved.

 

Just before use.
 

One can improve the rising process with several soakings ans rinsings. The seaweeds must completely get rid of their « sea » smell.
 

Seaweeds today, in food.

 
A recipe of pioka pudding

 

We have prepared the recipe of this dessert. It was given to us by an elderly person from the Brignogan area in North-Finistere. She herself had seen her parents make it.

 

N.B : carrageenans of pioka easily give a gel with milk, it gives no gel with water. For that, on should use the agar-agar we also tested (it is also used for puddings).

 
Our recipe

 

Take a handful of dried seaweeds per quarter of a litre of milk. Rinse them. Make them boil for five minutes stirring them. Filter the hot milk with a strainer or a skimming ladle. Make it boil again for five minutes with the flavour choose, either chocolate or vanilla ( for exemple, three sponfils of Nesquick per quarter of litre of milk). Pour into bowls. Leave it cool and place it into a fridge.


 
Conclusion

 

When we started working on this project, we were not aware chemistry had been concerned with seaweed for so long.

 

We now, know, that here, people make products that are used all over the world.

 

Our impression is that the chemists who do that work really enjoy it, they extract from nature the best it can offer. The issue will be to increase the stock of seaweed and no doubt to plan its culture.

 

As far as our school project is concerned, it developed without our knowing it. The theorical study, the search for information, the experiments at the laboratory, the visit of factories, the elaboration of a new product, the test of an old recipe...all that was part of our project.

 

By writing this project, we intend to keep track of our work.

 

 

Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 20:42

" Théorie électromagnétique de la lumière".

 

Tel est le titre du Chapitre XX du "traité d’électricité et de magnétisme" de Maxwell.


 


"En plusieurs passages de ce Traité", écrit-il, "on a tenté d’expliquer les phénomènes électromagnétiques par une action mécanique transmise d’un corps à un autre par l’intermédiaire d’un milieu qui remplirait l’espace compris entre les corps. La théorie ondulatoire de la lumière suppose aussi l’existence d’un milieu. Nous avons maintenant à montrer que le milieu électromagnétique a des propriétés identiques à celles du milieu où se propage la lumière".

 

Ce milieu, généralement désigné sous le nom d’éther en référence à la matière mythique supposée emplir la sphère céleste, a déjà fait l’objet d’une longue traque.

 
L’éther lumineux

 

Le Hollandais Christiaan Huyghens (1629–1695), est considéré comme le premier défenseur d’une théorie ondulatoire de la lumière. Dans le Traité de la lumière qu’il publie en 1678 il présente la lumière comme une vibration qui se propage sphériquement dans un milieu qu’il désigne sous le nom d’éther et dont la propriété essentielle serait d’être le support de l’onde lumineuse.


Les ondes lumineuses de Huyghens.


 

Dans son Traité d’optique publié en 1704, Newton fait un autre choix : celui de considérer la lumière comme composée de particules émises par la source lumineuse et se propageant dans un espace vide. C’est sa théorie qui sera retenue par la plupart des savants jusqu’au début du 19ème siècle.

 

Le premier à la contester sérieusement est un médecin anglais, Thomas Young (1773-1829). L’observation des interférences lumineuses lui confirme son interprétation de la lumière comme une onde.

 

L’expérience désignée aujourd’hui sous le terme de "fentes d’Young" donne l’occasion d’un montage classique dans les programmes d’enseignement de la physique. Un faisceau lumineux tombe sur un écran opaque percé de deux fentes parallèles, les faisceaux diffractés sortant de ces fentes sont reçus sur un écran blanc et dessinent des franges alternativement claires et sombres.


Expérience des "fentes d’Young".


 

Cette expérience, présentée aujourd’hui comme la preuve même de la nature ondulatoire de la lumière, n’a, cependant, pas su convaincre les compatriotes de Young : on ne s’attaquait pas impunément à la théorie de Newton !

 

La contestation la plus sérieuse viendra de France et fera connaître Augustin Fresnel.

 
Fresnel.

 

Ingénieur, issu de l’Ecole Polytechnique, Fresnel a été nourri des théories newtoniennes de la lumière. Pourtant son intuition le porte à préférer une interprétation ondulatoire. Son premier dispositif est un simple trou dans un volet éclairant un cheveu : des franges alternativement claires et sombres apparaissent sur l’écran placé derrière l’obstacle.

 

Fresnel est rompu aux calculs. En faisant la supposition que les vibrations lumineuses ont la forme mathématique la plus simple possible, la sinusoïde, et que d’autre part elles s’additionnent quand elles sont "en phase" et se retranchent quand elles sont "en opposition de phase", il réussit à interpréter mathématiquement l’existence des franges alternativement claires et sombres. Il présente ses résultats à l’Institut en octobre et novembre 1815. Ceux-ci sont combattus par les partisans de Newton, en particulier Biot et Laplace.

 

Il est vrai que la théorie laisse des zones d’ombres. Pour expliquer la "polarisation" de la lumière, Fresnel doit considérer que les vibrations de l’éther sont transversales et non pas longitudinales comme peuvent l’être, par exemple, les ondes sonores dans l’air. La propriété d’un dispositif polarisant, un cristal de calcite par exemple, pourrait, en effet, s’expliquer par sa capacité à ne laisser passer que les vibrations effectuées dans une seule des directions perpendiculaires au rayon lumineux.

 

L’explication par des ondes transversales est élégante mais l’existence de telles ondes exige que l’éther soit un milieu matériel particulièrement rigide. Cette rigidité est incompatible avec l’extrême fluidité qui lui est généralement attribuée. Il faut en effet que l’éther, dans lequel baigne l’Univers, ne freine pas l’éternel mouvement des étoiles dont il nous transmet la lumière. Rigide et fluide en même temps, tel devrait être l’éther. Difficile équation.

 

Rien d’étonnant donc à ce que les adversaires de la nature ondulatoire de la lumière ne se laissent pas aussi facilement convaincre : cet éther qui serait si commode sur le plan mathématique ne peut se décrire de façon physiquement rationnelle.

 

C’est la mesure de la vitesse de la lumière dans les milieux transparents par Foucault et Fizeau qui viendra mettre fin au débat vingt ans après le mort de Fresnel. En effet cette mesure prouve que, comme le prévoit la théorie ondulatoire, la lumière est ralentie en les traversant alors que la théorie de Newton prévoyait le contraire.

 

Pour autant le problème de la nature de l’éther lumineux reste entier.

 
L’éther électromagnétique et la nature de la lumière.

 

Le mot "éther" est bien commode. On l’utilise à chaque fois qu’il faut meubler l’espace d’un "fluide", d’une "essence" propre à conforter une nouvelle théorie physique. A l’éther lumineux la science électrique doit elle ajouter un éther électrique ?

 

"Remplir l’espace d’un nouveau milieu toutes les fois que l’on doit expliquer un nouveau phénomène ne serait point un procédé bien philosophique », nous dit Maxwell. Aussi se fixe-t-il un objectif : montrer que l’éther lumineux et l’éther électromagnétique n’en font qu’un et pour cela déterminer la vitesse qui devrait être celle d’une onde électromagnétique se déplaçant dans ce milieu.

 

"Si, dit-il, l’on trouve que la vitesse de propagation des perturbations électromagnétiques est la même que la vitesse de la lumière, et cela, non seulement dans l’air, mais dans tous les autres milieux transparents, nous aurons de fortes raisons de croire que la lumière est un phénomène électromagnétique."

 

Pour parvenir à cette conclusion il emprunte deux voies, partant de deux points apparemment très éloignés :

 

-  une réflexion sur les unités électriques.

 

-  Une description mathématique des champs électriques et magnétiques débouchant sur l’équation de propagation d’une onde électromagnétique dans un milieu non conducteur.

 
Construire un système cohérent d’unités électriques.

 

Maxwell n’est pas simplement ce savant écossais qui, à l’âge de 34 ans, se retire pendant six ans dans son manoir de Glenlair dans le comté de Galloway au sud de l’Ecosse pour y rédiger son Traité d’électricité et de magnétisme. Il est aussi, comme beaucoup de ses confrères britanniques, ce spécialiste recherché par les entrepreneurs et ingénieurs engagés dans l’aventure des applications industrielles de l’électricité.

 

Il est l’animateur, au sein de "l’Association Britannique pour l’avancement des sciences", du comité chargé de la définition d’une unité standard de résistance. Un sujet qui s’inscrit dans la définition d’un système général d’unités électriques dont nous aurons, plus tard, l’occasion de parler.

 

Maxwell, Thomson et l’ensemble des électriciens britanniques décident d’adopter pour l’électricité les seules unités de la mécanique. Les unités de masse, de longueur et de temps seront donc à la base des unités électriques.

 

Mais un problème apparaît alors. Si on prend pour base les lois de l’électrostatique, on trouve un système d’unités différent de celui qui prendrait pour base les lois de l’électromagnétisme.

 

L’exemple de la charge électrique est particulièrement parlant. Sa valeur, que l’on désignera par Qm quand elle est mesurée dans le système électromagnétique, a une dimension, et donc une unité, différente de celle de la charge Qe mesurée dans le système électrostatique. Mais, observation particulièrement intéressante, il se trouve que le rapport Qe/Qm a la dimension d’une vitesse (exprimée en m/s ou en cm/s suivant les unités utilisées).

 

Une vitesse semble donc lier les deux systèmes électromagnétiques et électrostatiques !

 

 

Au moment où Maxwell écrit son Traité cette vitesse a été déterminée numériquement. Maxwell décrit la méthode utilisée par Weber et Kohlrausch. Pour résumer : il s’agit de décharger une "bouteille de Leyde" (nous avons parlé de ce premier condensateur) dont la charge aura été mesurée en unités électrostatiques dans un circuit comprenant un galvanomètre "balistique" mesurant la charge en unités électromagnétiques. Le rapport Qe/Qm donne 3,11.108 m/s.

 

Maxwell lui-même met au point un nouveau dispositif, une "balance", qui lui donne un rapport égal à 2,88.108 m/s.

 

En 1848, H.L Fizeau, en utilisant une roue dentée tournant à grande vitesse avait mesuré la vitesse de la lumière pour laquelle il avait trouvé la valeur de 3,15.108 m/s. Une mesure ultérieure faite par Foucault donne 2,98.108m/s.

 

Une telle proximité entre la valeur du quotient Qe/Qm et celle de la vitesse de la lumière ne pouvait manquer d’attirer l’attention d’un physicien comme Maxwell, déjà persuadé de la nature identique de la lumière et de l’onde électromagnétique.

 
Etablir les équations de propagation d’une perturbation électromagnétique.

 

Revenons à l’éther et aux champs électriques et magnétiques. Dans sa volonté de convaincre, Maxwell en a donné une image mécanique faite de "cellules" en rotation.

 

Ces "cellules", enfilées comme des perles le long des lignes de champ magnétique, sont mises en rotation par le passage d’un courant dans le conducteur qui induit le champ. De l’énergie cinétique est ainsi créée et transmise à travers l’éther. Sous l’action de cette rotation, les cellules s’aplatissent, comme sous l’effet d’un force centrifuge, provoquant ainsi une tension le long des lignes de champ et donc la transmission d’une énergie potentielle.

 

Cette image fait sourire comme feront peut-être sourire les "trous de vers" et les "cordes" dont la physique moderne peuple notre Univers contemporain. Par contre les "équations de Maxwell" sont toujours considérées comme l’un des socles de la physique.

 

Nous ne les détaillerons pas ici. Disons simplement que Maxwell adapte à son étude de l’éther, les outils mathématiques élaborés par Laplace, Poisson ou Hamilton qu’il cite au début de son traité. Leurs équations ont été particulièrement efficaces pour l’étude de la propagation des ondes dans les milieux élastiques. Les deux coefficients qui interviennent dans la vitesse de ces ébranlements (l’élasticité du milieu et sa masse volumique) trouvent leur équivalent, pour l’éther, dans :

 

-  son "pouvoir spécifique pour l’induction électrostatique ", désigné par Maxwell par la lettre K et que nous désignons aujourd’hui par la lettre ε.

 

-  sa "perméabilité" magnétique qu’il désigne par µ.

 

Il s’en suit une équation de propagation semblable à celle obtenue pour un milieu élastique et dont la solution amène à une vitesse de propagation, v, telle que v2 = 1/(K.µ).

 

Or il se trouve que l’expression mathématique de cette vitesse v de propagation de l’onde est également celle du rapport Qe/Qm dont nous avons vu que la valeur est, justement, très proche de celle de la lumière.

 

Même s’il se montre prudent, Maxwell ne doute pas qu’il tient la preuve de l’identité de la lumière avec une onde électromagnétique :

 

"Il est manifeste que la vitesse de la lumière et le rapport des unités sont des quantité de même ordre de grandeur ; mais, jusqu’à ce jour, on ne saurait dire qu’aucune des deux ait été déterminée avec assez de précision pour que l’on puisse affirmer que l’une est plus grande que l’autre. Il est à souhaiter que de nouvelles expériences déterminent, avec plus de précision, le rapport de grandeur de ces deux quantités.
En attendant, notre théorie, qui affirme l’égalité de ces deux quantités et qui donne une raison physique de cette égalité, ne se trouve certainement pas contredite par la comparaison de ces résultats, tels qu’ils sont"

 

En conclusion du chapitre de son traité consacré à sa Théorie électromagnétique de la lumière, Maxwell propose même le schéma d’une onde plane transversale. Ce schéma illustre encore nos manuels.

 

 

Les contestations ne manqueront pourtant pas. William Thomson lui-même, devenu Lord Kelvin, rejette avec mépris cet éther rigide et fluide à la fois. Il faudra la découverte des ondes électromagnétique par Hertz pour que les équations de Maxwell soient reconnues à leur juste valeur. Mais leur auteur ne sera plus là pour savourer son triomphe.


On peut trouver un développement de cet article dans un ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"


Voir aussi :

Quand Faraday découvre l’induction électromagnétique.

 

______________________________________________________

Voir aussi :

La Lumière et l'électricité d'après Maxwell et hertz par Poincaré

 

_____________________________________________________________________

 

Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 20:30

Stockholm, 2001 : un imaginaire Comité Nobel pour la chimie décide de décerner le premier " rétro-Nobel " de l’histoire à l’inventeur de l’oxygène. Mais à qui doit revenir ce titre ?


Oxygène

 

 

Carl Djerassi, Roald Hoffmann

1777, à la cour de Suède : le roi Gustave III réunit en une rencontre non moins fictive le Français Lavoisier, l’Anglais Priestley et le Suédois Scheele, accompagnés de leurs épouses, et leur demande de faire la preuve de leur découverte. Avec virtuosité, fantaisie et humour, se répondent alors scènes présentes et passées, discussions scientifiques et joyeuses mascarades, expérimentations et basses manœuvres, les trois savants ne reculant devant rien pour s’attribuer l’antériorité de la découverte, pas plus que leurs clones du XXe siècle pour pousser en avant leur propre champion.

 

PDF - 811 ko
_____________________________________________________________________
 

Kislorod

 

 

Oxygène d’Ivan Viripaev, l’enfant terrible de la nouvelle dramaturgie russe, monté par le Bulgare Galin Stoev, est un spectacle hors norme qui ne cesse, depuis sa création en français à Bruxelles en septembre 2004, de tourner sur les scènes européennes les plus dynamiques.
 

Ce texte (Kislorod en version originale), créé à Moscou en octobre 2003 par le metteur en scène Viktor Ryjakov, a provoqué un choc.. . Très rapidement, Kislorod devient un des spectacles les plus fréquentés de Moscou, fait le tour des festivals internationaux et remporte de nombreux prix en Russie.
 

Disons-le d’emblée, Oxygène est une oeuvre déroutante. Son texte est structuré de façon inhabituelle, la mise en scène et le jeu tiennent davantage de la performance que ce que l’on associe habituellement à l’idée de théâtre et ce spectacle court-circuite les rapports que l’on établit communément entre la morale, l’ intime, le politique, le religieux, l’actualité, l’Histoire et le discours artistique. Mais passé le premier choc de ce théâtre qui ne ressemble à rien, on y trouve une représentation d’une justesse éblouissante de ce qu’inflige à nos âmes le chaos dans lequel le monde actuel nous plonge, qu’on le veuille ou non. Pas surprenant que la figure tutélaire d’Oxygène soit Griboïedov, passé à l’histoire du théâtre russe pour sa comédie Le Malheur d’avoir trop d’esprit.
 

Le texte, d’abord. Oxygène est divisé en dix « compositions » (comme l’a dit l’auteur : « comme des chansons, mais avec des mots à la place des notes »), chacune avec son titre, la plupart avec couplets et refrain : Danses, Sacha aime Sacha, Non et oui, Le rhum moscovite, Le monde arabe, Comme sans sentiments, Amnésie, Les perles, Pour l ’essentiel et Un baladeur sur les oreilles. Chacune s’ouvre par une injonction religieuse comme « Tu ne tueras point; celui qui tuera sera jugé » ou encore « Tu ne commettras pas l’adultère; quiconque regarde une femme avec convoitise a déjà commis dans son coeur l’adultère ». Ces compositions évoquent une histoire entre Sacha-Alexandre et Sacha-Alexandra. Sacha l’homme vient d’une ville de province, Serpoukhov, « où aujourd’hui encore on tourne sans décor des films sur la Révolution » et « où en plein jour les gens tombent dans les rues sous l’effet de l’alcool ». Il a rencontré à Moscou Sacha femme, une flamboyante rousse de la nouvelle bourgeoisie russe. Après qu’ils soient devenus amants, Sacha homme est retourné à Serpoukhov et a tué son épouse à coups de pelle avant de l’enterrer dans le potager avec l’aide de ses amis.
 

Le recours à un fait -divers sanglant comme point de départ est analogue à la démarche de Dostoïevski pour Crime et Châtiment, un auteur et une oeuvre auxquels Viripaev glisse des allusions transparentes dans Oxygène. Ce recours est semblable parce que Viripaev utilise son point de départ pour questionner d’un point de vue moral le monde contemporain et la situation internationale : terrorisme, extrémisme et autres jusqu’au-boutismes. Mais cet te anecdote de départ ne débouche jamais sur une véritable intrigue narrative; elle est rapidement délaissée au profit d’une interrogation sur la pertinence d’écrire sur l’autre, de l’imaginer, parce que l’on est incapable d’écrire sur soi sinon pour se dissimuler :
 

« Le mensonge, c’est que tu n’as jamais parlé aux Sacha de Serpoukhov. »
 

Là où le texte ne cesse de troubler, c’est surtout par sa façon cavalière de circuler d’une catégorie de pensée à une autre, où grâce à un point- virgule on passe sans avertissement de la Jérusalem biblique à celle qu’agite aujourd’hui le conflit israélo-palestinien. C’est un texte dont la trame même est faite de raccourcis radicaux, où l’on dit de la relation entre Sacha homme et Sacha femme que « le gouffre entre eux étai t aussi énorme que la différence qu’il y a entre un gratte-ciel et l’avion qui le perce ». Des désirs adolescents pour Anna Kournikova à la mort par asphyxie des marins du Koursk au fond de la mer de Barents en passant par les interdits religieux, Viripaev recrée le télescopage des idées, des informations, des émotions et des sensations que chaque jour nous vivons. Et il le fait avec une conscience aiguë des problèmes qu’un tel état de vie soulève.
 

La mise en scène de Galin Stoev, en accord avec le texte, ne cesse de glisser entre la représentation (comme le théâtre traditionnel , où le lieu et le temps de la fiction sont différents de ceux des spectateurs) et la présentation (ce que font les conteurs et les chanteurs, où spectateurs et performeurs partagent un même temps et un même espace).
 

D’ailleurs, en Russie, le spectacle était joué indifféremment dans des théâtres, des bars, des clubs, voire des lieux non définis. Ainsi , les rapports ent re les comédiens, dans Oxygène, prennent le pas sur les rapports entre les personnages qu’ils jouent sans vraiment les incarner.

Ou plutôt, ils les incarnent autrement; Stoev a dit à ses comédiens :
 

« Ne jouez pas la folie. Soyez la folie. »
 

Pour révéler les réalités nouvelles, afin que l’on puisse les ressentir pour bien les appréhender, il faut aux arts des formes nouvelles. Cet Oxygène tente de cerner l’oxygène de nos vies : la conscience.

 
_____________________________________________________________________

Pour en savoir plus sur l'oxygène :

 

Suivre le parcours de l’oxygène depuis les grimoires des alchimistes jusqu’aux laboratoires des chimistes, avant qu’il n’investisse notre environnement quotidien.

 

Aujourd’hui, les formules chimiques O2, H2O, CO2,… se sont échappées des traités de chimie et des livres scolaires pour se mêler au vocabulaire de notre quotidien. Parmi eux, l’oxygène, à la fois symbole de vie et nouvel élixir de jouvence, a résolument quitté les laboratoires des chimistes pour devenir source d’inspiration poétique, picturale, musicale et objet de nouveaux mythes.

 

À travers cette histoire de l’oxygène, foisonnante de récits qui se côtoient, s’opposent et se mêlent, l’auteur présente une chimie avant les formules et les équations, et montre qu’elle n’est pas seulement affaire de laboratoires et d’industrie, mais élément à part entière de la culture humaine.


Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 20:10

Au centre du laboratoire des alchimistes règne l’Athanor, le foyer qui abrite le feu primordial sans lequel l’Oeuvre ne peut se réaliser.

 

 
Le Feu et l’Athanor, "fourneau des Philosophes".

 

"Desciption des nouveaux fourneaux philosophiques" est le titre d’un ouvrage qui figurait encore en bonne place dans la bibliothèque des chimistes du 18ème siècle. Son auteur, Johann Rudolf Glauber (1604-1670) est un personnage charnière, parfois décrit comme le dernier des alchimistes, ailleurs comme le premier chimiste. Quoi qu’il en soit, son laboratoire, les corps qu’il y prépare, ses méthodes, son vocabulaire, sont clairement issus de la tradition alchimiste.

 

Né en Bavière, à Karlstadt sur le Main, il est le fils d’un barbier à une époque où ces honorables artisans, en plus de couper la barbe, étaient à la fois dentistes et chirurgiens. Ayant quitté l’école jeune, il se forme auprès des apothicaires pour s’installer lui-même comme pharmacien à Amsterdam où il fait fortune en commercialisant un remède de son invention, le célèbre "sel de Glauber" ou "sel admirable", préconisé comme laxatif, un des traitements majeurs de l’époque avec la saignée. Aujourd’hui reconnu comme étant du sulfate de sodium, il n’est plus guère utilisé que dans l’industrie des détergents. Grandeur et décadence !

 

Le titre complet de l’œuvre dont la traduction est publiée à Paris en 1659 est :

 

" La description des nouveaux fourneaux Philosophiques ou Art distillatoire, par le moyen duquel sont tirés les Esprits, Huiles, Fleurs, et autres Médicaments : par une voie aisée et avec grand profit, des Végétaux, Animaux et Minéraux. Avec leur usage, tant dans la Chymie que dans la médecine. Mis en lumière en faveur des Amateurs de la Vérité."

 

 

 

Le titre n’est pas mensonger. Le livre constitue un véritable cours de technique chimique. Le matériel, en particulier, y est décrit avec précision. Il n’y a pas de chimie sans laboratoire ; plus d’un siècle plus tard Lavoisier procèdera de la même façon en consacrant l’essentiel du second tome de son Traité élémentaire de chimie, publié en 1789, à la description des instruments utilisés avec leur mode d’emploi.

 

La distillation, "l’Art distillatoire", étant l’opération essentielle de l’alchimie, le premier élément à maîtriser est le feu. Van Helmont, alchimiste né à Bruxelles en 1579 et à qui on attribue l’usage premier du mot "gaz", se déclarait "philosophe par le feu". Le fourneau du "philosophe", l’Athanor, est donc d’une extrême importance. Loin d’être un fourneau banal c’est un appareil destiné à séparer les "esprits" des corps de la gangue corporelle qui les emprisonne.

 


Le fourneau des philosophes. C’est en son sein que se réalise la distillation.
Glauber, La description des Fourneaux Philosophiques, 1659

Voir aussi texte en latin


Fait de briques ou de terre réfractaire, il sera construit, petit ou grand, dans des proportions qui ne doivent rien au hasard. Notons celles que nous propose Glauber. Si le diamètre intérieur est de un pied, il aura quatre pieds de hauteur : un pied, de l’ouverture du fond, jusqu’à la grille supportant les charbons, un pied au-dessus de celle-ci jusqu’à la porte par où se chargent les charbons ardents, deux pieds encore jusqu’à la partie supérieure d’où sort un tuyau de fer, un "canon", par où s’échapperont les "esprits". Au sommet, une ouverture étroite munie d’un couvercle qui assurera initialement le tirage et par laquelle seront ensuite introduites les matières à distiller.

 
De la "manière de distiller" :

 

La façon de distiller de ces chymistes mérite qu’on s’y arrête.

 

"Premièrement il faut mettre dans le fourneau des charbons ardents, et après les couvrir d’autres, tant que le fourneau soit presque plein jusqu’au col du canon ; ce fait, ne couvre point le haut du fourneau de son couvercle… jusqu’à ce que le feu soit bien allumé, et la fournaise bien chaude, alors jette dedans une cuiller de fer de ta matière préparée autant qu’il en faut pour couvrir les charbons ; ce fait ferme bien le trou du dessus avec son couvercle… car par ce moyen toutes les choses qui seront jetées dedans, seront forcées à passer à travers du col du canon, et aller aux récipients sous forme d’une nuée épaisse, et se condenser en un esprit acide ou huile…"

 

Ainsi parlait Glauber.

 

Le moderne chimiste remarquera d’abord que la façon de jeter le corps à "distiller" directement sur les charbons ardents, ne correspond pas exactement à l’idée qu’on se fait aujourd’hui d’une distillation. Le procédé s’apparente plutôt à celui du métallurgiste qui place son minerai au sein de la fournaise pour obtenir le métal en fusion. Nous pouvons soupçonner, aujourd’hui, que cette méthode, mettant le corps au contact du charbon, avait nécessairement des incidences sur le produit obtenu et sur l’interprétation de la réaction qui était en réalité bien autre chose qu’une simple "distillation".

 
La chasse aux "esprits" acides.

 

La "distillation" est l’art majeur des alchimistes, cette opération leur permet, entre autres, de produire des acides, autre moyen de séparer, par la "dissolution", les différents composants des corps. La traque des "esprits acides" a donc été une des activités essentielles des alchimistes.

 

Les alchimistes imaginent un "principe acide" universel qui s’exprimerait de façon plus ou moins intense dans les "esprits" que leur science leur permet d’extraire des corps naturels. L’acide absolu, "l’Alkaest", capable de dissoudre toute matière, est d’ailleurs l’un des objectifs de la recherche alchimique.

 

La découverte de l’un des premiers acides connus, l’acide chlorhydrique, "l’esprit de sel", est attribuée à l’alchimiste arabe Jâbir ibn Hayyân (721-815) connu en Europe sous le nom de Geber. Célébré comme le premier des "chymistes", on le crédite aussi de l’invention de l’alambic et de la distillation. Il aurait également découvert l’acide nitrique dont le mélange avec l’acide chlorhydrique constitue "l’eau régale", la seule liqueur capable de dissoudre le métal royal : l’or !

 

Recette, selon Glauber, pour obtenir "l’esprit de sel".

 

Comme premier exemple de distillation, Glauber décrit celle du sel ordinaire, le sel marin. Elle permet d’obtenir "l’esprit de sel", notre acide chlorhydrique, dont Glauber estime qu’il existe peu d’acides qui l’excèdent "en force et en vertu".

 

Sa recette :

 

"Mêle du sel, et du vitriol, ou alun, ensemble, broie les bien dans un mortier, (car mieux ils sont broyés, et plus sort-il d’esprit) alors jette ce mélange sur le feu, avec une cuiller de fer, autant qu’il suffit pour couvrir les charbons, et lors avec un grand feu, les esprits sortent, et vont dans le récipient, et étant coagulés, ils descendent dans une écuelle, et après dans un autre récipient, et si tu entends bien ce travail, l’esprit descendra continuellement comme de l’eau au travers du canal, de la grosseur d’une paille, et tu pourras aisément tirer toutes les heures une livre d’esprit…"

 

Du Vitriol doit donc être mêlé au sel marin. Sous le nom de Vitriol on désigne divers sulfates métalliques naturels. Leur "distillation" sur charbons ardents permet d’en extraire un "esprit", l’acide vitriolique, aujourd’hui désigné comme acide sulfurique. La réaction décrite par Glauber correspond donc à l’action de l’acide sulfurique sur le chlorure de sodium qui est encore de nos jours une méthode industrielle de préparation de l’acide chlorhydrique. Cette vieille alchimie était déjà bien savante !

 

Elle avait aussi l’esprit pratique. L’usage de "l’esprit de sel", l’acide chlorhydrique, a, par exemple, une étendue qui a de quoi étonner.

 

On sait que, à part l’argent et l’or, il dissout les métaux, mais c’est aussi "une excellente médecine de laquelle on se peut doucement servir aussi bien dedans que dehors, il éteint la soif contre nature dans les maladies chaudes, nettoie et consomme les humeurs flegmatiques de l’estomac, excite l’appétit, est bon pour l’Hydropisie, la Pierre, la Goutte etc. ".

 

Il ne faut en effet pas oublier que, depuis Paracelse (1494-1541), la "chymie" est devenue la source d’une multitude de remèdes qui parfois guérissent… ou parfois tuent. Chaque époque a ses modes. Abandonner les extraits végétaux ou animaux au profit des sels minéraux issus des laboratoires est alors l’un des signes de la "modernité" en médecine. La chimie deviendra, pour longtemps, le domaine des apothicaires et Guillaume-François Rouelle, dont Lavoisier suivra les cours, était lui-même un apothicaire renommé dont Turgot, Condorcet et Diderot ont été les élèves.

 

La médecine n’est d’ailleurs pas le seul endroit où les produits de l’alchimie se montrent utiles. Pour ce qui est de l’esprit de sel, l’acide chlorhydrique :

 

"on ne le doit pas même mépriser pour la cuisine ,nous dit Glauber, car on en assaisonne diverses viandes agréables et bonnes pour les malades, aussi bien que pour ceux qui sont en santé, beaucoup mieux qu’avec le vinaigre et autres choses acides, et il fait beaucoup plus en petite quantité que ne fait le vinaigre en une grande ; mais il sert particulièrement pour les pays qui n’ont point de vinaigre, on s’en sert aussi au lieu de verjus (jus de raisin vert), et de jus de limons : car en étant préparé par cette voie il est meilleur marché que le vinaigre ou le jus de limons : il n’est pas corruptible comme sont les jus faits par expression, mais il devient meilleur avec le temps.
 

Étant mêlé avec sucre, c’est une excellente sauce pour la viande rôtie… quelque chose que l’on prépare avec cet esprit comme poules, pigeons, veau etc., ils sont plus agréables au goût que ceux qui sont préparés avec le vinaigre, le bœuf étant macéré avec cet esprit, devient en peu de jours si tendre, que s’il avait été macéré un long temps avec du vinaigre ; l’esprit de sel peut faire tout cela et beaucoup d’autres choses."

 

De l’acide chlorhydrique pour remplacer le citron et le vinaigre ? Déjà la "malbouffe" ? Sans doute faut-il se replacer dans le contexte de l’époque. Les méthodes de conservation y sont limitées : le sel, le salpêtre, la fumaison, le vinaigre. Mais ce dernier est onéreux et, proposer un produit nouveau, efficace et moins cher, peut attirer une clientèle. De là à en faire des sauces, il y a sans doute de la marge, mais faut-il rappeler que le suc gastrique est pour une bonne part constitué d’acide chlorhydrique ? La recette proposée par Glauber était donc simplement une prédigestion. Avis aux amateurs de "gastronomie moléculaire" ! Notons aussi, que sous la dénomination de E 507, l’acide chlorhydrique fait encore partie de la liste des additifs alimentaires de notre alimentation industrielle.

 

Pour compléter cette évocation de l’usage des fourneaux des philosophes, nous noterons que son foyer peut être également muni d’un vase qui peut être de cuivre, de fer ou de terre suivant la nature plus ou moins corrosive des matières à distiller.


Le fourneau est ici muni d’un globe de cuivre B relié à un système réfrigérant.
Glauber, La description des Fourneaux Philosophiques, 1659.


C’est ainsi qu’est distillé le "vitriol", sulfate métallique naturel, pour en extraire l’acide vitriolique (acide sulfurique) et sa version concentrée : "l’huile de vitriol". Le produit, est d’une extrême importance. C’est par son action, nous l’avons vu, qu’on pourra extraire l’esprit de sel (l’acide chlorhydrique) du sel marin. C’est lui aussi qui permettra d’extraire du salpêtre (nitrate de potassium naturel) "l’esprit de nitre" (acide nitrique), "l’eau forte" utilisée par les graveurs et capable de "dissoudre" le cuivre.

 

Tel que décrit par Glauber, c’est également une extraordinaire panacée. A la dose de quelques gouttes dans un verre d’eau, "c’est une excellente médecine pour l’épilepsie, pour la folie ou rage appelée manie, pour la suffocation de matrice, pour le scorbut, et pour cette autre espèce de folie appelée mélancolie hypochondriaque". Et la liste de ses bienfaits s’allonge : la peste, la colique, la gale, les dartres, la goutte, le cancer, les brûlures, la gangrène, "en un mot cet esprit que les sages anciens appelaient le soulphre des philosophes, fait effet généralement en toutes maladies".

 

Notons que Glauber est bien un alchimiste quand il voit dans le mot Vitriol les premières lettres la phrase latine : "Visitabis interiora Terra Rectificando Invenies occultum lapidem " qu’il traduit par "Tu visiteras l’intérieur de la Terre et en rectifiant tu trouveras la Pierre cachée qui est la véritable médecine". Phrase célèbre qui, en traversant les siècles, a accompagné bien des rituels supposés mener à la "pierre philosophale".

 

"Inventés" par les alchimistes, les acides seront à la base de l’activité des chimistes, leurs successeurs. N’oublions pas que Lavoisier, en qui certains commentateurs voient le "père" de la chimie moderne, a construit sa théorie sur les propriétés de l’oxygène nommé ainsi car considéré, par lui, comme le "générateur des acides".


Cette histoire est évoquée dans :

 

Suivre le parcours de l’oxygène depuis les grimoires des alchimistes jusqu’aux laboratoires des chimistes, avant qu’il n’investisse notre environnement quotidien.

 

Aujourd’hui, les formules chimiques O2, H2O, CO2,… se sont échappées des traités de chimie et des livres scolaires pour se mêler au vocabulaire de notre quotidien. Parmi eux, l’oxygène, à la fois symbole de vie et nouvel élixir de jouvence, a résolument quitté les laboratoires des chimistes pour devenir source d’inspiration poétique, picturale, musicale et objet de nouveaux mythes.

 

À travers cette histoire de l’oxygène, foisonnante de récits qui se côtoient, s’opposent et se mêlent, l’auteur présente une chimie avant les formules et les équations, et montre qu’elle n’est pas seulement affaire de laboratoires et d’industrie, mais élément à part entière de la culture humaine.


Ainsi que dans :

 
Histoire du carbone et du CO2.
JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…, coupable : le dioxyde de carbone. Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

Un livre chez Vuibert.

feuilleter

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone
et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole. Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 16:35

Par Gérard Borvon.

___________________________________________________________________________

 

O2, H2, H2O, CO2...
 

Ces formules se sont échappées des laboratoires et des livres scolaires pour alimenter notre vocabulaire quotidien. Devenues banales, elles sont, cependant l’aboutissement d’une longue histoire.

 

Nous y rencontrerons les philosophes de la Grèce antique, la longue période des alchimistes pour arriver à Lavoisier et à ses collaborateurs dont la nomenclature servira de base aux symboles et formules, proposées par le Suédois Jöns Jacob Berzelius, qui sont la marque de notre chimie contemporaine.


Les quatre éléments des philosophes grecs.

 

Trois noms sont particulièrement associés à la théorie des quatre éléments : ceux d’Empédocle, de Platon et d’Aristote.

 

Empédocle (490-435 Av JC), né dans la ville grecque d’Agrigente en Sicile, est un personnage hors norme. Si on en croit la légende, il aurait choisi une mort spectaculaire en se jetant dans l’Etna qui, dit-on, rejeta l’une de ses sandales de bronze sur le bord de son cratère.

 

C’est dans une forme poétique et prophétique que le philosophe d’Agrigente énonce ce qui sera considéré comme l’origine de la première doctrine chimique :

 

"Connais premièrement la quadruple racine de toutes choses : Zeus aux feux lumineux, Héra mère de vie, et puis Aidônéus, Nestis enfin, aux pleurs dont les mortels s’abreuvent."

 

Ainsi parlait Empédocle et ainsi ont interprété ses disciples. Le feu (Zeus), l’air (Héra), l’eau (Nestis) et la terre (Aidônéus) sont les quatre éléments à partir desquels sont formés la totalité des corps qui peuplent l’Univers.


Platon (428-348 Av JC), dans le Timée, reprend le modèle d’Empédocle en l’enrichissant de réflexions sur les nombres et les formes inspirées de Pythagore et des ses disciples.

 

On leur attribue la découverte des polyèdres réguliers, volumes limités par des faces toutes identiques, elles-mêmes constituées de polygones réguliers.

 

Ces polyèdres sont au nombre de cinq. Platon, et les Pythagoriciens avant lui, associent chacun des quatre premiers à l’un des éléments d’Empédocle.

 

- Le tétraèdre, pyramide à base triangulaire équilatérale, est la figure du feu, subtil, léger, piquant.

 

- L’octaèdre est associé à l’air.

 

- L’icosaèdre, à vingt faces triangulaires, le plus proche de la sphère, est l’eau.

 

- L’hexaèdre, le cube, stable, représente la terre.

 


Les cinq polyèdres réguliers (Jean-Mathurin Mazéas, Eléments de Mathématiques, 1788)


Le cinquième polyèdre régulier, le dodécaèdre a des propriétés mathématiques plus riches. Il comporte 12 faces comme le nombre des signes du zodiaque. Chacune étant un pentagone régulier, figure particulièrement symbolique.

 

Il est facile, au moyen d’une règle et d’un compas de construire un triangle équilatéral, un carré, un hexagone, un octogone. Tracer un pentagone régulier pose un tout autre problème et n’est à la portée que d’habiles géomètres. (voir)

 

Disons, sans développer davantage, qu’il fait intervenir des rapports entre longueurs de segments laissant apparaître le "nombre d’Or", le nombre, supposé divin, des philosophes et bâtisseurs grecs soit 1,618... .

 

Le dodécaèdre est donc à lui seul un condensé de rapports magiques. Platon lui attribue un rôle à la hauteur de ce statut : "il restait une seule et dernière combinaison, Dieu s’en est servi pour le tout quand il a dessiné l’arrangement final" (Platon, Timée). Derrière cette formule ambiguë certains voudront trouver l’esprit pensant, la force vitale, l’énergie motrice ou tout autre concept illustrant l’animation de la matière.

 

 

On en fera aussi le symbole de la cinquième essence, la "quinte-essence" (quintessence), la substance qui, désignée encore sous le nom "d’éther", était supposée occuper l’univers des étoiles. Cet "éther", lumineux, électrique et même quantique, qui reviendra de façon cyclique dans le vocabulaire des physiciens quand il leur faudra, comme au temps des premiers philosophes, nommer l’inexplicable.

 

Aristote (384-322 Av JC), élève de Platon, reprend la doctrine des quatre éléments en considérant, toutefois, que chacun est construit à partir d’une matière primordiale unique. Quatre "forces" agissent pour leur donner forme : le chaud, le froid, le sec, l’humide.

 

Le chaud, principe d’énergie, de mouvement. Le froid principe d’inertie. L’humide, principe unificateur. Le sec principe de séparation. Ces quatre principes forment quatre couples (les couples chaud-froid et sec-humide étant exclus).

 

- le feu est associé au couple chaud-sec.

 

- l’air au couple chaud-humide.

 

- l’eau au froid-humide.

 

- la terre au froid-sec.

 

En résumé :

 

Empédocle Platon Aristote
Feu tétraèdre chaud-sec
Air octaèdre chaud-humide
Eau icosaèdre froid-humide
Terre cube froid-sec

 

Le modèle pourra même être enrichi de la dualité masculin/féminin. Ainsi le feu sera chaud, sec, masculin, pendant que l’eau sera humide, froide, féminine.


Un modèle d’une grande puissance évocatrice.

 

Pendant près de vingt siècles ce modèle sera vivant dans le monde occidental. D’une certaine façon, il l’est toujours. Il a quitté le domaine scientifique mais on le rencontre encore dans la perception intuitive que nous avons conservée de notre environnement. Terre, Eau, Air, Feu (énergie), alimentent toujours nos débats contemporains.
 

Les Quatre Eléments demeurent, surtout, une riche source d’inspiration poétique, littéraire et même, avec Bachelard, psychanalytique.


Dürer. La Mélancolie. 1514. Un condensé de symbolisme pythagoricien, platonicien, alchimique…


Car le modèle résiste !
 

Il a peu d’utilité pratique mais il a une grande force descriptive et esthétique. C’est pourquoi il traverse les siècles sans radicale remise en cause.

 

Plus de deux millénaires séparent Empédocle de Lavoisier qui, enfin, osera le rejeter du domaine de la science pour le faire entrer dans celui du mythe. Ce faisant, il fera naître un nouvel être, à la fois feu, air, eau et même terre : l’oxygène.

 

Mais la route est encore longue et les détours nombreux avant d’y parvenir. En chemin nous rencontrons un autre grand moment de la "philosophie de la matière" : l’Alchimie.


L’Alchimie et les quatre éléments.

 

Les alchimistes ont été violemment dénigrés par les chimistes, leurs successeurs. On cite couramment le chimiste Pierre Joseph Macquer (1718-1784) comme l’un des "pères" de la chimie moderne. Attaché à défendre le statut académique de cette science, il choisit de mettre en évidence la façon dont elle a rompu avec les anciennes méthodes. Sa cible est la vieille "chymie" que ses contemporains, ont pris l’habitude de désigner par le nom "d’alchimie", pour bien différencier leur propre science de la pratique médiévale dont ils refusent l’héritage.

 

Macquer va même jusqu’à regretter le reste de filiation qui s’exprime dans ce nom de chimie ou "chymie" partagé par les deux disciplines. C’est un mal, écrit-il " pour une fille pleine d’esprit et de raison, mais fort peu connue, de porter le nom d’une mère fameuse pour ses inepties et ses extravagances".

 

N’y a-t-il cependant pas une certaine ingratitude à renier ces prédécesseurs qui leur ont transmis, entre autres héritages, la doctrine des quatre éléments en donnant à ceux-ci une représentation symbolique simplifiée à base de triangles :

 

 

Ceux-ci seront conservés par les chimistes jusqu’à la fin du 18ème siècle. On les trouve même encore représentés dans la "Méthode de Nomenclature Chimique", nouvelle bible de la chimie moderne, publiée en 1787 par Guyton de Morveau, Lavoisier, Berthollet et Fourcroy.

 

Les symboles alchimiques.

 

L’alchimie est le domaine des symboles. Elle les a reçus d’antiques traditions issues de la Mésopotamie, de l’Assyrie, de la Perse, de l’Egypte et même la Chine ou l’Inde.

 

Nous avons retenu sa représentation des quatre éléments par une série de triangles.

 

Nous pouvons y ajouter les trois principes métalliques :

 

- le soufre

 

- le mercure

 

- le sel

 

Et les métaux représentés par les signes représentant les Planètes :

 

 

Quant aux différentes opérations de l’alchimie, elles sont souvent illustrées par les signes du zodiaque.

 

 

Il est certain que l’un des objectifs de ce symbolisme est de rebuter le profane. Glauber, proposant de donner la recette de "La teinture de l’or ou véritable or potable" l’annonce d’emblée :

 

"La connaissance et la préparation de cette médecine m’étant donnée du très-haut, je prétends, à cause que l’homme n’est pas né pour lui seul, de donner brièvement sa préparation et son usage, mais je ne veux pas jeter les perles devant les pourceaux, j’en veux seulement montrer le chemin aux étudieux, et qui cherchent le travail de Dieu et Nature ; et sans doute ils entendront mes écrits, mais non point un ignorant et qui n’est point expert" (Glauber Jean-Rudolphe, La teinture de l’or ou véritable or potable, Paris 1659)

Cependant il est certain que ce ne sont pas les symboles qui sont les plus hermétiques dans les textes alchimiques mais l’usage qui en est fait. Ils peuvent même donner une allure de rationalité à un texte qui devient de plus en plus ténébreux au fil des pages. Rien d’étonnant donc à ce qu’ils survivent à l’alchimie et qu’on les retrouve même chez Macquer, son pourfendeur.


Pierre-Joseph Macquer, Eléments de Chimie théorique, Paris 1749.


Ils figureront également sur une planche de l’Encyclopédie de Diderot et d’Alembert.


Encyclopédie de Diderot de D’Alembert (Planche chymie)


En complément de la "Méthode de Nomenclature Chimique" (1787), Jean-Henry Hassenfratz (1755-1827) et Pierre Auguste Adet (1763-1834) proposent eux-mêmes un nouveau symbolisme adapté à la nouvelle façon de nommer et de penser.

 

Ce faisant ils réinterprètent le symbolisme alchimique à la lumière d’une rationalité qui n’était probablement pas celle des premiers chymistes :

 

"Il paraît qu’on ignore dans quels temps les chimistes ont commencé à se servir de caractères. Les recherches que nous avons entreprises sur cet objet se sont réduites à nous faire connaître d’après quelles vues les anciens avaient ordonné les signes des substances métalliques, dans la persuasion où ils étaient que les corps célestes avaient une influence sensible sur tous les corps animés et inanimés du globe terrestre ; ils avaient distingué les métaux, en métaux solaires ou colorés, en métaux lunaires ou blancs.
 

Les métaux de ces deux classes se subdivisaient ensuite en métaux parfaits, demi-parfaits et imparfaits ; la perfection étant exprimée par un cercle ; la demi-perfection, si nous pouvons nous servir de ce terme, par un demi-cercle ; et l’imperfection par une croix ou un dard.
 

Ainsi l’or, qui était le métal solaire par excellence, était représenté par un cercle seul, cette figure était commune aux métaux de la même classe tels que le cuivre, le fer, l’antimoine : mais elle se trouvait combinée avec le signe de l’imperfection.
 

L’argent qu’ils regardaient comme un métal lunaire demi-parfait était indiqué par un demi-cercle, l’étain, le plomb avaient aussi le demi-cercle pour signe, comme appartenant à la même classe, mais ils étaient distingués de l’argent par la croix ou par le dard.
 

Enfin le mercure qui était un métal imparfait, tout à la fois solaire et lunaire, portait les marques distinctives de ces deux classes, et était désigné par un cercle surmonté d’un demi-cercle auxquels on ajoutait une croix."


Extrait du tableau des nouveaux caractères chimiques, très inspiré des signes alchimiques, de Hassenfratz et Adet. Méthode de Nomenclature Chimique" (1787)


Quoi qu’il en soit, cette rationalité imaginée leur servira de guide pour proposer un symbolisme "moderne". Ils conserveront le cercle pour les substances "métalliques" comme le mercure, le demi-cercle pour représenter les substances ’inflammables" comme le soufre, le triangle dont la pointe est en haut pour représenter les substances "alcalines" et le triangle dont la pointe est en bas pour les substances "terreuses".

 

Ce symbolisme n’aura pas le même succès que la nomenclature qu’il était supposé illustrer.

 

Nous ne retracerons pas ici le combat de Lavoisier et des "chimistes français", ses collaborateurs, contre la théorie du Phlogistique qui les amène, en caractérisant et nommant l’oxygène, à proposer une nouvelle nomenclature chimique construite autour des propriétés de cet élément.

 

Reprise et perfectionnée par Jöns Jacob Berzelius (1779-1848) elle prendra la forme que nous connaissons aujourd’hui. Nous en reparlerons mais auparavant une nouveau regard sur les corps chimiques mérite d'être évoqué : l'atomisme.

 

John Dalton (1766-1844) et les atomes.

 

Comme oxygène, hydrogène, azote, Atome est un mot hérité des Grecs : ἄτομος (atomos), "que l'on ne peut diviser", tel est le nom donné par Démocrite d'Abdère (-460 ; -370) et ses disciples aux particules dont ils imaginaient que l'Univers était constitué. Le mot atome traversera les siècles avec des sens qui évolueront au fil des époques.

 

Des époques plus récentes voient l'usage de molécule ou "petite masse" (du latin moles, masse). C'est le terme généralement utilisé par Lavoisier.

 

Mais la théorie atomique contemporaine est réputée commencer avec John Dalton (1766-1844). Chimiste et enseignant, il publie, en 1808, "Un nouveau système de philosophie chimique" dans lequel il propose une première représentation atomique de la matière.

 

Le mot "atome" apparaît à la fin de son texte comme "l'ultime particule" des corps. Contrairement à notre usage actuel, atome est, pour lui, synonyme de ce que, aujourd'hui, nous appelons molécule. il désigne, aussi bien, une particule de corps simple qu'une particule de corps composé, binaire, ternaire ou quaternaire...

 

 

Les "équations" proposées par Dalton nous font réellement entrer dans notre chimie contemporaine pour laquelle une réaction est un "mécano" qui permet, à partir d'une centaine de pièces détachées, les atomes, de construire une multitude d'objets de plus en plus complexes, les molécules.

 

On retient surtout de Dalton l'attribution de symboles aux atomes. Ceux-ci sont associés à leurs "masses atomiques" établies avec, comme référence, l'hydrogène, le moins dense des éléments alors connus.

 

Symboles des "atomes"  proposés par Dalton.

 

Les symboles sont encore fortement inspirés des alchimistes pour lesquels l'Or, "le métal solaire par excellence", était représenté par un simple cercle ou un cercle centré. Est-ce un hasard si c'est par ces signes que Dalton choisit de représenter l'oxygène et l'hydrogène ?

 

Nouveauté : la représentation des métaux par des lettres dans un cercle ou encore celle des "atomes" composés (nos actuelles molécules).

 

"Atomes" simples et composés.

 

Conception atomiste de la matière et début de représentation des atomes par une lettre seront développées par le Suédois Jöns Jacob Berzelius (1779-1848) qui sera le véritable créateur de l'écriture chimique moderne.

 

De la Nomenclature jusqu'aux formules chimiques : le "chef d’œuvre" français complété par le "génie" suédois.

 

Dès ses premiers écrits Berzelius choisit de nommer les corps à partir du latin. Son modèle est Guyton de Morveau :

 

"L’on sait que la nomenclature fondamentale dont nous nous servons est due au génie de M. Guyton de Morveau, et qu’elle a été adoptée à la suite des rectifications faites par une commission des membres de l’institut. M. Guyton eut l’heureuse idée de changer le chaos de noms bizarres qui existait de son temps, en un système de définitions, ou en noms qui indiquaient la nature même des composés qu’ils représentaient, et il rendit par-là un service immense à la science."

 

Si Lavoisier n’est pas cité, son esprit rôde encore au-dessus de la chimie :

 

"La nomenclature latine, dite antiphlogistique, qui sert de base à la nomenclature française, est un véritable chef d’œuvre. Celui qui, avec un peu de connaissance de la chimie, la parcourt, la connaît tout de suite ; et elle contient pour ainsi dire une partie principale de la théorie de la science"

 

Comment imaginer plus beau compliment ? Dans son traité de 1813, rédigé en français sous son contrôle, Berzelius donne un tableau des termes français accolés à la nomenclature latine qu’il propose. La concordance des deux langues est remarquable. Le latin chimique semble être, en réalité, un français latinisé.

 

Cependant, 25 ans le séparent de la première nomenclature française, il pense donc nécessaire de lui apporter quelques corrections.

 

Pour lui, comme pour Lavoisier, toute la chimie s’organise autours de l’oxygène, il ne touche donc pas au terme d’oxygène, pourtant si controversé.

 

Parmi les dénominations qu’il propose et qui rompent avec le français on peut noter :

 

Proposition latine de Berzelius Nomenclature française Symbole international
Wolframium Tungstène W
Stibium Antimoine Sb
Aurum Or Au
Stannum Etain Sn
Natrium Sodium Na
Kalium Potassium K

 

Concernant les deux dernières dénominations, il explique :

 

"On s’est servi dans la nomenclature française, pour désigner les alkalis purs, des mêmes noms que pour les alcalis du commerce. De là des inconvénients, lorsqu’on est obligé de parler de ces substances alcalines. De plus, le mot potasse qui dérive d’un mot allemand et suédois, lequel veut dire cendre de pot, ne se laisse pas trop latiniser sans trop de violence. C’est pourquoi les chimistes allemands ont été conduits à remplacer le mot potasse pure par celui de kali, et le mot de soude pure par celui de natron, et par conséquent à appeler kalium et natrium les radicaux des alcalis fixes. L’on fera bien, je crois, de les conserver dans la nomenclature latine."

 

Il est effectivement étonnant de constater que, si les Allemands et Suédois ont abandonné potasse, les Français l’ont conservé, estimant, quant à eux, que ce n’était pas lui faire violence que de le latiniser. Pour les chimistes français, la lettre K symbolise donc le potassium. De même le sodium des français est symbolisé par Na. Les mots français du "commerce" ont parfois la vie longue. Les mots soude, potasse, ammoniaque sont encore présents dans les manuels de chimie de l’hexagone.

 

Ce récit nous a amenés, à plusieurs occasions, à utiliser, dans un souci de clarification, les notations modernes : O2, H2, H2O, K, Na… Ce symbolisme, devenu le langage universel de la chimie, est le plus beau des cadeaux laissé par Berzelius à ses successeurs.

 

Symboles et équations chimiques.

 

Berzelius rappelle le temps des signes alchimiques "créés par le besoin de s’exprimer d’une matière mystique et incompréhensible pour le vulgaire". Jugement sévère car dans le même temps il reconnaît le choix judicieux des signes proposés par les réformateurs "antiphlogistiques" français alors que ceux-ci s’étaient, eux-mêmes, largement inspirés des signes alchimiques.

 

Quoi qu’il en soit, il considère qu’un signe introduit une inutile difficulté car, dit-il, "il est plus facile d’écrire un mot en abrégé que de dessiner une figure". D’où sa volonté de proposer d’autres signes. Non pas des signes "créés dans la vue de les placer, comme les anciens, sur les vases de laboratoire", mais des signes ayant pour objet "de nous mettre en état d’énoncer brièvement et avec facilité le nombre d’atomes élémentaires qui se trouve dans chaque corps composé".

 

Il choisit donc, comme symboles, les lettres de l’alphabet "pour pouvoir être facilement tracés et imprimés sans défigurer le texte". On prendra "la lettre initiale du nom latin de chaque corps simple" et pour distinguer deux corps dont le nom commencerait par la même lettre, il suffira d’y adjoindre les deuxièmes ou troisièmes lettres du nom. Ainsi le soufre sera désigné par le S, le silicium par Si, le stibium (antimoine) par Sb, le Stannum (étain) par Sn.

 

Pour les molécules contenant plusieurs atomes identiques, leur nombre sera indiqué par un exposant. Ainsi pour l’eau : H2O, pour le "gaz carbonique" : CO2. Le symbole a traversé le temps avec comme seule modification la transformation de l’exposant en un indice : H2O, CO2...

 

L’ensemble des propositions de Berzelius peuvent être considérées comme le couronnement de la réforme de la nomenclature chimique initiée 25 ans plus tôt par les chimistes français.

 

Si, pour nos contemporains O2, H2O, CO2, sont bien autre chose que des signes cabalistiques, c’est à Guyton de Morveau, à Lavoisier, à Dalton et à Berzelius que nous le devons.


Pour l’ensemble de cette histoire voir :

 

Suivre le parcours de l’oxygène depuis les grimoires des alchimistes jusqu’aux laboratoires des chimistes, avant qu’il n’investisse notre environnement quotidien.

 

Aujourd’hui, les formules chimiques O2, H2O, CO2,… se sont échappées des traités de chimie et des livres scolaires pour se mêler au vocabulaire de notre quotidien. Parmi eux, l’oxygène, à la fois symbole de vie et nouvel élixir de jouvence, a résolument quitté les laboratoires des chimistes pour devenir source d’inspiration poétique, picturale, musicale et objet de nouveaux mythes.

 

À travers cette histoire de l’oxygène, foisonnante de récits qui se côtoient, s’opposent et se mêlent, l’auteur présente une chimie avant les formules et les équations, et montre qu’elle n’est pas seulement affaire de laboratoires et d’industrie, mais élément à part entière de la culture humaine.

 

feuilleter les premières pages


voir aussi :

 

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…, coupable : le dioxyde de carbone. Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone
et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une
chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole. Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

Feuilleter les premières pages.


Partager cet article
Repost0
25 novembre 2013 1 25 /11 /novembre /2013 13:42

En introduction à son dictionnaire de chimie, plusieurs fois réédité, le chimiste français Pierre-Joseph Macquer nous livre une histoire de la chimie, document essentiel pour comprendre l’état d’esprit de ceux qui, dans cette deuxième partie du 18ème siècle, se déclaraient comme étant les premiers "vrais" chimistes, par opposition aux alchimistes leurs prédécesseurs.

 

Son jugement est sévère. Pour assurer le nouveau statut académique de sa discipline, il choisit de l’opposer de façon radicale et caricaturale à cette vieille alchimie dont, cependant, il admet parfois certains apports utiles.

 


 

 

"L’histoire des sciences est en même temps celle des travaux, des succès et des écarts de ceux qui les ont cultivées ; elle indique les obstacles qu’ils ont eu à surmonter, & les fausses routes dans lesquelles ils se sont égarés : elle ne peut dès lors manquer d’être utile à ceux qui veulent s’engager dans la même carrière. Ce motif nous engage à placer ici cette histoire abrégée de la chimie. Mais pour ne point répéter ce que d’excellents auteurs ont déjà exposé avec beaucoup de détail et d’exactitude, nous ne parlerons de l’Histoire particulière des Chimistes, qu’autant qu’elle pourra servir à faire mieux connaître l’Histoire générale de la Chimie. Notre objet est de mettre sous les yeux les différents états par lesquels cette science a passé, les révolutions qu’elle a éprouvées, les circonstances qui ont favorisé ou retardé ses progrès ; en un mot, c’est le tableau sommaire de ce qu’elle a été depuis son origine jusqu’à ces derniers temps que nous tâcherons d’exposer.

 

La plupart des auteurs qui ont traité de l’histoire de la chimie, font remonter l’histoire de cette science à la plus haute antiquité : ils étendent leurs recherches jusques dans le premier âge du monde, et trouvent des chimistes dans les temps même antérieurs au déluge. Mais égarés dans la nuit de ces siècles reculés, ils n’ont rencontré, comme tous les historiens qui ont voulu y pénétrer, que des fables, des merveilles et des ténèbres.

 

Nous ne somme plus dans ce temps de crédulité où on pouvait avancer gravement d’après des livres apocryphes, que des Anges ou des Démons pris d’amour pour les femmes, leur révélèrent ce qu’il y a de plus sublime dans les sciences, & les secrets les plus profonds de la Chimie, que le livre où ces secrets furent écrits se nomma kema ; que de là est venu le nom de Chimie ; et mille autres rêveries de cette espèce, dont ils est même inutile de faire mention. Tout ce que l’on peut dire de vrai et de raisonnable sur cette matière, c’est que l’invention de plusieurs Arts qui dépendent de la Chimie, & dont l’objet est de nous procurer les choses les plus nécessaires, est effectivement de la plus haute antiquité. L’Ecriture-Sainte parle de Tubalcain, qui vivait avant le déluge comme d’un homme qui savait faire tous les ustensiles de cuivre et de fer. On croit que c’est ce Tubalcain que la Mythologie païenne mit depuis au nombre des dieux sous le nom de Vulcain.

 

Ces traits historiques font regarder communément Tubalcain comme le premier et le plus ancien des Chimistes, titre qu’on ne doit néanmoins lui accorder qu’en regardant l’espèce de Chimie qu’il pratiquait, non comme une véritable science, mais seulement comme un art ou comme un métier.

 

Il ne restera sur cela aucun doute, pour le peu qu’on réfléchisse sur la nature & sur la marche de l’esprit humain. Il est certain que ce que nous appelons Science, est l’étude et la connaissance des rapports que peuvent avoir ensemble un certain nombre de faits, ce qui présuppose nécessairement l’existence & la découverte de ces mêmes faits. Or cette découverte est uniquement l’ouvrage des sens ; l’esprit le plus actif & le plus pénétrant est absolument sans force à cet égard, en comparaison du sentiment intérieur d’un besoin qui commande impérieusement. Sans les impressions douloureuses ou agréables qu’excitent sur nous les corps dont nous sommes environnés, nous en ignorerions encore les propriétés les plus communes. Le hasard en a montré d’abord quelques-unes, l’amour du bien-être, d’où naît une sorte d’instinct infiniment plus clairvoyant que la raison même, a fait sentir leur usage : les premiers hommes nécessiteux ont été, par cela même, les premiers artisans ; ils ont saisi les principes des arts par un effort naturel, bien différent de ce raisonnement perfectionné, qui peut seul enfanter les Sciences, & qui ne s’est formé que dans l’espace d’une longue suite de siècles. On doit conclure de là, que le Patriarche Tubalcain n’était pas plus Chimiste que ne le sont nos Fondeurs et nos Forgerons ; cela est d’ailleurs très conforme au texte de l’Ecriture, dans laquelle il est nommé seulement Malleator & Faber : c’est-à-dire, qu’il n’était qu’un simple artisan ; de même que tous les premiers hommes qui acquirent quelques connaissances que n’avaient pas leurs contemporains.

 

L’idée que nous donnons ici du mérite de ces anciens inventeurs de nos Arts, ne doit cependant rien diminuer de la gloire qui leur est due : l’esprit humain étant alors dans son enfance, les sciences n’ayant pas encore pris naissance, ils étaient tout ce qu’ils pouvaient être. Quoiqu’ouvriers simples et grossiers, on doit les regarder comme les plus puissants génies de leur siècle ; car la force & l’étendue de l’esprit des hommes sont encore moins l’ouvrage de la nature, que celui du temps & du pays où le hasard les place. Si Stahl eu vécu avant le déluge, tout l’effort de ce génie né pour développer les Mystères de la nature par le secours de la plus sublime Chimie , se serait vraisemblablement réduit à trouver le moyen de forger une hache, de même que le grand Newton qui sut mesurer l’univers et calculer l’infini, aurait peut-être épuisé toute la force de son esprit pour compter jusqu’à dix, s’il eût pris naissance parmi ces Nations de l’Amérique, dont les plus habiles calculateurs ne peuvent compter que jusqu’à trois. Ainsi je le répète, le premier homme qui sut forger le fer et fondre l’airain, quoique moins habile sans doute que nos plus humbles artisans, était cependant un grand homme, qui mérite autant nos éloges que les Chimistes les plus savants & les plus profonds.

 

Il en a été de la Chimie, comme de tous les autres Arts. Avant l’invention de l’Ecriture, l’apprenti ne pratiquait que ce qu’il apprenait de son maître par une tradition orale, & transmettait ses connaissances à celui qui lui succédait ; comme le font encore nos ouvriers, qui n’écrivent rien, quoique vivant tant de siècles après l’invention de l’écriture.

 

Cet Art par excellence fut découvert, comme l’avaient été la plupart des autres, chez les anciens Egyptiens. C’est à cette heureuse époque qu’on peut véritablement rapporter celle de l’accroissement des connaissances humaines ; & la naissance des Sciences ; c’est alors que se fit une distinction réelle des vais Savants ou Philosophes d’avec les simples artisans. Ces derniers obéissant toujours à l’impression du même ressort, continueront uniformément leur marche, & se bornèrent à leur pratique. Les premiers au contraire recueillirent avec soin toutes les connaissances qui pouvaient étendre et orner l’esprit humain, en firent l’objet de leurs recherches, les accrurent en les méditant & en les comparant, les rédigèrent pas écrit, se les communiquèrent, en un mot jetèrent vraiment les fondements de la Philosophie. Ces hommes précieux furent les Prêtres et les Rois d’un peuple assez sage pour leur accorder ses respects, & qui par-là fut digne d’obéir à de tels maîtres.

 

Celui d’entre ces Rois philosophes que les Chimistes regardent comme leur premier auteur, se nommait Siphoas ; il vivait à ce que l’on croit, plus de 1900 ans avant l’Ere chrétienne. Les Grecs chez lesquels passèrent les sciences des Egyptiens, l’ont connu sous le nom d’Hermès ou de Mercure Trismégiste, c’est-à-dire, très grand. La liste des ouvrages de cet ancien savant dont il ne nous est rien resté, & qui se trouve dans Clément d’Alexandrie, est si nombreuse, qu’il fallait que de son temps les hommes eussent déjà fait d’assez grands progrès dans les Sciences. Cependant aucun des ouvrages d’Hermès, désignés par Clément d’Alexandrie, ne traite précisément de la chimie ; il en a composé sur toutes sortes de sciences, à l’exception de celle à laquelle on adonné son nom : car la chimie a été nommée aussi philosophie hermétique. Il est vrai que l’on conserve dans la bibliothèque de Leyde quelques manuscrits arabes qui sont sous le nom d’Hermès, & qui paraissent avoir un rapport plus direct avec la chimie : tel est, par exemple, celui qui traite des poisons & des contrepoisons, & un autre sur les pierres précieuses ; mais on les regarde avec raison comme des ouvrages bien postérieurs, & dont la supposition est manifeste. Il y a donc lieu de croire que, du temps d’Hermès, tout ce que l’on savait de chimie se réduisait à quelques connaissances isolées, dont on ne voyait pas le rapport, & qui par conséquent ne formaient pas encore une Science ; quoique l’astronomie, la morale, & quelques autres sciences, eussent déjà fait d’assez grands progrès, comme on peut s’en convaincre par l’énumération des livres d’Hermès. On n’en sera pas étonné, si l’on considère que les phénomènes les plus importants de la chimie sont souvent en même temps les moins sensibles. Cachés par la nature sous une espèce d’enveloppe, comme les ressorts d’une machine précieuse, ils ne se montrent qu’à ceux qui savent les découvrir, et ne peuvent être aperçus que par des yeux exercés à les observer. Si le hasard en a présenté d’abord quelques-uns qui devaient, par leur singularité ou leur éclat, attirer l’attention des premiers savants, ces phénomènes ne pouvaient leur paraître que comme des pièces séparées, dont il leur était impossible de saisir l’application et les usages, faute d’en connaître une infinité d’autres avec lesquels ils avaient un rapport essentiel.

 

Ces premiers chimistes n’eurent donc d’autres ressources que de recueillir les phénomènes qui venaient à leur connaissance : ils les faisaient reparaître au besoin, soit pour les employer à des choses usuelles, soit pour opérer des effets qui paraissaient des merveilles aux yeux de ceux qui n’étaient pas si savants.

 

C’est là sans doute à quoi se résumait la chimie de ces premiers inventeurs des sciences ; c’est cette chimie qu’appris d’eux Moïse, qui, selon l’Ecriture, fut instruit dans la sagesse des Egyptiens, & depuis, le philosophe Démocrite, qui fit exprès le voyage d’Egypte pour aller puiser les sciences à leur source. Ils sont mis l’un & l’autre au nombre des chimistes ; le premier parce qu’il sut dissoudre et faire boire aux Israélites le veau d’or dont ils s’étaient fait un dieu ; & le second, à cause du témoignage que lui ont rendu plusieurs anciens écrivains, & surtout Pline le naturaliste, qui qualifie de magie et de science miraculeuse celle que possédait Démocrite.

 

Quoique nous soyons fort peu avancés dans l’histoire de la chimie, nous ne pouvons cependant la suivre plus loin, sans faire mention d’une singulière manie qui attaqua la tête de tous les chimistes : ce fut une sorte d’épidémie générale, dont les symptômes prouvent jusqu’où peut aller la folie de l’esprit humain, lorsqu’il est vraiment préoccupé de quelque objet ; qui fit faire aux chimistes des efforts surprenants, des découvertes admirables, & mit néanmoins de grands obstacles à l’avancement de la chimie ; dont la guérison enfin, qui n’a commencé paraître que dans le siècle dernier, a été la véritable époque du renouvellement de cette science, & de ses progrès vers la perfection.

 

On voit bien sans doute que je veux parler du désir de faire de l’or. Dès que ce métal fut devenu, par une convention unanime, le prix de tous les biens, il alluma un nouveau feu dans le fourneau des chimistes. Il paraissait fort naturel en effet que ceux qui avaient des connaissances particulières sur la nature et les propriétés des métaux, qui savaient les travailler et leur faire prendre mille formes différentes, cherchassent à produire le plus beau & le plus précieux des métaux. Les merveilles qu’ils voyaient chaque jour naître de leur art, leur donnait même une espérance assez raisonnable d’ajouter ce nouveau prodige à ceux qu’ils opéraient déjà : ils étaient bien éloignés de savoir alors si ce qu’ils entreprenaient était possible ou non, puisque même à présent la chose n’est point encore décidée. Ce serait donc une injustice que de blâmer leurs premiers efforts ; mais par malheur ce nouvel objet de leurs recherches n’était que trop capable d’exciter dans leur âme des mouvements bien opposés aux dispositions philosophiques ; il s’empara tellement de leur attention, qu’il leur fit perdre de vue les autres objets : ils crurent voir la perfection de toute la chimie, dans ce qui n’était que la solution d’un problème particulier de chimie ; la sphère de leur science, au lieu de s’étendre, se trouva par-là concentrée autour d’un point unique, vers lequel ils dirigèrent tous leurs travaux : le désir du gain devint leur mobile ; ils furent cachés et mystérieux ; en un mot, ils eurent exactement les caractères des artisans : s’ils avaient réussi ils auraient été de simples faiseurs d’or, au lieu d’être des chimistes éclairés et savants ; mais, par malheur pour eux, ils ne furent que les ouvriers d’un métier qui n’existait point.

 

Cette circonstance, qui les privait d’un gain habituel, fut néanmoins ce qui empêcha de les confondre avec les autres artisans ; ils eurent par-là une sorte de conformité avec les savants : et comme il est naturel de profiter de tous ses avantages, ils se prévalurent de celui-ci pour s’arroger le nom de philosophes ou de chimistes par excellence ; qualité qui est précisée par la particule arabe al, qu’ils ajoutèrent au nom de leur science, et d’où sont venus les noms d’Alchimie et d’Alchimistes.

 

Cette sorte d’hommes fut donc, comme one le voit, une espèce moyenne entre les savants et les artisans : ils eurent le nom des premiers, le caractère des seconds, & ne furent en effet ni l’un ni l’autre. Pour soutenir leur nom, ils firent des livres comme les philosophes, ils écrivirent les principes de leur prétendue science ; mais comme le caractère ne se dément point, ils le firent d’une manière si obscure et si peu intelligible, qu’ils ne donnèrent pas plus de lumières sur leur art prétendu, que n’en donnent sur les métiers qu’ils exercent, les ouvriers qui n’écrivent rien.

 

Plusieurs d’entre eux, sentant apparemment le reproche bien fondé qu’on pouvait leur faire à cet égard, s’efforcent d’attirer l’attention de leur lecteur, en annonçant dès le commencement de leurs livres, qu’ils vont parler très-clairement, mais ils se donnent bien de garde d’en rien faire. C’est une chose singulière que de les voir, après avoir promis avec beaucoup d’emphase de révéler les secrets les plus cachés, s’expliquer d’une manière encore plus obscure que tous ceux qui les ont précédés.

 

On peut juger du degré de considération que s’acquirent dans la société ces personnage qui n’y faisaient rien, & dont on n’apprenait rien ; aussi leur histoire n’est-elle pas moins obscure & moins embrouillée que leurs écrits. On ne sait au juste le vrai nom de la plupart d’entr’eux, le temps où ils ont vécu, si les livres qu’on leur attribue sont ou ne sont pas supposés ; en un mot, tout ce qui les concerne est une énigme perpétuelle.

 

Nous n’entrerons donc dans aucun détail sur les Synèse, les Zosime, les Adfar, les Morien, les Calid, les Arnaut de Villeneuve, les Raymond Lulle, les Alain de Lille, les Jean de Meun, & sur une infinité d’autres écrivains ou prétendus philosophes de cette espèce, dont la seule énumération serait beaucoup trop longue ; & nous passerons rapidement sur ce moyen age de la chimie, qui est la partie la plus ténébreuse et la plus humiliante de son histoire. Ceux qui sont curieux de suivre ces chroniques, vraies ou fausses, peuvent consulter les ouvrages de Borrichius, & l’Histoire de le Philosophie hermétique par l’abbé Lenglet Dufresnoy.

 

Nous nous contenterons de remarquer que, dans cette foule d’écrivains alchimistes et inintelligibles, il s’en trouve cependant un petit nombre qui, ayant parlé un peu moins obscurément de certaines expériences, ont fourni quelques lumières : tels sont peut-être l’arabe Geber, le moine anglais Roger Bacon, qui paraît avoir eu connaissance de la poudre à canon, & qui fut accusé de magie ; Raymond Lulle, Basile Valentin & Isaac le Hollandais, dans les écrits duquel on déchiffre quelque chose sur les eaux fortes, sur l’Antimoine et sur plusieurs autres peut-être.

 

Ces connaissances précieuses, dont on trouve le germe comme étouffé sous des monceaux d’énigmes, sont bien capables de faire regretter celles que nos laborieux chercheurs de pierre philosophale ont mises au rebut, à cause qu’elles n’avaient pas un rapport immédiat avec leur objet. Le service le plus essentiel qu’ils pouvaient rendre à la chimie, c’était d’exposer aussi clairement les expériences qui leur ont manqué, qu’ils ont décrit obscurément celles qui, selon eux, leur avait réussi.

 

Tel fut jusqu’au seizième siècle l’état de la chimie, ou plutôt de l’alchimie. Ce fut dans ce temps qu’un fameux alchimiste nommé Paracelse, homme d’un esprit vif, extravagant & impétueux, ajouta une nouvelle folie à celle de tous se prédécesseurs. Comme il était fils d’un médecin, & médecin lui-même, il imagina que, par le moyen de l’alchimie, on devait trouver aussi la médecine universelle ; & mourut à quarante huit ans, en publiant qu’il avait des secrets capables de prolonger la vie jusqu’à l’âge de Mathusalem. Raymond Lulle & quelques autres alchimistes avaient à la vérité songé, avant Paracelse, à la médecine universelle ; mais ce furent la chaleur et la hardiesse de ce dernier qui donnèrent la plus grande vogue à cette fameuse chimère.

 

Cette prétention, toute insensée qu’elle était, trouva néanmoins beaucoup de partisans, & occasionna un violent redoublement dans la manie des alchimistes : tant les hommes ont de crédulité pour ce qui les flatte ! Nos philosophes, sans cesser de chercher le secret des transmutations et celui de faire de l’or, travaillèrent à l’envi à trouver la médecine universelle, & s’imaginèrent que toutes ces merveilles pouvaient s’opérer par un seul et même procédé :beaucoup d’entre eux se vantèrent d’avoir réussi, & se nommèrent Adeptes : leurs livres furent bientôt remplis de recettes pour faire l’or potable, les élixirs de vie, les panacées ou remèdes à tous maux, & toujours dans leur langue ordinaire, c’est-à-dire indéchiffrable.

 

Tant d’extravagances accumulées avaient fait de la chimie une prétendue science ou, pour emprunter ses propres termes, dit ingénieusement M. de Fontenelle (dans l’éloge de M. Lémery) "un peu de vrai était tellement dissous dans une grande quantité de faux, qu’il était devenu invisible, & tous deux presque inséparables. Au peu de propriétés naturelles que l’on connaissait dans les mixtes, on en avait ajouté tant qu’on en avait voulu d’imaginaires, qui brillaient beaucoup d’avantage : les métaux sympathisaient avec les planètes & avec les principales parties du corps humain ; un alkaëst que l’on n’avait jamais vu, dissolvait tout ; les plus grandes absurdités étaient révélées à la faveur d’une obscurité mystérieuse dont elles s’enveloppaient, et où elles se retranchaient contre la raison".

 

La médecine universelle, quoique la plus folle sans doute de toutes les idées qui étaient entrées dans la tête des alchimistes, fut cependant ce qui commença à établir la chimie raisonnable, & à l’élever sur les ruines de l’alchimie.

 

Le fougueux et entreprenant Paracelse avait osé se frayer une route nouvelle dans l’art de guérir. Déclamant sans cesse contre l’ancienne pharmacie, dans laquelle on ne trouvait point, ou du moins que fort peu de médicaments préparés par la chimie, il brûla publiquement, dans un accès de frénésie, les livres des anciens médecins grecs et arabes, & promis de donner presque l’immortalité par ses médicaments chimiques. Ses succès, quoique forts inférieurs à ses promesses, furent néanmoins des prodiges ; il fit plusieurs guérisons surprenantes ; il attaqua surtout avec un grand avantage, par des préparations de mercure, les maladies vénériennes, qui commençaient alors à faire beaucoup de ravages, & contre lesquelles la médecine ne trouvait que des armes impuissantes dans la pharmacie ordinaire.

 

On ne reste guère dans l’indifférence sur des hommes du caractère de Paracelse : aussi ce qu’il pouvait avoir de mérite réel lui suscita-t-il des envieux & des ennemis, tandis que son enthousiasme, & la sotte vanité avec laquelle il se préconisait lui-même, lui attirèrent des admirateurs encore plus sots.

 

Ceux d’entre les médecins de ce temps-là, qui avaient assez de bon sens pour n’être susceptibles d’aucune de ces faiblesses, prirent le parti moyen, c’est-à-dire le plus sage. Bien persuadés qu’il faut infiniment rabattre de ce que dit un homme assez inepte pour mépriser constamment le savoir d’autrui, & vanter avec exagération ses propres découvertes, comma faisait Paracelse, ils laissèrent ses partisans outrés donner aveuglément dans les extravagances de leur maître ;mais convaincus, d’un autre côté, par les succès de ce médecin, que la chimie pouvait fournir d’excellents remèdes inconnus jusqu’alors, ces vrais citoyens s’appliquèrent à les trouver par un travail digne des plus grands éloges, puisqu’il avait pour objet le bien de l’humanité. Ils furent, à proprement parler, les inventeurs d’un nouvel art chimique, qui avait pour objet la préparation des médicaments : ils écrivirent leur art , parce qu’ils n’étaient point artisans, & l’écrivirent clairement parce qu’ils n’étaient point alchimistes.

 

Il y eut donc deux classes de chimistes bien différents les uns des autres. Pendant que les frères de la Rose-Croix, un Cosmopolite, un Espagnet, un Beausoleil, un Philalète, & bien d’autres, perdaient leur temps, leur peine et leur argent pour enchérir sur les folies de Paracelse, on vit éclore successivement les ouvrages utiles de Crollius, de Quercetan, de Beguin, d’Hartman, de Vigamus, de Scroder, de Zwelfer, de Tachenius, de Le Febvre, de Glazer, de Lémery, de Lemors, de Ludovic, & de plusieurs autres qui s’appliquèrent à trouver et à décrire de nouveaux médicaments tirés de la chimie.

 

Les principales facultés de médecine, qui sentirent de quelle importance il était que ces médicaments fussent toujours préparés d’une manière uniforme, travaillèrent aussi à en fixer les procédés : de-là nous sont venus un grand nombre de Pharmacopées et de Dispensaires, dans lesquels on trouve beaucoup d’excellentes opérations chimiques.

 

D’un autre côté, la plupart des arts chimiques exercés dans le silence, étaient, du temps de Paracelse, déjà parvenus à un degré remarquable de perfection, par une marche très-lente à la vérité, mais aussi fort longue, & soutenue sans interruption presque depuis le commencement du monde. On savait découvrir, essayer & exploiter les mines avec avantage ; on connaissait les moyens d’allier, de dissoudre et d’affiner les métaux dans l’orfèvrerie et dans les monnaies ; on composait des verres, des cristaux, des émaux, des faïences d’une infinité de manières différentes ; on savait préparer des couleurs de toutes les nuances, & les appliquer à tous les corps ; la fermentation qui produit les vins, les bières, les vinaigres, était connue et pratiquée ; les distillateurs retiraient les matières spiritueuses, volatiles et aromatiques des plantes, pour en composer des essences et des parfums. Mais tous ces arts étaient exercés séparément, par des gens qui ne connaissaient que ce qui était relatif à leur objet ; & comme ces mêmes arts n’avaient point été décrits, personne n’avait conscience du tout : les différentes parties de la chimie existaient, mais la chimie n’existait pas encore.

 

Heureusement le goût des sciences, qui commençait à succéder alors au jargon & à l’ignorance des siècles précédents, suscita des hommes d’un esprit vraiment philosophique, qui sentirent combien il était essentiel d’acquérir et de publier un si grand nombre de connaissances importantes. Ils surmontèrent des obstacles de toute espèce, pour découvrir et développer les pratiques d’une infinité d’ouvriers qui exerçaient des parties essentielles de la chimie, quoiqu’ils ne fussent rien moins que chimistes.

 

Le célèbre Agricola est un des premiers et des meilleurs auteurs que nous ayons en ce genre. Né dans un village de Misnie, pays abondant en mines et rempli des travaux de la métallurgie, il les décrivit avec un détail et une exactitude qui ne laissent rien à désirer. Médecin comme Paracelse, et son contemporain, il était d’un caractère bien différent de ce fameux alchimiste : ses écrits sont aussi clairs et aussi instructifs, que ceux de Paracelse sont obscurs et inutiles. Lazard, Ercker, Schinder, Schlutter, Henkel, & quelques autres, ont écrit aussi sur la métallurgie, & nous ont donné la description de la docimasie ou l’art des essais. Antoine Neri, le docteur Merret, & le fameux Kunckel, qu’on ne peut assez louer à cause du grand nombre de belles expériences dont il a enrichi la chimie, ont donné un très-grand détail de l’art de la verrerie, celui de faire des émaux, d’imiter les pierres précieuses, & plusieurs autres.

 

Les chimistes estimables dont nous avons parlé jusqu’à présent, & même quelques-uns de ceux qui les ont suivis, & que nous distinguons bien des alchimistes, n’étaient cependant point tous absolument exempts des illusions de l’alchimie : tant il est vrai qu’une maladie opiniâtre et invétérée ne disparaît jamais subitement et sans laisser aucune trace ! Aussi depuis Paracelse et Agricola, avons-nous un grand nombre d’auteurs moitié chimistes raisonnables, moitié alchimistes. Kesler, Cassius, Roeschius, Orschall, le chevalier Digby, Libavius, Vanhelmont, Starkey, Borrichius, sont de ce nombre. Mais on doit leur pardonner ce défaut, en faveur du bien qu’ils ont fait à la chimie par une grande quantité d’expériences intéressantes.

 

Comme, dans les derniers temps des auteurs dont nous venons de faire mention, la manie alchimique était en quelque sorte dans sa crise, elle trouva aussi alors de puissants antagonistes, auxquels la saine chimie a les plus grandes obligations, puisqu’ils contribuèrent par leurs écrits à la délivrer de cette lèpre qui la défigurait et s’opposait à ses progrès. Les plus distingués de ces auteurs, sont le célèbre père Kircher, jésuite, & le savant Conringius, médecin, qui la combattirent avec beaucoup de succès et de gloire.

 

Nous arrivons enfin à une des plus brillantes époques de la chimie : je veux parler du temps où ses différentes parties commencèrent à être recueillies, examinées, comparées par des hommes d’un génie assez étendu et assez profond pour les rassembler toutes, en découvrir les principes, en saisir les rapports, les réunir en un corps de doctrine raisonnée, & poser véritablement les fondements de la chimie, considérée comme science.

 

Ce n’est que vers le milieu du siècle dernier qu’on commença à élever cet édifice, dont jusqu’alors on n’avait fait que rassembler les matériaux. Jacques Barner, médecin du roi de Pologne, fut un des premier qui rangea sous un certain ordre les principales expériences de chimie, en y joignant des explications raisonnées : son ouvrage porte le titre de Chimie philosophique. Tous les phénomènes de cette science y sont rapportés au système des acides et des alkalis, que Takenius avait déjà établi, mais dont il avait abusé en lui donnant beaucoup trop d’étendue ; faute qu’on sera néanmoins disposé à lui pardonner, si l’on considère combien il est difficile de ne pas y tomber, quand on est le premier à s’occuper de vérités aussi générales et aussi fécondes en conséquences, que le sont les propriétés de ces substances salines.

 

Bohnius, professeur à Leipsick, composa aussi un traité estimable de chimie raisonnée ; mais la réputation de ces chimistes physiciens a été presque éclipsée par celle que le fameux Beccher, premier médecin des électeurs de Mayence & de Bavière, se fit quelque temps après dans le même genre. Cet homme dont le génie égalait le savoir, semble avoir aperçu d’un même coup d’œil la multitude immense des phénomènes chimiques : aussi les méditations qu’il fit sur ces importants objets, lui découvrirent-elles la théorie la meilleure et la plus satisfaisante qu’on eût trouvée jusqu’alors ; elle lui mérita l’honneur d’avoir pour partisan & pour commentateur le plus grand & le plus sublime de tous les chimistes physiciens.

 

On doit reconnaître à ces titres glorieux et si bien mérités l’illustre Stahl, premier médecin du roi de Prusse. Né, de même que Beccher, avec une forte passion pour la chimie, qui se déclara dès sa première jeunesse, il était doué d’un génie encore supérieur à celui de Beccher. Son imagination aussi vive, aussi brillante et aussi active que celle de son prédécesseur, avait de plus l’avantage inestimable d’être réglée par cette sagesse et ce sang-froid philosophiques, qui sont les plus sûrs préservatifs contre l’enthousiasme et les illusions. La théorie de Beccher, qu’il a adoptée presqu’en entier, est devenue dans ses écrits la plus lumineuse et la plus conforme de toutes avec les phénomènes de la chimie. Bien différente de ces systèmes qu’enfante l’imagination sans l’aveu de la nature, et que l’expérience détruit, la théorie de Stahl est le guide le plus sûr qu’on puisse prendre pour se conduire dans les recherches chimiques ; et les nombreuses expériences que l’on fait chaque jour, loin de la détruire, deviennent, au contraire, autant de nouvelles preuves qui la confirment.

 

C’est à côté de Stahl, quoique dans un genre différent, qu’on doit placer l’immortel Boerhaave. Ce puissant génie, l’honneur de son pays, de sa profession et de son siècle, a répandu la lumière sur toutes les sciences dont il s’est occupé. Nous devons à un regard dont il a favorisé la chimie, la plus belle et la plus méthodique analyse du règne végétal, les admirables traités de l’air, de l’eau, de la terre, & surtout celui du feu, chef d’œuvre étonnant et tellement accompli, qu’il semble laisser l’esprit humain dans l’impuissance d’y rien ajouter.

 

Si les théories des grands hommes dont nous venons de parler, sont capables de contribuer infiniment à l’avancement de la chimie, en nous faisant apercevoir les causes et les rapports de tous les phénomènes de cette science, il faut avouer aussi qu’elles peuvent produire un effet tout contraire, lorsqu’on s’y livre avec trop de confiance, & qu’on étend leur usage au-delà de ses limites. La théorie ne peut être utile qu’autant qu’elle naît des expériences déjà faites ; ou qu’elle nous montre celles qui sont à faire : car le raisonnement est en quelque sorte l’organe de la vue du physicien, mais l’expérience est son toucher ; et ce dernier sens doit constamment rectifier chez lui les erreurs auxquelles le premier n’est que trop sujet. Si l’expérience qui n’est pas dirigée par la théorie est toujours un tâtonnement aveugle, la théorie sans l’expérience n’est jamais qu’un coup d’œil trompeur et mal assuré : aussi est-il certain que les plus importantes découvertes que l’on ait faites dans la chimie, ne sont dues qu’à la réunion de ces deux grands secours.

 

On trouve une preuve bien convaincante de cette vérité, dans les ouvrages des illustres sociétés littéraires, dont la naissance doit être regardée comme celle de la philosophie expérimentale, et la véritable époque où l’on a vu disparaître le jargon barbare de l’école, les illusions de l’astrologie judiciaire, les extravagances de la chimie, qui n’étaient que des spéculations chimériques & destituées de preuves, ou des amas confus de faits qui ne prouvaient rien.

 

Les mémoires savants et profonds de ces célèbres compagnies, dont les auteurs sont trop connus pour qu’il soit besoin de les nommer, seront à jamais les modèles de ceux qui veulent travailler avec succès à l’avancement des sciences, puisqu’on y voit toujours l’expérience donner un corps au raisonnement, et le raisonnement donner de l’âme à l’expérience.

 

Nous avons l’avantage de voir enfin les plus beaux jours de la chimie. Le goût de notre siècle pour les matières philosophiques, la glorieuse protection des princes, le zèle d’une multitude d’amateurs illustres et éclairés, le profond savoir et l’ardeur de nos chimistes modernes, que nous n’entreprenons pas de louer, parce qu’ils sont au dessus de nos éloges, tout semble nous promettre les plus grands et les plus brillants succès. Nous avons vu la chimie naître de la nécessité, recevoir de la cupidité un accroissement lent et obscur ; ce n’est qu’à la vraie philosophie qu’il était réservé de la perfectionner."


Nous pouvons compléter cette introduction par la célèbre définition de la chimie, et surtout de l’alchimie, telle qu’elle apparaît dans l’édition de 1778 :

 

CHIMIE : "La chimie est une science dont l’objet est de reconnaître la nature et les propriétés de tous les corps, par leurs analyses et leur combinaison.

 

Les avantages qu’on tire de cette science dans la physique et dans les arts, sont trop connus et trop nombreux, pour qu’on croie devoir s’arrêter à les exposer dans un ouvrage comme celui-ci.

 

Mais on ne saurait trop répéter que cette définition ne convient qu’à la chimie moderne, & nullement à l’ancienne, qui, totalement étrangère à la vraie physique, n’avait presque que pour objet que la pierre philosophale, c’est à dire, un amas monstrueux de procédés occultes & absolument dénués de liaisons et de principes.

 

La chimie qui est l’objet de cet ouvrage, n’a heureusement rien de commun que le nom avec cette ancienne chimie ; et cette seule conformité est même encore un mal pour elle, par la raison que c’en est un pour une fille pleine d’esprit et de raison, mais fort peu connue, de porter le nom d’une mère fameuse pour ses inepties et se extravagances."



Voir aussi cet ouvrage cité par Macquer :

Nouveau cours de chymie, suivant les principes de Newton & de Sthal. Jean-Baptiste Sénac 1723.

 

 


On peut rencontrer Macquer dans :

 

Histoire de la chimie. L’oxygène, de l’alchimie à la chimie. Un livre chez Vuibert.

 

Suivre le parcours de l’oxygène depuis les grimoires des alchimistes jusqu’aux laboratoires des chimistes, avant qu’il n’investisse notre environnement quotidien.

 

Aujourd’hui, les formules chimiques O2, H2O, CO2,… se sont échappées des traités de chimie et des livres scolaires pour se mêler au vocabulaire de notre quotidien. Parmi eux, l’oxygène, à la fois symbole de vie et nouvel élixir de jouvence, a résolument quitté les laboratoires des chimistes pour devenir source d’inspiration poétique, picturale, musicale et objet de nouveaux mythes.

 

À travers cette histoire de l’oxygène, foisonnante de récits qui se côtoient, s’opposent et se mêlent, l’auteur présente une chimie avant les formules et les équations, et montre qu’elle n’est pas seulement affaire de laboratoires et d’industrie, mais élément à part entière de la culture humaine.

 

 

Feuilleter


Voir aussi l’éloge de Macquer dans les Mémoires de l’Académie des Sciences en 1784.


Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens