Overblog
Suivre ce blog Administration + Créer mon blog
13 janvier 2011 4 13 /01 /janvier /2011 21:04


 

Rien ne destinait Faraday à une carrière scientifique sinon sa soif de connaître. D’origine modeste (son père est forgeron), il quitte l’école à quatorze ans pour entrer comme courtier chez un libraire. Il en profite pour dévorer tous les livres qui passent à sa portée. Sa culture est bientôt remarquée par un client du magasin qui le recommande à Humphry Davy. Celui-ci l’engage comme assistant, en 1813, au laboratoire de la "Royal Institution". Il entre à la "Royal Society" de Londres en 1824 et, l’année suivante, en devient directeur du laboratoire
.

 

De la chimie à l’électrostatique.

 

Continuateur de Davy, il établira les lois quantitatives de l’action chimique du courant électrique. Il est d’ailleurs l’auteur du vocabulaire, inspiré du grec, de cette discipline : cathode (électrode de sortie du courant), anode (électrode d’entrée), ion (particule qui se déplace) vers l’anode (anion) ou vers la cathode (cation). Il mesure l’intensité d’un courant électrique en inventant le "voltamètre", électrolyseur dont les électrodes sont coiffées de tubes à gaz gradués. Ses travaux feront avancer les notions d’atome et de poids atomique énoncées plus tard par Dalton. Juste reconnaissance, on donnera le nom de "faraday" à l’unité représentant la charge d’une "mole" d’électrons.

 

 

Avide de tout ce qui touche à l’électricité, il en explore l’ensemble des domaines. Par exemple celui de l’électrostatique. Chacun connaît la "cage de Faraday", enceinte conductrice grillagée qui isole des effets électriques. Dans les démonstrations effectuées par les musées scientifiques, le "cobaye humain" enfermé dans la cage ne voit pas sans inquiétude les éclairs dont on le bombarde. Ils lui sont pourtant totalement inoffensifs, apportant ainsi la preuve que la meilleure protection, en temps d’orage, est un habitacle métallique, par exemple celui d’une automobile.

 

 

Le nom donné à l’unité de capacité, le "farad" rappelle cet apport à l’électrostatique et à l’étude des "diélectriques" (ce terme, qui désigne les isolants, est également de Faraday).

 

Faraday et l’électromagnétisme

 

L’électromagnétisme est, cependant, le domaine où il donne toute la mesure de son talent imaginatif. Sa première publication sur l’électromagnétisme date de septembre 1821. Un an après celle de Ampère. Faraday y montre comment un aimant peut tourner autour d’un courant électrique et inversement comment un élément de circuit électrique peut tourner autour d’un aimant.

 

Le montage est simple. Dans un vase plein de mercure un aimant droit est à demi immergé verticalement, un pôle sortant légèrement de la surface du liquide. L’autre pôle est relié, par un lien souple, à la base du vase. Un conducteur vertical plonge au centre du vase, à proximité de l’aimant. On y établira un courant électrique en reliant une pile entre son extrémité supérieure et la base du vase contenant le mercure.

 

Le courant étant établi, si le fil est maintenu fixe, l’aimant tourne autour de celui-ci. Si, à l’inverse, le fil est libéré et l’aimant maintenu fixe, c’est le fil qui tourne autour de l’aimant.

 

Ces mouvements ininterrompus sont bien autre chose que les brèves attractions et répulsions observées entre aimants ou entre électroaimants.

 

Ampère sera le premier à noter l’importance du phénomène. Dans une communication à l’Académie des sciences, du 8 avril 1822, sur les nouvelles expériences électro-magnétiques faites par différents physiciens depuis le mois de mars 1821, il souligne les nouveaux progrès de cette branche de la physique dont, dit-il, "nous ne soupçonnions pas même l’existence il y a seulement deux années et qui déjà nous a fait connaître des faits plus étonnants peut-être que tout ce que la science nous avait jusqu’à présent offert de phénomènes merveilleux". Il note, en particulier, l’apport essentiel de l’expérience de Faraday :

 

"Un mouvement qui se continue toujours dans le même sens, malgré les frottements, malgré la résistance des milieux, et ce mouvement produit par l’action mutuelle de deux corps qui demeurent constamment dans le même état, est un fait sans exemple dans tout ce que nous savions des propriétés que peut offrir la matière inorganique".

 

Le montage annonce les "moteurs" électriques. Le premier, digne de ce nom, sera imaginé par Barlow en 1822 : une roue dentée dont les pointes plongent dans une cuve de mercure est placée entre les branches d’un aimant en fer à cheval. Quand le courant passe du mercure à l’axe de la roue, elle tourne. La "roue de Barlow" est encore présente dans les collections des laboratoires de la plupart des établissements d’enseignement secondaire.


 

Roue de Barlow


 

Du moteur à la génératrice.

 


 

Il faut attendre 1831 pour que Faraday fasse l’observation des "courants induits" qui amènera à la construction des premières génératrices.

 

L’idée est simple : si un courant électrique peut "créer" un aimant, un aimant doit être capable de "créer" un courant.

"Ces considérations, dit-il, l’espoir d’obtenir de l’électricité à partir du magnétisme ordinaire, m’ont stimulé à différents moments pour enquêter expérimentalement sur les effets inductifs des courants électriques. Je suis arrivé tardivement à des effets positifs ; et non seulement mes espoirs ont-ils été remplis, mais j’ai obtenu une clef qui m’a semblé ouvrir l’explication des phénomènes magnétiques d’Arago et aussi de découvrir un nouvel état qui aura probablement une grande influence dans certains des effets les plus importants des courants électriques."

 

L’expérience d’Arago avait fortement impressionné ses contemporains. Un disque horizontal de cuivre, ou d’un autre métal bon conducteur, mis en rotation, entraînait dans son mouvement une aiguille aimantée placée au dessous.

 

Les montages utilisés par Faraday pour son "enquête expérimentale" sont d’une étonnante simplicité.

 

D’abord, il enroule ensemble, sur un même cylindre de bois, deux "hélices" de fil de cuivre. Ces hélices (Ampère dirait solénoïdes) comportent chacune plus de 200 spires conductrices isolées.

 

La première bobine est reliée aux pôles d’une "batterie voltaïque" comportant dix paires de plaques cuivre/zinc de 10cm environ de côté.

 

La seconde est reliée à un galvanomètre. Cet instrument, encore rudimentaire, est composé d’une aiguille aimantée montée sur un pivot et placée, en direction nord-sud, dans une bobine de fil conducteur enroulé sur un cadre rectangulaire. Le passage d’un courant dans la bobine peut être repéré, voire mesuré, par la déviation de l’aiguille.

 

Un courant est établi dans la première bobine. L’électroaimant ainsi créé va-t-il induire un courant dans la seconde ?

 

L’expérience est un échec. L’aiguille du galvanomètre reste immobile.

 

Faraday ne renonce pas et utilise, cette fois, une batterie voltaïque de 100 éléments. Le courant attendu n’est toujours pas au rendez-vous mais, remarque Faraday, "quand le courant fut mis, il y eut un soudain et très léger effet au galvanomètre et il y eut de même un léger effet quand le contact a été rompu". Il remarque également que le courant "induit" observé dans la deuxième hélice lors de la fermeture du circuit "inducteur" était inverse de celui observé lors de l’ouverture du circuit.

 

Pour autant, Faraday n’est pas satisfait : obtenir un si faible effet, par le moyen aussi énergique qu’une batterie de 100 éléments, est véritablement décevant. Il imagine, alors, un montage susceptible de mieux répondre à son attente.

 

Prendre un anneau de fer doux de deux centimètres de section et de quinze centimètres de diamètre. Sur la moitié de l’anneau une hélice, A, de fil de cuivre de 200 spires est enroulée et reliée à une batterie de 10 plaques. Une autre hélice "secondaire" identique, B, est enroulée sur l’autre moitié et reliée à un galvanomètre.

 

A la fermeture du circuit "primaire", A, "le galvanomètre, constate Faraday, est immédiatement affecté de façon bien plus intense qu’avec la batterie 10 fois plus puissante utilisée auparavant". Avec la batterie de 100 plaques "l’effet est si grand que l’aiguille du galvanomètre se met à tourner 4 ou 5 fois avant que l’air ou le magnétisme terrestre ne réduise son mouvement à quelques oscillations".


 

Anneaux et solénoïdes utilisés par Faraday


 

La dernière expérience est devenue un classique des cours de physique. Elle consiste à utiliser un barreau aimanté et une bobine conductrice : " l’aimant est rapidement plongé dans la bobine, immédiatement l’aiguille est déviée… l’aimant étant retiré, l’aiguille est déviée dans la direction opposée". La même expérience peut être réalisée en utilisant un solénoïde alimenté en courant (un électroaimant) au lieu d’un aimant permanent.

 

Plus démonstratif encore : le montage de la "roue de Barlow" est repris. La roue de cuivre dont les pointes touchent au mercure et qui est placée entre les branches d’un aimant en U est, cette fois, simplement reliée à un galvanomètre. Quand on lui imprime un mouvement de rotation, un courant permanent est détecté au galvanomètre pendant toute la rotation. Le "moteur" électrique est donc réversible et peut se transformer en une "génératrice" capable de transformer de l’énergie mécanique en énergie électrique.

 

Comment expliquer ces phénomènes ? Faraday construit progressivement un modèle original.

 

Lignes de force et champs :

 

Le concept d’action à distance proposé par Newton ne s’est pas imposé sans mal. Comment imaginer qu’un corps puisse agir là où il n’est pas. Seule la "magie" avait cette prétention. Descartes, rejetant le vide et décrivant l’univers comme une vaste mécanique entraînée par les rouages d’invisibles tourbillons, avait conservé l’adhésion de ceux qui faisaient, d’abord, confiance au sens commun.

 

Pourtant, l’efficacité mathématique des lois qui en étaient issues, avait imposé le concept d’action à distance, y compris dans le domaine de l’électricité et du magnétisme, avec les lois énoncées par Coulomb et Ampère.

 

Faraday n’est pas convaincu. Il est déjà difficile d’imaginer que deux corps puissent exercer, l’un sur l’autre, des forces à distance. Que dire alors de courants électriques créés à distance ? Pour Faraday, un lien matériel existe nécessairement entre aimant "inducteur" et courant "induit". Quelque chose agit dans l’espace qui les sépare.

 

Depuis les observations du Napolitain Giambattista Della Porta (1534-1615) et les schémas qu’en donne Descartes (1664), les physiciens savent réaliser un "spectre magnétique". Une surface lisse, carton ou verre, est placée sur un aimant. On la saupoudre de limaille de fer. Quelques secousses et on fait apparaître le "fantôme" qui hante l’environnement de cet aimant : des faisceaux de lignes semblables à des gerbes de blé : un "champ" magnétique dira Maxwell.

 

Ces lignes, Faraday les appellera "lignes de force magnétiques". De même des "lignes de force électriques" existent autour des corps chargés d’électricité.


 

lignes de force électriques entre deux charges opposées


 

Faraday, nous dit Maxwell, "voyait par les yeux de son esprit, des lignes traversant tout cet espace où les mathématiciens ne considéraient que des centres de forces agissant à distance ; Faraday voyait un milieu où ils ne voyaient rien que la distance ; Faraday cherchait le siège des phénomènes dans des actions réelles, se produisant dans ce milieu, tandis qu’ils se contentaient de l’avoir trouvé dans une puissance d’action à distance particulière aux fluides électriques". (introduction au "Traité d’Electricité et de Magnétisme. Maxwell. 1873)

 

Ces "lignes de force" (avec Maxwell, nous disons aujourd’hui "lignes de champ") ont, pour Faraday, des propriétés physiques concrètes et observables.

 

Par exemple, celles du champ électrique. De toute charge électrique positive, Faraday "voit" partir une ligne de champ qui rejoint nécessairement, quelque part, une charge électrique négative équivalente. Les propriétés de ces lignes de champ expliquent les actions et mouvements observés.

 

Elles expliquent l’attraction : Ces lignes de champ sont élastiques et soumises à une "tension" longitudinale. Tendues comme un ressort, elles auront tendance à rapprocher les charges électriques, de signe contraire, placées à leur extrémité.

 

Elles expliquent la répulsion : les lignes de champ issues d’une même charge électrique ou d’une charge de même nature se repoussent latéralement.

 

Elles s’écartent de la charge ponctuelle qui les produit. Elles écartent, également, l’un de l’autre deux corps portant des charges identiques.

 

Elles s’accordent, aussi, avec la loi mathématique d’action à distance : les lignes de champ sont plus denses à proximité d’un corps chargé, c’est pourquoi le corps qui s’y trouve placé sera soumis à un nombre plus grand de lignes de forces et donc plus fortement attiré ou repoussé.

 

La loi de Faraday.

 

Les champs magnétiques sont eux mêmes constitués de lignes de force reliant deux pôles opposés. Tendues dans leur longueur elles se repoussent également latéralement.

 

Mais leurs propriétés sont bien plus spectaculaires. Si elles sont "coupées" par un conducteur mobile, à l’image des tiges d’un champ de blé tranchées par la lame d’une faux, une "force électromotrice induite" se crée dans le conducteur qui les coupe et provoque la circulation d’un courant dans celui-ci.

 

Pour être plus précis : la quantité d’électricité qui traverse ce conducteur est proportionnelle au nombre de lignes de champ coupées. Ou encore :

 

l’intensité du courant électrique est proportionnelle au nombre de lignes de champ coupées par unité de temps.

 

C’est la "loi de Faraday" qui deviendra loi de "Faraday-Lenz" quand Lenz aura fait observer que le sens de ce courant induit "est tel que, par ses effets, il s’oppose à la cause qui lui donne naissance". Nouvelle illustration du principe "d’action et de réaction".

 

Les techniciens et les ingénieurs qui s’emploieront bientôt à construire les génératrices et les moteurs du nouvel âge de la civilisation industrielle, devront beaucoup à cette vision matérielle des champs magnétiques. Ils sauront trouver les matériaux et inventer les formes des "pièces polaires" capables d’amplifier, de multiplier et de canaliser ces lignes de champ. De les rendre parallèles, divergentes où convergentes suivant l’effet recherché.

 

Mais quel est l’engrenage qui lie, ainsi, lignes de champ magnétique et courant électrique ? Quels mouvements, quelles ondulations animent ces champs ? C’est ce que cherchera à établir Maxwell.

 

Maxwell (1831-1879), la mise en équations.

 

James Clerk Maxwell est le descendant d’une famille noble d’Écosse. Il fait ses études à Edimbourg puis au Trinity college de Cambridge. Il enseigne ensuite à Aberdeen et à Londres avant de se retirer pendant six ans dans son domaine écossais où, dans la solitude, il rédige son "grand œuvre" : le "Traité d’électricité et de magnétisme".

 

En 1871 il revient à la vie universitaire comme professeur de physique expérimentale à Cambridge où il crée le "Cavendish Laboratory", future pépinière de savants. Il n’a que quarante huit ans quand il meurt d’un cancer intestinal. Il laisse, cependant, un héritage inestimable à la Physique. Einstein, Plank, entre autres, le reconnaîtront comme leur précurseur.

 

James Clerk Maxwell a 23 ans quand, à l’issue de ses études, il débute dans l’étude de l’électricité. Comment ne pas être enthousiasmé en découvrant le territoire ouvert par Œrsted, Ampère, Laplace, Lens… et, surtout, Faraday !

 

"Je résolus, dit-il, en abordant l’étude de l’électricité, de n’étudier aucun traité mathématique sur ce sujet, avant d’avoir entièrement lu les "Experimental Researches on Electricity" de Faraday".

 

Il est fasciné par le côté visionnaire de l’œuvre de Faraday qu’il oppose aux froides théories des "mathématiciens de profession", adeptes de Newton et des actions à distance :

 

"Ce fut peut-être un avantage pour la science, dit-il, que Faraday, bien qu’ayant une parfaite connaissance des notions fondamentales de temps, d’espace et de force, n’ait pas été un mathématicien de profession. Il n’était pas tenté de s’engager dans les nombreuses et intéressantes recherches de mathématiques pures, qu’auraient suggérées ses découvertes si elles avaient été présentées sous une forme mathématique, et il ne se sentait pas porté à imposer à ses résultats une forme qui répondît au goût mathématique de l’époque ou à les exprimer sous une forme qui permît aux mécaniciens de les aborder. Mais il se garda ainsi le loisir de faire son travail personnel, d’accorder ses idées avec ses observations et d’exprimer sa pensée dans un langage ordinaire et non technique."

 

Maxwell est, lui, un mathématicien averti, en particulier dans tout ce qui concerne la récente mécanique des fluides. Il souhaite adapter l’œuvre de Faraday au "goût mathématique" de ses contemporains :

 

"C’est surtout dans l’espoir de faire de ces idées la base d’une méthode mathématique que j’ai entrepris ce traité.", écrira-t-il dans son "Traité de l’Electricité et du Magnétisme", œuvre majeure qu’il publiera en 1873.

 

Sa première "mise en mathématique" du modèle de Faraday, se concrétise à l’occasion d’un mémoire qu’il lit en février 1856 devant la "Société Philosophique de Cambridge", sous le titre "On Faraday’s lines of force". Il en adresse un exemplaire à Faraday.

 

Celui-ci lui répond. " J’ai reçu votre Mémoire et vous en remercie beaucoup ; je ne dis pas que je vous remercie personnellement pour ce que vous avez dit des lignes de force, parce que je sais que vous l’avez fait dans l’intérêt de la vérité philosophique, mais vous devez supposer que cela m’est agréable et m’encourage beaucoup à penser. J’ai été tout d’abord effrayé de voir concentrer sur ce sujet une telle puissance mathématique, puis émerveillé de le voir si bien supporter cette épreuve.".

 

Passage de témoin d’un physicien de 65 ans, au sommet de sa carrière, à son jeune collègue de 26 ans.


 

Pour aller plus loin.

 

Voir l’excellente vidéo du site Ampère/CNRS.

Faraday : créer de l’électricité avec le magnétisme ?


Un livre :

 

 

Histoire de l’électricité, de l’ambre à l’électron.

Partager cet article
Repost0
13 janvier 2011 4 13 /01 /janvier /2011 20:33

La fée électricité a-t-elle mis beaucoup de temps avant de trouver les chemins de la pointe de Bretagne ?

 

Paradoxalement, alors que le train a été tant attendu, certaines communes de Bretagne, et du Finistère en particulier, ont vu s’allumer les premières lampes électriques avant même les quartiers parisiens.

 

L’histoire continue à s’écrire. La fée électricité se fait parfois sorcière. La fin de ce récit nous mènera à Brennilis, à Plogoff...


première mise en ligne janvier 2010.


 

1881, 1889, deux grandes dates de l’histoire de l’électricité.

 

En 1881 s’est tenue à Paris la première exposition internationale de l’électricité. Parmi les nouveautés le téléphone mais surtout les premières génératrices électriques alimentant les premiers moteurs comme celui du premier tramway ayant circulé à Paris ou encore les premières lampes à incandescence, en particulier celles de Thomas Edison.

 


Génératrice Edison à l’exposition internationale d’électricité de 1881.


Le premier tramway électrique.


Les premières lampes à incandescence.


De retour aux USA, Thomas Edison fonde, en 1882, la première centrale électrique du monde, la « Edison Electric Light Company ». A base de 6 dynamos « Jumbo », il produit du courant continu, dans le quartier de Wall Street de Manhattan, qui alimente 1 200 lampes pour éclairer 85 maisons, bureaux ou boutiques.

 

Moins d’un an plus tard, d’autres centrales toujours plus puissantes éclairent plus de 430 immeubles new-yorkais avec plus de 10 000 ampoules. L’exemple sera bientôt suivi par Londres.

 

A Paris, c’est l’exposition internationale de 1889 qui incite les autorités à lancer un programme d’électrification de la ville. Il faut en particulier éclairer la tour Eiffel, le joyau de l’exposition, dont le sommet porte deux énormes projecteurs éclairant la ville.

 

Chateaulin précurseur

 

"C’est la ville de Chateaulin, nous dit Anne Guillou (auteure de "Enfin... la nuit devint lumière"), qui, utilisant la chute d’eau de l’écluse à Coatigrac’h, sera la première cité finistérienne (la troisième en France) à s’éclairer aux ampoules électriques, dès 1887."

 

Il est vrai que la technique existe et est facile à mettre en œuvre mais cette précocité est preuve d’une rare capacité d’adaptation. Le texte de Anne Guillou et des "anciens de Douarnenez" mérite d’être cité.

 

" Dès 1886, une première usine hydo-électrique fut construite à 3km de la ville par l’ingénieur Ernest Lamy. Cet homme habile savait que l’utilisation d’une force jusque-là perdue, la chute d’eau de l’écluse de Coatigrac’h, rendait possible la construction d’une telle usine. Reléguée à l’extrémité de la France, presque à la fin de la terre, Chateaulin a su utiliser les inventions modernes qui parvenaient jusqu’à elle. C’est à la suite d’un article du "Figaro" que les élus ont décidé de s’intéresser à ce nouveau mode d’éclairage. Malgré la modicité de leurs ressources, ils traversèrent la France, se rendirent à la frontière suisse s’assurer de la réalité de ce système d’éclairage."

 

Cette ville de la"frontière suisse" est probablement "La Roche sur Foron". Le 16 septembre 1885, le journaliste Pierre Giffard grand reporter pour le journal Le Figaro indique avoir découvert "une ville éclairée à l’électricité qui n’est ni Londres ni Berlin ni Paris" mais cette petite localité située dans le département de la Haute-Savoie.

 

La première place est aussi revendiquée par Bellegarde-sur-Valserine. En août 1884, l’usine électrique Louis Dumont, avec sa retenue d’eau, en aurait fait la première ville électrifiée de France juste avant La Roche sur Foron en 1885 et Bourganeuf en 1886. Selon les sources, 30 ou 90 lampes avaient été installées pour l’éclairage public et certains particuliers. Cependant, la concession caduque fit que l’éclairage fut interrompu jusqu’en 1886. On trouve dans le numéro de "la Nature" du deuxième semestre de 1884, une description de cette installation.

 

Pierre Giffard cite également Bourganeuf, dans la Creuse, comme troisième ville éclairée par l’électricité et par le même Ernest Lamy. Cependant l’équipement de cette ville ne sera réellement efficace qu’en 1889 et Chateaulin a de bons arguments pour défendre sa troisième place sur le podium. Une chose est certaine : ses élus et ses habitants avaient su faire le choix, avec Ernest Lamy, de l’ingénieur qui faisait autorité en France dans ce domaine.

 

La lumière électrique à Chateaulin quand Paris l’attend encore. Beau symbole !

 

Poursuivons.

 

"C’est le 20 mars 1887 qu’eut lieu l’inauguration de l’éclairage des rues à la lumière électrique.

 

Il y a foule ce jour là à Chateaulin. De 9000 à 10 000 personnes sont venues de partout. La journée a commencé par la distribution de pain aux indigents car il faut que tout le monde soit heureux un tel jour. Puis, lors de la visite de l’usine de Coatigrac’h, visite commentée par Monsieur Ernest Lamy, tous sont étonnés par la simplicité apparente de l’installation et des engins produisant l’électricité.

 

Toute la journée fut grandiose, les visiteurs allant de surprise en surprise : concert, danses au biniou, grand banquet, feu d’artifice... Et soudain, à 20 heures, comme d’un coup de baguette magique, Chateaulin sort de l’obscurité pour devenir resplendissante de lumière. Le succès a dépassé toutes les espérances et les plus récalcitrants sont devenus les plus convaincus. La réussite est là, immense, palpable. Ces petites lampes à la lumière brillante que d’un mouvement de doigt on allume à distance, quel émerveillement ! "


 


 

L’écluse étant à limite de la commune de Saint-Coulitz, celle-ci revendique également d’avoir été la troisième commune de France à être électrifiée et le fait savoir dans son blason !

 

"Le blason de la commune date des années 1991/1992, années de la rénovation de la mairie. Nous vous expliquons la signification des éléments qui le composent.

 

- L’ampoule : Saint-Coulitz est la 1ère ville de l’ouest et la 3ème ville de France à être électrifiée grâce à l’usine hydro-électrique de Coatigrac’h en 1887.

 

- Les épis de blé symbolisent l’agriculture.

 

- La rivière bleu, c’est l’Aulne.

 

- Les mains ouvertes symbolisent l’accueil.

 

- Les étoiles sur fond bleu représentent le drapeau européen.

 

- Le triskell et les hermines matérialisent la bretagne.

 

- tradition - accueil - avenir - est la devise de la commune. "


Le local de la centrale est en ce moment en cours de rénovation

Voir l’article du Télégramme


En cette fin de 19ème siècle, il se trouve encore dans chaque commune le chantre local qui magnifie chaque évènement de ses alexandrins. Chateaulin n’échappe pas à la règle :

 

"Digne sang des Gaulois, Fils de la Race Antique,

Voyez et contemplez cette œuvre du Progrès ;

Mais acclamant, ici, la Lumière électrique,

Donnons-lui, sans retour, nos cœurs à tout jamais !

Spectacle sans pareil ! c’est le feu du Tonnerre,

Dompté par le Savoir, qui vient nous éclairer !

Ah ! ...puisse la Science aussi vaincre la Guerre...

En tous Pays, alors, la Paix saura régner."

 

Hélas, la lumière ne se fait pas aussi facilement dans l’esprit de ceux qui dirigent les États. Au même moment se fourbissent les armes qui, plus tard, massacrerons ces "fils de la race antique" dans les tranchées de Verdun et d’ailleurs.


Quand l’électricité remplace le pétrole.


L’époque des débrouillards.

 

Quelques noms d’autodidactes géniaux émaillent les début de l’électromagnétisme dont les génératrices électriques sont la plus belle application immédiate. Citons en premier lieu Zénobe Gramme.

 

Zénobe Théophile Gramme (1826-1901) est un électricien belge.

 

Il nait près de Liège, mais vécut la majeure partie de sa vie en France (à partir de 1856).

 

Très jeune, le travail manuel, l’attire, il suit d’ailleurs des cours dans un école industrielle. Bricoleur de génie, ébéniste, en particulier chez l’orfèvre Christofle, il met au point le prototype de la première dynamo industrielle (1869). Le deuxième prototype de sa dynamo (1871) est exposé à la Maison de la Métallurgie et de l’Industrie de Liège.

 

La « Machine de Gramme » est réversible : de génératrice de courant continu, elle peut devenir moteur électrique, fournisseur d’énergie mécanique, capable de remplacer la machine à vapeur dans les ateliers mais c’est d’abord comme génératrice qu’elle s’est diffusée.


Machine Gramme. A la fois génératrice et moteur.


Ces premières machines sont d’une étonnante efficacité. Il suffit de relier leur rotor, au moyen d’une courroie à la roue d’un moulin ou au volant d’une machine à vapeur pour alimenter en électricités lampes et moteurs électriques.

 

A Chateaulin la municipalité a fait appel à un ingénieiur mais dans les campagnes l’usage de la vapeur dans le machinisme agricole a déjà formé une génération de paysans capables de mettre en œuvre une technique qui ne demande pas une habilité particulière. Les exemples ne manquent pas dans le Finistère. Les témoignages des anciens sont là pour nous les rappeler.

 

Exemple : Au moulin de Barbary sur l’Aven, dans la commune de Kernével, une dynamo a été installée. Le courant continu produit sous une tension de 110V, alimente des batteries qui fournissent un courant régulier sans obliger à un fonctionnement permanent du moulin. Il est courant que, dans le voisinage de telles installations, des fermes s’équipent de batteries qu’elles viennent recharger au moulin. Une ou deux lampes dans la maison et dans la crèche sont déjà un début de confort apprécié.

 

Autre témoignage : Le Bourg de Pleyber-Christ a été électrifié peu après la guerre 14-18 "grâce à l’habileté des frères Quéré qui avaient fait une installation artisanale au moulin Jouanet, à la limite de la commune, sur la route du Cloître-Saint-Thégonnec."

 

Plus tard la compagnie Lebon devait racheter l’installation. L’époque des Compagnies d’Électricité était venue.

 

La compagnie Lebon dans le Finistère.

 

L’arrivée de l’éclairage électrique a d’abord été vécu comme une rude concurrence par les compagnies délivrant le gaz d’éclairage. Les plus performantes n’ont pas tardé à s’adapter en devenant fournisseurs d’électricité.

 

C’est le cas de l’entreprise Lebon.

 

Charles-Louis-André Lebon est né à Dieppe en 1800, l’année où Volta présente sa pile électrique. En 1841, il obtient le premier contrat d’éclairage par le gaz de Barcelone, en 1843 celui de Valence, en 1845 celui de Cadix.

 

C’est le 23 mars 1847 que la Société est fondée sous le nom de « Compagnie Centrale d’Éclairage par le gaz » pour les villes de Dieppe, Pont-Audemer, Honfleur et Chartres. Elle distribue le gaz en France mais aussi en Algérie, en Espagne, en Egypte.

 

En 1893 la compagnie procède à un essai d’éclairage électrique en Égypte et à Espagne. L’idée est bonne et la compagnie propose l’électricité là où elle exploite le gaz. A Morlaix, par exemple, elle distribue le gaz depuis 1857 et l’électricité à partir de 1902. La distribution électrique en courant continu est alimentée par des moteurs à gaz et une batterie d’accumulateurs. Le courant alternatif suivra en 1924.

 

En France, c’est au lendemain de la guerre 14-18 que l’état encourage la diffusion de l’électricité. L’entreprise Lebon recherche à s’implanter dans les régions. En particulier en Normandie et en Bretagne. Le 26 juin 1928, un décret déclare d’utilité publique la concession d’État accordée à l’entreprise Lebon.

 
L’électrification du Finistère.

 

Brest a été la première ville équipée. Ailleurs l’équipement est l’affaire d’installations locales dispersées.

 

L’une des raisons à la progression lente de l’éclairage électrique est la résistance des compagnies de gaz avec lesquelles les communes ont signé de très longs contrats difficile à rompre.


Le cauchemar des gaziers, une caricature anglaise qui illustre un conflit comme en connaît chaque développement technique nouveau.

 


JPEG - 118.7 ko
 

Marseillaise des électriciens

 

Extrait :

 

Allons enfants de la batt’rie,

Le jour de voir est arrivé !

Contre nous du gaz qu’on décrie

Trop longtemps le bec fut levé (bis).

Entendez nos fils, nos compagnes,

Gémir parce qu’on n’y voit pas !

Nous voulons pour guider leurs pas,

Eclairer villes et campagnes.

Aux fils ! Electriciens ! Allumez vos charbons !

Brillons, brillons

Qu’un feu plus pur éclaire les nations !


La "résistance gazière" est particulièrement forte à Landerneau. En 1914, le Compagnie d’Electricité de Brest et Extensions relance la municipalité de Landerneau à laquelle elle avait déjà fait une proposition en 1912. Pour enlever la décision, la compagnie d’électricité n’hésite pas à faire appel à l’esprit de clocher :

 

"Les localités suivantes du département du Finistère, d’une importance moindre que celle de Landerneau, assurent par l’électricité et depuis plus de deux années, la totalité du Servie ce l’Éclairage Public.

 

Audierne 4610 habitants

Chateaulin 4272 habitants

Guipavas 5061 habitants

Landivisiau 4713 habitants

Lannilis 3591 habitants

Lesneven 3776 habitants

Pont-Labbé 6612 habitants

Pont-Croix 2511 habitants

Rosporden 2450 habitants

La population de Landerneau est de 8252 habitants "

 

Il faudra pourtant attendre 1923 pour que, après une longue procédure, l’électricité éclaire les rues de Landerneau.


Une "association de consommateurs" pour la promotion du gaz et de l’électricité. (service des archives de Landerneau)


Une publicité pour le moins agressive !


Au fur et à mesure des syndicats de communes se forment et des compagnies s’imposent.

 

La société Lebon et Cie s’installe sur les arrondissements de Quimper et Morlaix. La Compagnie d’Électricité de Brest et Extensions sur ceux de Brest et Chateaulin. L’électricité y est fournie par des réseaux alternatifs à haute tension de 15 000 volts et 45 000 volts.


 


A partir de 1929 la Société Hydroélectrique des Monts d’Arrée exploite la chute de Saint-Herbot.


la centrale de Saint-Herbot


 

Brennilis et la parenthèse nucléaire.

 

A nouveau une centrale électrique dans le Finisitère, mais celle là est nucléaire et c’est à Brennilis. Peu d’électricité mais beaucoup de pollution.

 

Le chantier de démantèlement de la centrale nucléaire de Brennilis devait être un modèle du genre. Son démarrage avait donné lieu à moultes visites guidées.

 

En fait de modèle, c’est un extraordinaire et dangereux bricolage qu’ont découvert les agents de l’Autorité de Sûreté Nucléaire (ASN) : fûts corrodés, déchets nucléaires mal enregistrés, locaux sensibles ouverts au tout-venant, taux de radioactivité sous-estimés...

 

Retour sur la vie, pleine de rebondissements, de cette centrale.

 

 

 



 

La centrale nucléaire que nous avons refusée.

 

Plogoff, un combat pour demain. C’est un livre.

 

C’est d’abord la chronique du premier combat victorieux contre le lobby nucléaire : celui de la population de Plogoff dans la Pointe du Raz et des comités qui la soutenaient.

 

C’est aussi un document utile à tous ceux qui, aujourd’hui, reprennent ce combat.

 

 

 

 

JPEG - 59.5 ko
L’autocollant du comité de défense de Plogoff

 

Aujourd’hui. Le syndicat départemental d’énergie du Finistère.

 

La loi de nationalisation de l’électricité de 1946 avait placé la distribution publique de distribution d’électricité sous le régime de la concession. En pratique, deux niveaux opérationnels sont à distinguer ; le pouvoir concédant et la maîtrise d’ouvrage :

 

* le pouvoir concédant consiste à négocier les conditions d’exploitation du réseau avec le concessionnaire, à contrôler la qualité du service, c’est-à-dire de l’alimentation et à percevoir les taxes et redevances,

 

* la maîtrise d’ouvrage porte sur les travaux d’extension, de renforcement, d’enfouissement et de sécurisation du réseau de distribution public.

 

Le syndicat départemental d’électrification du Finistère (SDEF) a été constitué en 1948 pour assurer le pouvoir concédant pour le compte des collectivités et des syndicats primaires adhérents. La maîtrise d’ouvrage, quant à elle, relève de la compétence communale, intercommunale (communauté de communes par exemple) ou peut être déléguée à un syndicat intercommunal d’électrification locale (SIEL). Le syndicat départemental assure également une maîtrise d’ouvrage, mais uniquement pour les travaux de sécurisation.

 

Le SDEF regroupait, en 2007, à la fois des syndicats d’électrification locaux, des communautés de communes et des communes indépendantes. Conformément à l’article 33 de la loi sur l’énergie du 7 décembre 2006, le syndicat a engagé un travail de concertation avec les autres collectivités qui conservent encore leur pouvoir concédant, afin de regrouper cette compétence à l’échelle départementale.


Voir aussi le site de :

 

 

La Fédération nationale des collectivités concédantes et régies (FNCCR) réunit les collectivités locales organisatrices des services publics de l’énergie (électricité et gaz), de l’eau (eau potable et assainissement), de l’environnement (gestion et tri des déchets).


 


 

 



 

On peut lire encore.

 


Enfin... la nuit devint lumière

Entre autres documents, nous avons emprunté à Anne Guillou, sociologue, quelques extraits de l’excellent livre qu’elle a rédigé à partir de ses propres recherches et des témoignages qu’elle à recueillis de la part des témoins de l’évènement : Enfin... la nuit devint lumière (Coop Breizh 1996).


Le jour où l’électricité est arrivée à Landerneau.

Pour cause de contrats de 50 ans avec l’usine à gaz, il faut attendre 1925 pour que le centre de Landerneau reçoive l’électricité et 1945 pour que ce soit le tour des quartiers périphériques.



Le jour où l’électricité est arrivée à Saint-Urbain.

Sur le site de la commune :


"Premier projet en 1926

Lampe à filament de carboneLa session de mai 1926 aborde le sujet de l’électrification de Saint Urbain. Le conseil « vote 140 francs en vue des études d’un réseau de distribution d’énergie électrique ». Monsieur le maire exposant au conseil « les avantages que présenterait pour les habitants de la commune la distribution de l’énergie électrique à la fois en vue de l’éclairage et de la force motrice ». Chacun sait l’importance de l’électricité dans notre vie quotidienne, notamment lors de différentes longues coupures d’EDF ..."


Le jour où l’électricité est arrivée à Brest

 

Quelques textes sur l’arrivée de l’électricité à Brest.

- 1911 : la centrale de Poullic Al Lor.

- 1947 : la centrale du Portzic.


Voir encore le passionnant récit de Joseph Hamon :

 

L’arrivée de l’électricité à Plouguenast

Un récit où on voit que la société Lebon n’a pas toujours été tendre avec les géniaux "bricoleurs" qui l’avaient précédée. Le gros producteur qui mange le petit... L’histoire est un éternel recommencement.

 

L’usine marémotrice qui aurait pu exister à l’Aber Wrac’h

Un premier chantier d’usine marémotrice commença à l’Aber-Wrac’h en 1925, mais fut abandonné, faute de financement en 1930. Les plans en servirent à ébaucher la suivante. L’utilisation de l’énergie des marées n’était cependant pas nouvelle, puisque de longue date des moulins à marée ont existé en des lieux touchés par la marée.



Un long chemin vers la lumière, histoire de l’éclairage public à Quimper

 

XIX e siècle. Et la lumière fut...

 

Un pionnier de l’électricité éolienne en Bretagne : Pierre Gane, créateur de la société Enag.


L’électrification de la Bretagne. 1939.


Syndicat d’électrification de Huelgoat-Carhaix. Des inquiétudes.


Sur l’histoire de l’électricité voir :

JPEG

 

Points de vente :

librairie dialogues

fnac

en Bretagne


Voir aussi :


Brève histoire de l’électricité en Loire – Atlantique



50 ans d’extension du réseau électrique en France

 

Partager cet article
Repost0
13 janvier 2011 4 13 /01 /janvier /2011 20:04

L’électricité règne sur notre quotidien. Pourtant certains de nos concitoyens se souviennent encore de la première fois où une lampe a éclairé leur logis.

 

L’histoire de l’arrivée de la distribution de l’énergie électrique est en effet une histoire récente. Dans beaucoup de communes elle a moins d’un siècle.

 

C’est le cas à Landerneau.


L’essentiel de la documentation utilisée provient du service des archives de Landerneau. Version initiale 10 juillet 2010


 

Une première avancée du "progrès" : le gaz de ville.

 

Autour des années 1860, la municipalité de Landerneau souhaite moderniser son éclairage public. Un appel d’offre est lance en 1861 pour un éclairage à l’huile de colza au moyen de 44 lanternes. Aucune entreprise n’ayant répondu à la proposition, l’appel est reconduit en août 1862.

 

Dans le même temps des propositions sont faites à la municipalité pour un éclairage à l’huile de pétrole ou un éclairage au gaz qui sont les nouveaux signes de la "modernité".

 


Schéma d’une usine à gaz vers 1860.


 

La municipalité n’est pas insensible à ces propositions. En 1866, après avoir écarté d’autres offres, en particulier celle de la société Lebon déjà bien installée dans le Finistère, elle envisage d’accorder une concession à la "Compagnie Française d’éclairage et de chauffage par le gaz (Fabius Boitol et Cie)".

 

Le préfet étant le maître final de la décision, la municipalité appuie sa demande en faisant valoir l’arrivée récente du train dans la ville et en particulier la nécessité de remplacer l’éclairage à l’huile du quartier de la gare par un éclairage plus efficace, le dernier train s’arrêtant à la gare à 11h. Par ailleurs il est fait mention du coût inférieur du gaz tel qu’il est attesté par les communes de Morlaix et Quimper qui ont accordé une concession à l’entreprise Lebon.

 

La concession étant accordée pour une durée de 50 ans, le préfet demande d’ajouter dans le contrat :

 

- la renégociation des tarifs tous les 5 ans pour adapter le prix à celui de la houille.

 

- l’obligation de stipuler que "la société devra faire profiter la ville des nouveaux systèmes d’éclairage que la science ferait découvrir avant l’expiration de la période de 50 ans" .

 

Cette dernière clause est particulièrement importante à un moment où la technique évolue avec une inhabituelle rapidité et où l’imposition de concessions de l’ordre du demi siècle annonce des difficultés pour l’avenir. Nous verrons que le problème se posera en particulier à Landerneau.

 

Notons à ce propos le sens de l’intérêt public de l’administration préfectorale. Nous ne la retrouvons pas toujours dans une époque où la "privatisation" des services publics devient le modèle soutenu par les représentants de l’État.

 
Où mettre l’usine ?

 

Le 28 octobre 1866 est lancée une enquête "commodo et incommodo" pour l’achat d’un terrain "à l’extrémité est de la rue des boucheries". En juin de la même année le propriétaire de la parcelle visée avait fait savoir son refus de "morceler sa prairie pour l’installation d’une usine insalubre" sur les 23 ares réclamés pour l’usine.

 

Après accord l’usine était donc projetée au bas de ce qui est aujourd’hui la rue du gaz.

 

(Le site, aujourd’hui abandonné a fait l’objet d’une réhabilitation)

 

Débuts difficiles.

 

Le dossier à peine bouclé, le conseil municipal apprend que la "Compagnie Française d’éclairage et de chauffage par le gaz" est déclarée en faillite. C’est donc le retour à la case départ.

 

L’affaire est reprise en 1868 pour une nouvelle concession de 50 ans par l’entreprise de Augustin Félix Fragneau de Bordeaux qui, après un début qui ne répond pas aux promesses faites, est elle même mise en liquidation en 1870.

 

Se crée alors, en 1873, la "Société du Gaz de Landerneau" dont l’un des principaux actionnaires est l’un des liquidateurs de l’entreprise Fragneau, le Banquier Henri Michel qui est également administrateur directeur des chemins de fer des Bouches-du-Rhône.

 




Modèle de bec de gaz vers 1900 à Landerneau.


Dans le mur, les habitants du quartier vous indiquent la trace du tuyau de gaz.


Robida. Allumeur de lampadaire en Bretagne.


 

La société poursuit son activité perndant trente ans. Elle est dissoute en février 1903 pour être vendue à un nouvel exploitant, M. Le Coniac. L’entreprise devait être toujours rentable car pour l’année 1902 le dividende remis aux actionnaires avait été de 16 francs nets par action.

 

On trouve encore une lettre de Charles Le Coniac adressée au maire en Novembre 1910 pour lui proposer un avenant à son contrat. Plus tard l’entreprise sera reprise par la "Compagnie du Gaz Franco-Belge" qui exercera son monopole pour l’éclairage jusqu’aux années qui suivront la guerre de 1914-18.

 

Quand le gaz fait du bruit dans Landerneau

 

Le volumineux dossier, consultable au service des archives de Landerneau, des relations entre la municipalité de Landerneau et la Compagnie du Gaz, puis de la compagnie Franco-Belge, est surtout riche des multiples conflits qui opposent les représentants de la population aux industriels. Il est vrai que la compagnie, forte de sa concession de 50 ans est plus attentive à ses bénéfices qu’à la qualité du service rendu.

 

Témoin : la lettre adressée au maire de Landerneau en 1879 par un certain nombre de commerçants de la ville.

 

xxxxxx

 

Landerneau le 14 juin 1879

 

Monsieur le maire,

 

Nous commerçants à Landerneau, abonnés du gaz, avons l’honneur de vous exposer :

 

Que depuis quelques jours, le gaz qui nous est fourni par la compagnie éclaire fort peu et nous arrive incomplètement épuré ; de telle sorte que les métaux qui sont dans notre magasin sont oxydés et exigent un nettoyage de tous les instants, et que l’acide sulfureux que nous respirons nous occasionne des aigreurs qui pourraient se traduire plus tard par d’autres maladies plus graves.

 

Et comme si ce n’était pas assez de ces inconvénients, le gaz est venyu à nous manquer absolument de manière à nous laisser dans l’obscurité dans les soirées du 12 courant à 10 heures du soir et du 13 à 9 heures.

 

Nous étant défaits de nos anciens appareils d’éclairage, nous avons dû renvoyer nos clients et renoncer aux bénéfices de ces soirées. Nous trouvons par conséquent qu’il est de toute justice que la compagnie nous indemnise des pertes qu’elle nous occasionne, et nous sommes persuadés qu’elle fera droit à nos demandes, en apprenant notre juste motif de plainte.

 

Mais comme nous ne pouvons porter nous mêmes à M. le directeur de l’usine de Landerneau la plainte que nous formulons contre lui, nous vous prions, Monsieur le maire, de bien vouloir la faire parvenir à l’administration supérieure de la compagnie dont nous ignorons le siège et la raison sociale ;

 

Et d’agréer en attendant, l’assurance de notre dévouement respectueux.

 

xxxxxx

 

____________________________________________________

La pétition adressée au maire de Landerneau en 1879. (archives Landerneau)


Les signataires, des noms connus à Landerneau. (archives Landerneau)


 

Un moment de forte tension : la guerre 14-18

 

L’objet de cette étude n’étant pas "le gaz à Landerneau" mais l’arrivée de l’électricité nous nous contenterons d’évoquer les années proches de la guerre 14-18, période de transition où la nécessité de la diffusion de l’électricité s’impose de plus en plus à Landerneau.

 

Les difficultés résultant de la guerre sont un des éléments qui incitent la municipalité à s’orienter vers le recours à l’électricité.

 

Les problèmes sont d’abord liés à la difficulté d’approvisionnement en houille.

 

Rappelons que le gaz de ville est un des produits de la distillation de la houille, l’autre produit résultant de cette opération étant le coke utile à l’industrie métallurgique.

 

Le charbon c’est d’abord pour faire la guerre !

 

Pour produire un gaz de qualité il faut donc une houille de qualité. Or l’industrie de guerre devenant prioritaire la pénurie menace rapidement.

 

Dès lors il est difficile pour un maire de faire la différence entre ce qui dépend de la situation de guerre et ce qui dépend de la volonté de profit de l’industriel.

 

Dès décembre 1914 le maire se plaint d’un manque de pression du gaz. La réponse de l’industriel Lesage directeur de la Compagnie Franco-Belge, est claire : la faute à la guerre !

 

En 1916 une lettre du préfet demande d’ailleurs à la commune de réduire sa production de gaz de façon à conserver le charbon pour les "usines de guerre".

 

A la fin du conflit, et même dans les mois qui suivent l’armistice, la houille n’arrive plus. En décembre 1918 l’industriel Lesage annonce la fermeture de l’usine. La situation se débloque après une lettre du maire au préfet et la promesse de livraison de 20 tonnes de charbon par le port de Lorient et de 50 tonnes par le port de Brest. Mais le charbon qui arrive dans les communes est de si mauvaise qualité qu’on ne peut plus en extraire de gaz.

 

Les hommes aussi manquent !

 

En Octobre 1915 le directeur de l’usine à gaz écrit au maire pour lui demander de mettre à sa disposition du personnel communal ou de demander des militaires à l’armée. pour appuyer sa demande il fait visiter son usine à un huissier. Le rapport de celui-ci décrit une situation qui était supposée faire nécessairement fléchir les autorités.

Le constat d’huissier mérite d’être reproduit dans son intégralité.

 

xxxxxx

 

L’an mil neuf cent quinze le 26 octobre à la requête de la société Franco Belge Robert Le Sage et Cie représenté par Mr Fatta Jean, régisseur de l’usine à gaz de Landerneau y demeurant.

 

Lequel a exposé que ladite société est tenue d’éclairer au Gaz la ville de Landerneau et les particuliers mais qu’actuellement par suite du manque de personnel il craint de ne pouvoir fournir le gaz nécessaire au besoin de la ville et des particuliers,

 

Qu’obligé de faire le chauffeur, de s’occuper, outre du service de régisseur des travaux à faire en ville, des commandes à livrer, etc, il ne pourra certainement continuer étant fatigué qu’il a donc demandé à la municipalité et à l’autorité militaire du personnel pour continuer à faire fonctionner l’usine ; qu’il lui a été répondu par la municipalité et par l’autorité militaire qu’on n’avait pas de personnel à lui fournir. Qu’il m’invitait dans ces conditions à me transporter à Landerneau à l’usine pour constater les faits.

 

Déférant à cette demande je soussigné Auguste Tanguy Huissier audiencier près le tribunal civil de Brest demeurant dite ville rue du Château substituant Me Tromeur mon confrère empêché me suis transporté à l’usine à gaz à Landerneau où étant j’ai vu dans la cour occupé à casser du coke un homme qui m’a dit s’appeler Jacques Etienne et âgé de 76 ans manœuvre à l’usine, ayant ensuite pénétré dans un bâtiment où se trouvent les fours j’y ai vu le régisseur qui mettait du charbon dans le seul des trois fours qui était allumé ;

 

Près de lui se trouvait un jeune homme occupé à balayer le bâtiment ; ce jeune homme m’a dit s’appeler Jean Abhervé-Guéguen âgé de 15 ans et demi apprenti plombier mais faisant un peu de tout à l’usine sauf pourtant le chauffeur, ce service étant fait par un réfugié Belge, lequel était remplacé par Mr. Fatta bien souvent, même la nuit, ce réfugier Belge ayant été malade, il m’a déclaré qu’il y avait, outre ce réfugié Belge, comme employé son père qui était plombier à ladite usine et qu’actuellement il était en ville pour effectuer des travaux ;

 

Que c’était là tout le personnel de l’usine, c’est à dire quatre hommes et un apprenti. Mr Fatta m’a déclaré qu’il avait 56 ans, que l’ouvrier Belge était malade, que Jacques Etienne âgé de 70 ans, le manœuvre avait eu une faiblesse en faisant son travail le 18 octobre dernier ; que son apprenti malgré son jeune âge était très courageux au travail faisant plus que son devoir mais que cependant ; comme lui même il ne pourrait continuer son service dans ces conditions et qu’il se verrait contraint par suite de manque de personnel de cesser de faire fonctionner l’usine.

 

Ayant parcouru tous les bâtiments et le terrain de l’usine, voir même le jardin le tout enclos de mur je n’ai trouvé d’autres personnes sauf au bureau où j’ai vu Mme Fotta qui aide son mari aux écritures.- Ce dernier m’a déclaré être très fatigué et qu’il craint vu son état de ne pouvoir continuer à travailler.

 

De tout ce que dessus j’ai donné le présent procès verbal pour servir et valoir ce que de droit. Coût trente deux francs 9 centimes signé A Tanguy.

 

xxxxxx

 


La conclusion du constat de l’huissier


 

Enfin le nerf de la guerre : l’argent !

 

Le maire de Landerneau qui est alors M Lebos et M. Lesage, le directeur de l’usine, se livrent une véritable guérilla. L’un veut augmenter les tarifs du gaz, l’autre le refuse.

 

Dès août 1915 l’entreprise Lesage a menacé d’arrêter la fourniture de gaz si les tarifs ne sont pas augmentés. Elle confirme par un télégramme en septembre.

 


 


Le maire de Landerneau qui s’est adressé à ses collègues pour connaître la situation chez eux, reçoit une réponse du maire de Brest qui l’informe que chez lui le prix n’a pas augmenté.

 

Une contre offensive s’organise. Le 16 octobre 1915, à l’initiative du maire de Pontivy, une réunion se tient à la mairie de Saint Brieuc avec les maires de Dinan et d’Auray "afin de s’entendre sur les mesures à prendre pour résister efficacement aux revendications de la Cie du Gaz Franco-Belge qui éclaire les villes représentées". Pour s’opposer à la prétention de la compagnie d’augmenter le prix du gaz, elles s’engagent à une assistance mutuelle.

 

Il faut signaler que cette résistance a aussi une dimension "politique". On trouve dans le dossier d’archives de la ville de Landerneau, un exemplaire du "Cri du peuple", journal de l’internationale socialiste SFIO, qui ne correspond pas nécessairement à l’orientation politique du conseil mais qui s’oppose à l’augmentation du prix du gaz. La volonté de ne pas se laisser doubler à gauche est certainement présente dans l’attitude municipale.

 


 

 


La guérilla se poursuivra pendant toute la guerre avec un échange de lettres d’une violence peu courante dans le style administratif.

 

Mais bientôt un nouveau conflit va naître quand le conseil municipal décidera d’adopter l’éclairage électrique.

 

La difficile arrivée de l’électricité.

 

Si la ville de Chateaulin revendique d’avoir adopté l’éclairage électrique avant Paris, et ceci dès 1887. Landerneau fait figure de retardataire.

Le 23 avril 1914 la "Compagnie d’électricité de Brest et extensions" avait proposé au maire de Landerneau de remplacer ses 88 becs à gaz Auer par 100 lampes à incandescence métallique. La compagnie brestoise ne manquait pas de faire remarquer que des villes du Finistère bien plus petites avaient déjà adopté l’éclairage électrique :

 

- Audierne 4610 habitants

- Chateaulin 4271 "

- Guipavas 5061 "

- Landivisiau 4713 "

- Lannilis 3591 "

- Lesneven 3776 "

- Pont-Labbé 6612 "

- Pont-Croix 2511 "

- Rosproden 2450 "

 

Notons que la population de Landerneau est alors de 8252 habitants. il est certain que l’argument avait de quoi énerver un maire Landernéen mais que faire quand on est lié par contrat pour encore plusieurs dizaines d’année à la compagnie de gaz locale ?


La proposition de la Compagnie d’électricité de Brest et extensions : une ligne depuis Kerhuon. (document archives de Landerneau)


Une première offensive avait d’ailleurs été menée en 1911 par la société.

 

Le conseil municipal du 26 mai prenait connaissance d’une demande de M. Legrand, son représentant, pour obtenir la concession d’éclairage électrique sur la ville. La proposition était soumise à la commission d’éclairage.

 

Retour en conseil municipal le 27 juin qui décide, faute de documentation, de reporter la discussion au conseil prévu en août. Décision qui n’empêche pas une passe d’armes dans la salle du conseil.

 

"M. Bonnefoy fait remarquer que la Compagnie du Gaz qu’il représente fait toutes réserves en ce qui concerne les concessions demandées, cette compagnie ne considérant les articles nouveaux adoptés par le conseil que comme une continuation de l’ancien traité (renégocié en 1910) et que, par suite, elle attaquerait la ville en dommages et intérêts du préjudice qui pourrait lui être causé"

 

Réponse courroucée de l’un des conseillers :

 

"M. Boucher proteste énergiquement contre cette prétention de la Compagnie du gaz et déclare que s’il avait considéré le nouveau traité passé avec M. Le Coniac pour l’éclairage au gaz comme une continuation de l’ancien traité, il se serait complètement refusé à le voter et que, par suite, il trouve déplacé les mesures de la nouvelle compagnie concessionnaire."

 

Le sujet est à nouveau à l’ordre du jour du conseil du 16 mars 1912 qui décide de confier une étude à la commission d’éclairage en lui donnant mission de s’entourer de spécialistes (ingénieurs et conseils juridiques). Il faudra donc attendre 1914 pour qu’on en parle à nouveau.

 

Noter que s’il n’existe pas de service municipal, de l’électricité est cependant déjà produite ou utilisée par certains industriels landernéens.

 

L’électricité et les industriels.

 

C’est le cas, par exemple, de la Grande Briqueterie, de l’entreprise Belbéoc’h, de l’entreprise Gayet ou encore de l’usine Dior qui fabrique des engrais depuis 1907. En février 1918, l’usine est sollicitée par l’ingénieur chef du service électrique des Chemins de fer pour fournir de l’électricité pour l’éclairage de la gare afin de satisfaire aux besoins de l’autorité militaire.

 

La société du gaz Franco-Belge invitée à accepter cette dérogation à son contrat qui lui assure l’exclusivité de l’éclairage ne peut que s’incliner. Il est vrai que la demande précise que cette installation ne sera que temporaire et ne pourra se prolonger que d’une année après la fin de la guerre, date évidemment inconnue au moment de la demande.

 

C’est aussi le cas de l’entreprise Gayet qui demande le, 20 avril 1920, une autorisation sous le régime de la "permission de voirie", pour la pose d’une ligne de transport électrique de première catégorie "destinée à relier son usine située rue de la gare à sa maison d’habitation rue de Brest". La dynamo de 6kW installée à la scierie fournira un courant continu sous tension de 120V par une ligne à 2 fils supportant 50A.

 

Cependant l’usine principale de production d’électricité est la Grande Briqueterie de Landerneau. Celle-ci profite de la retenue d’eau qui l’équipe et produit donc déjà de "l’électricité renouvelable" dont le mérite est de ne pas dépendre de la fourniture en charbon et donc des pénuries de guerre. Elle a déjà fourni de l’électricité à son voisinage et rêve d’en fournir à la ville entière.

 

Quand la Grande Briqueterie entre en scène.

 

Octobre 1920. La guerre est terminée depuis bientôt deux ans mais le contentieux entre la ville de Landerneau et la Compagnie du Gaz, concernant la fourniture de gaz, n’est toujours pas réglé. C’est alors que le directeur de la Grande Briqueterie de Landerneau propose à la ville de lui fournir l’électricité nécessaire à son éclairage public.

 

A l’évidence le maire y est très favorable mais il ne faut pas oublier le monopole de la compagnie du gaz qui a cependant l’obligation de "faire profiter la ville des nouveaux systèmes d’éclairage que la science ferait découvrir avant l’expiration de la période de 50 ans de la concession"

 

En janvier 1921 le maire est donc contraint d’adresser une lettre à la société Lesage pour la mettre en demeure de lui installer l’éclairage électrique aux conditions proposées par la briqueterie. Conditions évidemment impossibles à accepter sur le plan économique par la compagnie du gaz, la "houille blanche" produite par l’Elorn étant gratuite à un moment où le charbon et le pétrole coûtent encore si cher.

 

Fin de non-recevoir, donc, de la part de l’industriel qui sait ne pas pouvoir rivaliser. Un conflit est inévitable et la mairie confie sa défense d’abord à M. Le Borgne avocat à Rennes puis à M.Alizon, avocat à Quimper.

 

Courant 1922, le maire pour contourner la difficulté, imagine de ne demander une autorisation que pour la seule fourniture d’électricité pour l’usage de la force motrice. C’est effectivement une méthode déjà utilisée ailleurs. Les contrats avec les compagnies de gaz ne portant que sur l’éclairage public, il était possible de fournir l’électricité aux artisans et industriels qui en feraient la demande. Rien n’empêchait ensuite les industriels raccordés d’en faire bénéficier leur voisinage.

 

Il s’avérait en effet que aucune loi ne s’opposait à cette pratique. Un mémoire, non signé, présent dans le dossier d’archives de la ville détaille la manœuvre. Son titre : "Abus d’une permission limitée à la force. Distribution illicite de la lumière. Impossibilité d’une sanction pénale".

 

Par ailleurs les services de l’État encourageaient fortement la diffusion de l’électricité dans les villes et communes et n’étaient pas prêts à soutenir les entreprises gazières dans leur résistance.

 

1923 : de l’électricité chez les industriels.

 

En août 1923 une lettre adressée au préfet faisait donc état du désir des industriels landernéens de se voir doter de la "force motrice électrique".

 

Réponse positive du préfet, à condition que la concession accordée ne se fasse que "pour distribution d’énergie pour tous usages autres que l’éclairage public ou privé". Avec une telle restriction l’industriel ne pouvait même pas éclairer son propre local par des lampes électriques. Naturellement il ne s’en privait pas et en faisait même profiter son voisinage.

 

Sous la dénomination de "Usine électrique de Traon Elorn", la Briqueterie alimentait donc bientôt les établissements Le Bos, Le Roux, Belbéoc’h, Gayet, la scierie de la gare et les deux cinémas de Landerneau.

 


L’usine de Traon Elorn


La retenue de Traon Elorn

 

Au sujet de l’électricité et des saumons de la retenue : voir le texte de Georges Huet, apprenti dans l’usine d’électricité en 1930.


Devant le danger de voir l’éclairage électrique gagner clandestinement la ville, la compagnie du gaz faisait alors une contre-proposition qui consistait à régler, de façon pour elle favorable, le contentieux portant sur le prix du gaz et à exiger une forte redevance sur chaque Kwh d’électricité délivré par l’usine de Traon Elorn si elle obtenait la concession de l’éclairage municipal. Proposition évidemment rejetée.

 

La crainte de la Compagnie du Gaz n’était pas sans fondements. En avril 1925, l’ingénieur en chef du département, venu en tournée d’inspection à Landerneau rédigeait un rapport dénonçant les abus constatés dans la ville. L’autorisation de 1923, écrivait-il, n’avait été accordée " que pour tous usages autres que l’éclairage public et privé". Or il constate que "il a été néanmoins établi tout un réseau d’éclairage, sans que le contrôle ait été saisi du projet de concession correspondant ni même d’installations provisoires d’exécution".

 

En réalité la situation s’était réglée l’année précédente suite à une médiation d’experts désignés à l’initiative de la préfecture. Le contrat de gaz était reconduit et une indemnité annuelle versée à l’entreprise gazière. Place donc à l’électricité et à l’usine de Traon Elorn.

 

Une distribution "moderne"

 

La distribution à partir de l’usine de Traon Elorn se fera en triphasé triphasé - 50 Hz - 110/220 volts. Un procédé "moderne" quand on sait qu’il faudra attendre 1960 pour que le triphasé s’installe à Paris. Sous ce rapport, le retard a eu du bon.

 

L’usine sera équipée de groupes hydrauliques et de groupes diesel. Deux groupes hydrauliques de 125 kVA fonctionnent déjà, un troisième de 100 kVA est prévu. Un diesel de 125 kVA fonctionne, deux autres sont prévus. La tension de 200 V fournie par les alternateurs triphasés reliés à ces groupes sera portée à 5000 V par des transformateurs et ramenée à la tension d’usage dans les quartiers.

 




Plan de la centrale électrique de Traon Elorn.

 

Noter, à droite, le moteur Diesel qui n'a commencé à être commercialisé qu'à partir de 1900 (voir la photo ci-dessous de celui exposé à l'exposition internationale de Paris en 1900).


 

Le passage à l’Union Électrique du Finistère.

 

L’autonomie de la centrale électrique de Traon-Elorn aura été brève. Une lettre du 10 avril 1926 annonce au maire qu’elle a été rachetée par l’Union Électrique du Finistère qui distribue l’électricité de Brest à Chateaulin.

 

Dans une brochure diffusée par la compagnie elle déclare s’être créée en novembre 1925 avec un capital de 700.000 francs. Elle s’est assuré le concours technique, financier et moral de la compagnie d’électricité de Brest elle même chapeautée par le Compagnie Générale d’Électricité (CGE) de Paris.

 

Pour répondre au programme d’électrification des campagnes par haute tension, elle entend porter son capital à 3.000.000 francs en proposant 4600 actions à 500 francs.

 

Le dividende sera de 7% pendant les deux premières années avec une promesse d’augmentation quand les lignes seront en exploitation. Par ailleurs les actionnaires bénéficieront d’une réduction de 10% sur leur propre installation électrique.

 

Aux actionnaires industriels la Compagnie fait valoir que l’arrivée de l’électricité dans leur exploitation leur apportera "non seulement le confort sous forme de lumière électrique à un prix trois fois moindre que le pétrole, mais en outre, de nouvelles sources de profit en leur permettant le remplacement de la main-d’œuvre insuffisante et onéreuse par la force motrice." Déjà des "restructurations" en perspective !

 

La conclusion du texte est un appel au patriotisme régional :

 

Les actionnaires auront "la satisfaction de voir leurs capitaux engagés dans la construction de lignes placées sur leur route, à leurs portes, qui apporteront en Bretagne les avantages immenses que les autres régions de France ont déjà. Il ne faut pas que le Finistère soit en retard et, pour cela, il est indispensable que chacun fasse l’effort nécessaire pour permettre la réalisation de ce progrès, pour le développement de notre région".

 

Ne croirait-on pas un texte contemporain issu de la direction de EDF stigmatisant ces bretons qui refusent une centrale électrique et de nouvelles lignes à haute tension dans leur environnement ?

 



L’Union Électrique du Finistère, de Brest à Chateaulin.


 

C’est donc cette entreprise que trouve comme interlocuteur le socialiste Jean-Louis Rolland quand il devient maire en 1929.

 

Le dossier de ses relations avec la compagnie, disponible au service des archives de Landerneau, témoigne des difficultés qu’il rencontre avec ce nouveau concessionnaire. Des échanges dont la vivacité rappelle celle de ses prédécesseurs avec la compagnie du gaz. En ce début de 21ème siècle où une politique active de privatisation des services publics est mise en œuvre, la lecture de ces dossiers devrait être source de réflexion pour nos actuel(le)s élu(e)s.

 

Exemple : le maire voudrait l’extension de l’électricité à de nouveaux quartiers mais sans augmentation du prix de l’électricité. La Compagnie fait la sourde oreille.

 

Déjà pourtant, en Octobre1925, une pétition des habitants du quartier de Traon Elorn" était arrivée sur le bureau du précédent maire.

 

" Les soussignés ont l’honneur de vous adresser la présente requête tendant à obtenir le prolongement de l’éclairage électrique jusqu’au quartier de Traon Élorn, ou, tout au moins jusqu’entre les deux ponts de chemin de fer traversant la route nationale.

 

L’éclairage de cette partie de la ville devient nécessaire par suite de l’augmentation de la population de ce quartier et de la quantité d’ouvriers travaillant à la Grande Briqueterie et au Triage du crin.

 

Pensant que vous voudrez bien reconnaître le bien fondé de cette demande et lui faire donner une solution favorable,

 

Les soussignés vous remercient à l’avance et vous adressent leurs respectueuses salutations."

 



Le concessionnaire veut d’abord une augmentation des tarifs, sinon pas d’extension.

 

Le conflit dure jusqu’en 1932, année où le cahier des charges de 1926 est mis à enquête publique pour modification. Le rapport du commissaire enquêteur répertorie les "contre" qui ne veulent pas d’augmentation des tarifs et les "pour" qui veulent l’extension vers de nouveaux quartiers. Quand même note-t-il que les déclarations "pour" sont "peu nombreuses et bien que n’étant pas suffisamment explicites font ressortir le désir de voir électrifier les nouveaux quartiers".

 

En fait sur 155 contributions on trouve 144 "contre" et seulement deux "pour" qui d’ailleurs ne se prononcent pas pour le nouveau cahier des charges mais se contentent de déclarer souhaiter voir l’électricité arriver dans les nouveaux quartiers.

 

L’opposition semble menée par l’ex majorité municipale devenue minorité mais elle regroupe surtout ceux qui refusent une augmentation des tarifs.

 

Les noms des signataires, représentatifs des familles landernéennes, se retrouvent aujourd’hui encore nombreux dans leur descendance.

 

La conclusion du commissaire ressemble étrangement à celles que nous trouvons régulièrement à l’occasion des enquêtes qui concernent nos problèmes contemporains de routes ou d’extension d’élevages. Malgré les 144 "contre" et les deux "pour" : avis favorable !

 

Comme il est courant aujourd’hui, l’enquête n’était sans doute qu’une formalité à laquelle il fallait se soumettre.

 

Il est vrai que le maire, Jean-Louis Rolland, avait à subir le choix de ses prédécesseurs et cette longue durée de la concession accordée aux industriels de l’électricité. S’il voulait électrifier les nouveaux quartiers, il lui fallait accepter l’augmentation des tarifs.

 

Pourtant lui même et son conseil signaient un nouveau contrat qui aurait dû ne s’achever qu’en 1964 si la guerre et les nationalisations qui ont suivi n’en avaient pas décidé autrement.

 


Le nouveau contrat signé jusqu’à 1964 !


 

A nouveau la guerre

 

Comme pour ses prédécesseurs, la guerre est pour le maire un moment où il faut gérer la pénurie. 

Partager cet article
Repost0
13 janvier 2011 4 13 /01 /janvier /2011 19:31
Partager cet article
Repost0
12 janvier 2011 3 12 /01 /janvier /2011 14:39


 

Deux espèces d’électricité ou une seule ? Nous avons vu que jusqu’à la fin du 19ème siècle deux système ont cohabité.

 

Celui initié par Dufay des deux espèces d’électricité : vitrée ou positive, résineuse ou négative.

 

Celui de Franklin : un seule espèce d’électricité chargeant les corps en plus ou en moins.

 

Il est vrai que le choix ne s’impose pas quand on étudie l’électricité à l’état statique.

 

Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?


La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Des charges jusqu’aux courants électriques.

 

Le concept de courant électrique est déjà en germe dans les lettres de Franklin à ses correspondants. En définissant l’électricité comme un fluide qui peut s’accumuler sur un corps ou en être extrait, en désignant par le terme de "conducteur" les corps susceptibles de transmettre ce fluide, on introduit nécessairement l’idée d’un écoulement. Le mot "courant" est d’ailleurs utilisé par Franklin pour décrire les "effluves" qui s’échappent des conducteurs et M.E. Kinnersley, l’un de ses correspondants, qui a déjà eu l’occasion de lui signaler les effets différents du verre et du soufre, lui propose un premier montage propre à faire circuler ce fluide :

 

" Si un globe de verre est placé à l’un des bouts du conducteur, et un globe de soufre à l’autre, les deux globes étant également en bon état, et dans un mouvement égal, on ne pourra tirer aucune étincelle du conducteur, parce que l’un des globes attire (le fluide électrique) du conducteur aussi vite que l’autre y fournit ! ".

 

Le même Kinnersley observe l’effet calorifique du courant électrique. Il relie par un fil d’archal (autre nom du laiton, alliage de zinc et de cuivre), les deux armatures d’une batterie de bouteilles de Leyde (nous parlerons bientôt de ces premiers condensateurs électriques) : "le fil d’archal fut chauffé jusqu’au rouge". L’interprétation du phénomène est très "moderne" :

 

" On peut inférer de là que, quoique le feu électrique n’ait aucune chaleur sensible lorsqu’il est dans un état de repos, il peut par son mouvement violent et par la résistance qu’il éprouve, produire de la chaleur dans d’autres corps, en y passant pourvu qu’ils soient assez petits. Une grande quantité passerait au travers du gros fil d’archal sans y produire de chaleur sensible, tandis que la même quantité passant au travers d’un petit, étant restreinte à un passage plus étroit, et ses particules plus serrées les unes sur les autres, et éprouvant une plus grande résistance, elle échauffera ce petit fil d’archal jusqu’à le faire rougir et même jusqu’à le faire fondre".

 

Quant à s’interroger sur le sens de circulation de ce courant de fluide électrique, la question n’est jamais posée par les partisans du fluide unique tant la réponse est évidente : il circule nécessairement à travers le conducteur du corps qui en porte "en plus" vers celui qui en porte "en moins".

 

Le même point de vue est exprimé par le français Jean-Baptiste Le Roy (1720 - 1800) qui préfère pour sa part parler d’électricité "par condensation" et d’électricité "par raréfaction". Il décrit sa machine électrique comme une "pompe à électricité" qui refoule celle-ci de son pôle positif (le plateau de verre frotté) et l’attire à son pôle négatif (les coussins de cuir responsables du frottement). La circulation du fluide est clairement décrite :

 

"Si le fluide est raréfié d’un côté et condensé de l’autre, il doit se former un courant tendant du corps où il est condensé vers celui où il est raréfié".

 

Pour les tenants de la théorie du fluide unique, la définition du sens de circulation du courant électrique ne doit donc rien ni au hasard ni à une quelconque convention. Il est imposé par le modèle choisi : c’est du "plus" vers le "moins".

 

Les machines de Jean-Baptiste Le Roy sont une tentative sur la voie des générateurs électriques, il faudra cependant attendre le début du XIXème siècle et la construction de la première pile électrique par Volta pour que l’étude des courants électriques et de leurs effets prenne le pas sur celle des phénomènes statiques. Pour suivre cette histoire jusqu’à sa conclusion provisoire, commençons notre excursion vers des périodes plus proches de notre présent.

 

De la pile Volta au Bonhomme d’Ampère.

 

Nous ne détaillerons pas ici l’observation publiée en 1791 par Luigi Galvani et qui devait amener Volta à la découverte de la pile électrique. Nous y reviendrons. Disons simplement, pour le moment, qu’en assemblant des rondelles de cuivre et de zinc alternées et séparées par des rondelles de carton imprégnées d’une solution acide, Volta réalise une générateur capable de faire circuler un courant électrique dans un conducteur extérieur (fil métallique ou solution conductrice).

 

Ce courant est, pour Volta, constitué d’un fluide unique tel que celui décrit par Franklin. Un fluide qui circule, à l’extérieur de la "pile", de son pôle positif vers son pôle négatif. Mais les tenants des deux fluides ne désarment pas : la pile produit du fluide positif à l’un de ses pôles et du fluide négatif à l’autre, disent-ils. Deux courants en sens inverse, l’un de fluide positif, l’autre de fluide négatif, circulent donc dans le conducteur qui relie les deux pôles.

 

Ce sont d’abord les chimistes qui s’emparent avec bonheur de la pile voltaïque et ils ne tranchent pas la querelle. Des phénomènes extraordinaires se font jour au niveau des électrodes reliées aux pôles de la pile et plongées dans les multiples solutions conductrices testées. La nature et le sens de circulation du fluide électrique ne sont pas leur préoccupation première. Ils sont déjà suffisamment occupés par l’étude des propriétés de la multitude de nouveaux corps que l’électrolyse vient de leur faire découvrir.

 

Il faut attendre 1820 pour que Oersted ramène l’intérêt des physiciens sur les courants traversant les conducteurs métalliques en mettant en lumière leurs effets magnétiques et mécaniques.

Oersted : la pile et la boussole.

Malgré l’opposition établie par Gilbert, l’hypothèse de la nature commune de l’électricité et du magnétisme n’a pas été totalement abandonnée. L’aimantation de tiges de fer sous l’action de la foudre est déjà signalée dans les oeuvres de Franklin de même que le mouvement d’une aiguille aimantée à l’occasion de la décharge d’une bouteille de Leyde.

Malheureusement ces recherches étaient vouées à l’échec tant que leurs auteurs ne disposaient pas d’une source continue d’électricité.

 

Hans Christian Oersted (1777-1851), professeur de physique à l’Université de Copenhague est celui à qui la chance sourira. Occupé pendant l’hiver 1819, à montrer à ses élèves l’effet calorifique de la pile Volta, il observe le mouvement d’une aiguille aimantée située à proximité du conducteur traversé par le courant électrique. Une étude attentive lui montre que l’effet est maximal quand le fil conducteur est placé parallèlement à l’aiguille aimantée. Celle-ci tend alors vers une position d’équilibre perpendiculaire au fil. Le sens de ce mouvement dépend de l’ordre dans lequel les pôles de la pile ont été reliés au conducteur.


 

 

Voir la vidéo sur le site Ampère/CNRS

 


Nous reviendrons sur cette expérience, acte de naissance de l’électromagnétisme. Pour le moment contentons nous de voir comment elle intervient dans la définition "du" sens du courant électrique.

 

Interprétant cette expérience nous dirions, aujourd’hui, que le sens de la déviation de l’aiguille dépend du sens du courant électrique. Oersted, lui, est adepte du modèle des deux fluides. Les courants de fluide positif et de fluide négatif, pense-t-il, se déplacent en sens inverse le long du conducteur. Héritier des théories cartésiennes, il les décrit sous la forme de deux "tourbillons" : La " matière électrique négative décrit une spirale à droite et agit sur le pôle nord" tandis que " la matière électrique positive possède un mouvement en sens contraire et a la propriété d’agir sur le pôle Sud ". Quand nous inversons les pôles de la pile auxquels est relié le fil conducteur, nous inversons le sens de chacun des courants et donc de leur effet sur la boussole.

Oersted réussit sans peine à faire entrer son interprétation dans le cadre théorique qui est le sien. La théorie des deux fluides résiste !

Ampère : le sens conventionnel.

On sait que dès l’annonce, en France, des observations faites par Oersted, Ampère (1775-1836) commençait la série d’expériences qui allaient l’amener à la mise au point de la théorie de "l’électromagnétisme". Chacun connaît le fameux "bonhomme" placé sur le fil conducteur de telle sorte que le courant électrique lui entre par les pieds. On pourrait penser qu’avec Ampère le courant unique a fini par l’emporter. Erreur ! Ampère est un ferme partisan des deux fluides. Il le rappelle dans son "Exposé des Nouvelles Découvertes sur l’Electricité et le Magnétisme" publié à Paris en 1822 :

 

"Nous admettons, conformément à la doctrine adoptée en France et par beaucoup de physiciens étrangers, l’existence de deux fluides électriques, susceptibles de se neutraliser l’un l’autre, et dont la combinaison, en proportions déterminées, constitue l’état naturel des corps. Cette théorie fournit une explication simple de tous les faits et, soumise à l’épreuve décisive du calcul, elle donne des résultats qui s’accordent avec l’expérience".

 

Par contre il rejette les termes d’électricité vitrée et résineuse, il leur préfère ceux de positive et négative à condition que ces termes ne conservent que le sens d’une convention :

 

"Lorsqu’on admit l’existence des deux fluides, on aurait dû dire : ils présentent l’un à l’égard de l’autre les propriétés opposées des grandeurs positives et négatives de la géométrie ; le choix est arbitraire, comme on choisit arbitrairement le côté de l’axe d’une courbe où ses abscisses sont positives ; mais alors celles de l’autre côté doivent être nécessairement considérées comme négatives ; et le choix une fois fait, comme il l’a été à l’égard des deux électricités, on ne doit plus le changer".

 

En toute logique, la pile produit ces deux types d’électricité :

 

" Dans la pile isolée, chaque électricité se manifeste à l’une des extrémités de l’appareil, l’électricité positive à l’extrémité zinc, et l’électricité négative à l’extrémité cuivre". (Ampère respecte ici les polarités proposées par Volta et dont nous verrons qu’elles étaient erronées).

 

La conclusion est naturelle :

 

 

"Deux courants s’établissent toujours, lorsque l’on fait communiquer les deux extrémités de la pile."

 

Le courant d’électricité positive part de la lame positive et celui d’électricité négative de la lame négative. Comme les phénomènes magnétiques s’inversent quand on change le sens de ces deux courants il est nécessaire, cependant, de bien repérer ces sens. C’est l’occasion pour Ampère de proposer une convention commode :

 

"Il suffit de désigner la direction du transport de l’un des principes électriques, pour indiquer, en même temps, le sens du transport de l’autre ; c’est pourquoi, en employant dorénavant l’expression de courant électrique pour désigner le sens dans lequel se meuvent les deux électricités, nous appliquerons cette expression à l’électricité positive, en sous-entendant que l’électricité négative se meut en sens contraire". Voici donc enfin ce fameux "sens conventionnel". En réalité, ce qu’il décrit n’est pas le sens du courant mais celui des courants. En choisissant d’appeler "sens du courant" celui de la circulation du fluide positif, Ampère a eu l’habileté de trouver un vocabulaire commun aux hypothèses "anglaise" et "française". Dès lors, le fameux "bonhomme d’Ampère" peut servir d’outil aux deux modèles :

 

"Pour ... définir la direction du courant relativement à l’aiguille concevons un observateur placé dans le courant de manière que la direction de ses pieds à sa tête soit celle du courant, et que sa face soit tournée vers l’aiguille ; on voit alors que dans toutes les expériences rapportées ci-dessus le pôle austral de l’aiguille aimantée est porté à la gauche de l’observateur ainsi placé".

 

L’observateur d’Ampère reçoit bien le fluide positif par les pieds mais reçoit également le fluide négatif par la tête.


 

voir aussi :

Au sujet du sens du courant électrique, du bonhomme d’Ampère et du tire-bouchon de Maxwell.


 

Avec Ampère, c’est la théorie des deux courants qui s’impose en France et dans la plupart des Pays d’Europe, elle est encore classique dans les manuels du début du XXème siècle et exige des enseignants de véritables prouesses pédagogiques. Il n’est en effet pas commode d’exposer la façon dont les deux fluides peuvent se croiser sans se neutraliser.

Le retour de Franklin.

L’Angleterre est en général restée fidèle à Franklin et au fluide unique. Maxwell (1831-1879), par exemple, souhaite une grande prudence vis-à-vis de la notion même de fluide électrique :

 

"Tant que nous ignorons si l’électricité positive ou négative, ou si l’électricité même est une substance, tant que nous ne saurons pas si la vitesse du courant électrique est de plusieurs millions de lieues par seconde ou d’un centième de pouce à l’heure, ou même si le courant électrique marche du positif au négatif ou dans la direction opposée nous devrons éviter de parler de fluide électrique". (Maxwell, traité élémentaire d’électricité - Paris - Gautier Villars - 1884).

 

Malgré cette prudence il faut bien choisir l’un des modèles pour interpréter les phénomènes électromagnétiques, c’est alors le fluide unique et le modèle de Franklin qui auront sa préférence : "S’il existe une substance pénétrant tous les corps, dont le mouvement constitue le courant électrique, l’excès de cette substance dans un corps, au delà d’une certaine proportion normale, constitue la charge observée de ce corps".

 

Aucune ambiguïté avec le modèle de la "vis" (ou du "tire-bouchon", comme le préfèrent les français) proposé par Maxwell pour décrire l’expérience d’Oersted : elle avance, le long du fil, dans le sens du courant :

 

"Supposons qu’une vis droite s’avance dans la direction du courant, en tournant, en même temps, comme au travers d’un corps solide, c’est à dire dans le sens des aiguilles d’une montre, le pôle Nord de l’aimant tendra toujours à tourner autour du courant dans le sens de rotation de la vis, et le pôle sud dans le sens opposé".

 

Nous pourrons terminer cette brève histoire avec J.-J. Thomson (1856-1940). En 1897, il reconnaît, lui aussi, que rien, jusqu’à présent, n’a pu départager la "théorie dualiste" de l’électricité de la "théorie unitaire" :

 

"Les fluides étaient des fictions mathématiques, destinées seulement à fournir un support spatial aux attractions et répulsions qui se manifestent entre corps électrisés... Aussi longtemps que nous nous bornons à des questions qui impliquent seulement la loi des forces se manifestant entre des corps électrisés et la production simultanée de quantités égales d’électricité positive et négative, les deux théories doivent donner le même résultat, et il n’y a rien qui puisse nous permettre de choisir entre les deux... Ce n’est que lorsque nous portons nos investigations sur des phénomènes impliquant les propriétés physiques du fluide, qu’il nous est permis d’espérer pouvoir faire un choix entre les deux théories rivales".( J-J.Thomson. Electricité et Matière. Paris : Gautier Villars - traduction-1922)

 

Thomson, à cette période de sa vie, étudie le "rayonnement" qui traverse un tube vidé de son air et dont les tubes "cathodiques" de nos écrans de récepteurs de télévision et d’ordinateurs sont encore, pour quelques années, les descendants.

 

Au moment où, dans ce rayonnement, il découvre le "corpuscule d’électricité" que l’on appellera plus tard "électron", il pense faire, d’une certaine façon triompher ses couleurs nationales. Constatant que les rayons cathodiques sont constitués de "grains" d’électricité négative de masse plus de mille fois inférieure à celle du plus petit des atomes, celui d’hydrogène, il ne peut douter d’avoir assuré la victoire de son camp. Se souvenant que Franklin considérait que "La matière électrique est composée de particules extrêmement subtiles", il écrit :

 

"Ces résultats nous conduisent à une conception sur l’électricité qui a une ressemblance frappante avec la "théorie unitaire" de Franklin".

 

Le triomphe cependant n’est pas total :

 

" Au lieu de considérer, comme le faisait cet auteur, le fluide électrique comme étant de l’électricité positive, nous le considérons comme de l’électricité négative... Un corps chargé positivement est un corps qui a perdu une partie de ses corpuscules".

 

Il reste, en effet, ce mauvais choix initial : le verre frotté ne se charge pas d’électricité, il en perd !

 

Situation bloquée.

 

Nous voici au moment où la situation se fige. Depuis un siècle et demi les conventions de Franklin ont imprégné la science électrique, Ampère a incrusté cette empreinte en fixant un sens conventionnel de circulation du courant. La découverte des électrons, puis des protons, impose une nouvelle interprétation de la conduction électrique. Les charges positives et négatives existent bien toutes les deux et il est vrai que, dans l’électrolyse, deux courants de charges opposées se croisent dans la solution d’électrolyte.

 

Dans les conducteurs métalliques, par contre, seules les charges négatives sont mobiles. Le fluide positif reste immobilisé dans les noyaux fixes des atomes. Le courant électrique doit à présent être considéré, dans un circuit métallique, comme un courant d’électrons se déplaçant du pôle négatif du générateur vers son pôle positif.

 

Cette découverte est-elle un évènement suffisant pour provoquer une révolution dans les conventions électriques ? Il faut constater qu’on s’accommodera de ces électrons qui se déplacent dans le sens inverse du sens "conventionnel".

 

Ce déplacement n’est d’ailleurs pas spectaculaire. Nous pouvons à présent répondre à l’interrogation de Maxwell. La vitesse du courant d’électrons dans un courant continu n’est pas de plusieurs millions de lieues à la seconde et si elle est quand même supérieure à un centième de pouce à l’heure, elle ne dépasse pas quelques centimètres à l’heure.

 

Ce résultat parle peu à l’imagination. Ce lent courant d’électrons s’accorde mal avec la puissance observée des phénomènes électriques. C’est peut-être pourquoi on préfère continuer à raisonner sur le courant mythique des premiers temps de l’électricité qui se précipitait du pôle positif où il était concentré vers le pôle négatif où il avait été raréfié.

 

Il reste un certain étonnement et parfois de l’irritation quand on présente au débutant cette contradiction dans la science électrique. Quoi ? Plus d’un siècle s’est écoulé et l’erreur n’est toujours pas réparée ?

 

D’une certaine façon cette "erreur" est bénéfique : elle casse le discours linéaire, elle force à l’interrogation et oblige à un retour sur l’histoire des sciences. Au moins les apprentis électriciens retiendront-ils que l’activité scientifique est une activité humaine, une activité vivante, et qu’on y rencontre parfois les cicatrices des erreurs passées.

 

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Partager cet article
Repost0
12 janvier 2011 3 12 /01 /janvier /2011 14:10

 

Un premier cours d’électricité est l’occasion d’une mise en scène classique dans la tradition expérimentale des professeurs de physique : Une tige d’ébonite est frottée, une boule de sureau suspendue à son fil de soie ou de nylon est attirée puis vivement repoussée. Commence alors une série de manipulations à base de chiffon de laine, de peau de chat, de tige de verre ou de règle de matière synthétique, supposée faire découvrir une propriété fondamentale de la matière : l’existence de deux espèces d’électricité.

Progressant dans le cours on arrive rapidement à la notion de courant électrique. C’est là qu’apparaît "le"problème. A peine a-t-on défini son sens conventionnel de circulation, du pôle positif du générateur vers son pôle négatif dans le circuit extérieur, qu’il faut ajouter que le fluide électrique est, en réalité, constitué d’électrons négatifs se déplaçant en sens inverse !

 

Une explication s’impose. Le professeur pressé évoquera une erreur ancienne. Peut-être même imaginera-t-il un hasardeux pile ou face. Il suffirait cependant d’un rapide retour sur l’histoire de l’électricité pour révéler, au lieu de décisions hâtives, la recherche obstinée d’une réalité physique. Dufay est l’un des premiers maillons de cette chaîne.

 

Dufay (1698-1739) et la répulsion électrique :
 

Charles-François de Cisternay Dufay est d’une famille de haute noblesse militaire.

 

Lui même entre au régiment de Picardie, à l’âge de quatorze ans, comme lieutenant. Il participe à la courte guerre d’Espagne et conserve sa charge militaire jusqu’à 1723, année où il rejoint l’Académie des Sciences comme adjoint chimiste.

Comment un jeune homme de 25 ans peut-il sauter de la condition de soldat à celle de membre d’une prestigieuse académie scientifique ? Il faut, pour le comprendre, dire quelques mots de Dufay, le père.

 

Ce militaire avait été instruit par les jésuites à Louis-le-Grand. Il en conserve une culture qu’il continue à enrichir pendant ses campagnes militaires. « Les muses », disait-il, « guérissent des blessures de Mars ». Le propos se vérifie quand, en 1695, la perte d’une jambe met fin à sa carrière militaire. Il revient à Paris où il se consacre à l’éducation de ses enfants et à l’enrichissement d’une fabuleuse bibliothèque. Charles-François pourra y cultiver son goût pour les sciences dans le temps même où son père lui enseigne le métier des armes.

 

Chez les Dufay on rencontre de puissants personnages. Tel le Cardinal de Rohan qui soutient le jeune Charles-François quand celui-ci postule au poste d’adjoint chimiste à l’Académie, en 1723. Réaumur retient cette candidature.

Dufay mettra un point d’honneur à mériter cette distinction. Ses premiers travaux sont marqués par une curiosité débridée. Il passe de l’étude de la phosphorescence à celle de la chaleur libérée par "l’extinction" de la chaux "vive". De la solubilité du verre à la géométrie. De l’optique au magnétisme. Son énergie lui vaut d’être nommé Intendant du Jardin du Roi en 1732. C’est peu de temps après cette promotion qu’il entend parler des travaux de Gray. Il tient enfin "son" sujet. L’électricité lui donnera l’occasion de mettre en œuvre une méthode dont la rigueur n’aura pour équivalent que celle de Lavoisier, dans le domaine de la chimie, un demi-siècle plus tard.

 

De magnifiques découvertes seront au rendez-vous. Elles feront l’objet d’une série de mémoires publiés dans l’Histoire de l’Académie des sciences à partir d’avril 1733.

 

Le premier de ces mémoires se présente comme une "Histoire de l’Electricité". Ce texte reste, même lu avec le recul de près de trois siècles, un honnête document. Avant de faire état de son apport personnel, Dufay choisit de « mettre sous les yeux du lecteur, l’état où est actuellement cette partie de la physique ». Il souhaite, dit-il, rendre à chacun son mérite et ne conserver, pour lui, que celui de ses propres découvertes. Il veut surtout se libérer de l’obligation d’avoir à citer, à chaque moment, le nom de tel ou tel de ses prédécesseurs. Son projet, en effet, est ambitieux : il se propose de poser les premières pierres d’une véritable théorie de l’électricité. La plupart des auteurs qui l’ont précédé ont, dit-il, "rapporté leurs expériences suivant l’ordre dans lequel elles ont été faites". Son plan est différent : il veut classer leurs expériences et les siennes "afin de démêler, s’il est possible, quelques-unes des lois et des causes de l’électricité".

 

Un discours de la méthode :

 

Le second mémoire annonce sa méthode sous forme de six questions.

 

Il s’agit de savoir :

 

Quels sont les corps qui peuvent devenir électriques par frottement et si l’électricité est une qualité commune à l’ensemble de la matière.

 

Si tous les corps peuvent recevoir la vertu électrique par contact ou par approche d’un corps électrisé.

 

Quels sont les corps qui peuvent arrêter ou faciliter la transmission de cette vertu et quels sont ceux qui sont le plus vivement attirés par les corps électrisés.

 

Quelle est la relation entre vertu attractive et vertu répulsive et si ces deux vertus sont liées l’une à l’autre ou indépendantes.

 

Si la "force" de l’électricité peut être modifiée par le vide, la pression, la température…

 

Quelle est la relation entre vertu électrique et faculté de produire la lumière, propriétés qui sont communes à tous les corps électriques.

 

Un beau programme qui sera mené avec une remarquable rigueur.

 

Les trois premières questions cernent le problème de l’électrisation des corps et de la conduction électrique. Nous avons déjà vu comment Dufay s’intercale entre Gray et Franklin pour en établir les premières lois. La quatrième question pose, pour la première fois, le problème de la répulsion.

 

La répulsion rejoint l’attraction.

 

Depuis William Gilbert, et même depuis l’antiquité, électricité est synonyme d’attraction. Dufay n’échappe pas à la règle et, dans l’introduction à son premier mémoire il définit l’électricité comme "une propriété commune à plusieurs matières et qui consiste à attirer les corps légers de toute espèce placés à une certaine distance du corps électrisé par le frottement d’un linge, d’une feuille de papier, d’un morceau de drap ou simplement de la main".

 

Cependant, il a été troublé par l’une des observations faites par Otto de Guericke : celle du globe de soufre qui repousse le duvet qu’il a d’abord attiré. Il avoue n’être jamais parvenu à la reproduire. Par contre il rencontre le succès avec une expérience similaire proposée par Hauksbee. Il s’agit de frotter un tube de verre tenu horizontalement et de laisser tomber sur sa surface une parcelle de feuille d’or. Le résultat est spectaculaire :

 

"Sitôt qu’elle a touché le tube, elle est repoussée en haut perpendiculairement à la distance de huit à dix pouces, elle demeure presque immobile à cet endroit, et, si on approche le tube en l’élevant, elle s’élève aussi, en sorte qu’elle s’en tient toujours dans le même éloignement et qu’il est impossible de l’y faire toucher : on peut la conduire où l’on veut de la sorte, parce qu’elle évitera toujours le tube".

 

Même si les prouesses réalisées par la "fée électricité" ont apaisé depuis longtemps notre soif de merveilleux, l’expérience, aujourd’hui encore, mérite d’être tentée. Il importe pour cela de se munir du tube de verre adéquat. Celui de Dufay est du type de celui utilisé par Gray et qui est devenu un standard. Il a une longueur proche de un mètre et un diamètre de trois centimètres. Il est réalisé dans un verre au plomb. Gray et Dufay ne disent rien de la façon dont il était frotté, peut-être tout simplement par la main bien sèche de l’expérimentateur comme le recommandent plusieurs auteurs.

 

Pour avoir tenté l’expérience, je peux témoigner de l’importance du choix du tube de verre. Un simple tube à essai ne conviendra pas et encore moins la tige de verre d’un agitateur (bien que ce soit de cette façon que, depuis le 19ème siècle, l’expérience est décrite dans les manuels de physique). Leurs diamètres sont insuffisants. Il faut au minimum celui d’une solide éprouvette à gaz. J’ai personnellement rencontré le succès avec le col, long de 50cm, d’un ballon de verre pyrex extrait d’un matériel de chimie. Bien séché et frotté en utilisant le premier sac de "plastique" récupéré, il donne des résultats spectaculaires. Trouver une feuille d’or n’est pas trop difficile si on connaît un marbrier ou un relieur. On peut plus simplement utiliser un duvet ou quelques fibres de coton. Je conseillerais pour ma part les plumets d’un chardon cueillis secs à la fin de l’été.

 

Bien réalisée, cette expérience montre que la répulsion électrique est beaucoup plus spectaculaire que l’attraction. La parcelle de feuille d’or, le duvet ou le plumet de chardon, que vous aurez lâché, va se précipiter sur le tube frotté pour en être violemment repoussé jusqu’à trente, quarante, cinquante centimètres, voire plus. Personne ne peut être insensible à l’étrangeté d’une telle "lévitation".

 

Dufay donne de ces faits une interprétation immédiate : "lorsqu’on laisse tomber la feuille sur le tube, il attire vivement cette feuille qui n’est nullement électrique, mais dès qu’elle a touché le tube, ou qu’elle l’a seulement approché, elle est rendue électrique elle même et, par conséquent elle en est repoussée, et s’en tient toujours éloignée".

 

Mais approchons le doigt ou un autre objet conducteur de la feuille : elle vient s’y coller pour retomber à nouveau sur le tube et à nouveau s’élever.

 

Explication simple encore, nous dit Dufay : "Sitôt que la feuille a touché ce corps, elle lui transmet toute son électricité, et par conséquent, s’en trouvant dénuée, elle tombe sur le tube par lequel elle est attirée, de même qu’elle l’était avant que de l’avoir touché ; elle y acquiert un nouveau tourbillon électrique" et est donc repoussée. Ainsi se trouve expliqué l’étrange comportement, parfois observé, de feuilles d’or dansant une sarabande entre le tube de verre et un objet proche.

 

Une simple remarque : Dufay parle de "tourbillon" électrique. La théorie des "tourbillons" est ici empruntée à Descartes. Pour celui-ci chaque corps céleste est entouré d’un tourbillon d’une matière subtile. Ces tourbillons en se touchant maintiennent les astres à distance l’un de l’autre et entraînent l’ensemble dans le mouvement d’horlogerie que chacun peut observer même si les rouages restent invisibles. De la même façon, les tourbillons "électriques" entourant deux corps électrisés les écarteront l’un de l’autre.

 

La loi de Dufay

 

Fort de cette interprétation, Dufay passe alors en revue les observations antérieures et en particulier celles de Hauksbee concernant des fils de coton attachés à l’intérieur d’un globe de verre frotté et qui " s’étendent en soleil du centre à la circonférence". Tous ces faits le conduisent à une première loi de la répulsion :

 

"Il demeure pour constant, que les corps devenus électriques par communication, sont chassés par ceux qui les ont rendu électriques".

 

Par ce mécanisme de "l’attraction – contact – répulsion", (A.C.R), Dufay explique avec élégance une foule d’observations. Le phénomène doit cependant être approfondi. Il faut, en particulier, répondre à la question suivante :

 

Deux corps chargés d’électricité à deux sources différentes vont-ils également se repousser ?

 

En cherchant à le vérifier Dufay fait accomplir à l’électricité un nouveau bond en avant : "cet examen", dit-il," m’a conduit à une autre vérité que je n’aurais jamais soupçonnée, et dont je crois personne n’a encore eu la moindre idée".

 

Le moment est suffisamment important pour que nous lui laissions la parole :

 

" Ayant élevé en l’air une feuille d’or par le moyen du tube (de verre), j’en approchais un morceau de gomme copal (résine d’arbre exotique de la famille des légumineuses) frottée et rendue électrique, la feuille fut s’y appliquer sur le champ, et y demeura, j’avoue que je m’attendais à un effet tout contraire, parce que selon mon raisonnement, le copal qui était électrique devait repousser la feuille qui l’était aussi ; je répétais l’expérience un grand nombre de fois, croyant que je ne présentais pas à la feuille l’endroit qui avait été frotté, et qu’ainsi elle ne s’y portait que comme elle aurait fait à mon doigt, ou à tout autre corps, mais ayant pris sur cela mes mesures, de façon à ne me laisser aucun doute, je fus convaincu que la copal attirait la feuille d’or, quoiqu’elle fût repoussée par le tube : la même chose arrivait en approchant de la feuille d’or un morceau d’ambre ou de cire d’Espagne (cire végétale extraite de certaines espèces de palmiers) frotté.

 

Après plusieurs autres tentatives qui ne me satisfaisaient aucunement, j’approchai de la feuille d’or chassée par le tube, une boule de cristal de roche, frottée et rendue électrique, elle repoussa cette feuille de même, afin que je ne pus pas douter que le verre et le cristal de roche, ne fissent précisément le contraire de la gomme copal, de l’ambre et de la cire d’Espagne, en sorte que la feuille repoussée par les uns, à cause de l’électricité qu’elle avait contractée, était attirée par les autres : cela me fit penser qu’il y avait peut-être deux genres d’électricité différents."

 

Une hypothèse aussi hardie effraie d’abord son auteur. Si deux électricités existent réellement, comment ne les a-t-on pas encore signalées ! De nombreuses vérifications s’imposent. Dufay frotte toutes les matières dont il dispose : il faut bien se rendre à l’évidence, le phénomène est général.

 

" Voilà donc constamment deux électricités d’une nature différente, savoir celle des corps transparents et solides comme le verre, le cristal, etc. et celle des corps bitumineux ou résineux, comme l’ambre, la gomme copal, la cire d’Espagne, etc.

 

Les uns et les autres repoussent les corps qui ont contracté une électricité de même nature que la leur, et ils attirent, au contraire, ceux dont l’électricité est de nature différente de la leur."

 

Que dire de plus ? La loi d’attraction et de répulsion électrique est toute entière dans ces deux phrases. Si nous cherchons son énoncé dans un manuel contemporain nous l’y retrouvons pratiquement au mot près. Reste à nommer ces deux électricités différentes :

 

" Voilà donc deux électricités bien démontrées, et je ne puis me dispenser de leur donner des noms différents pour éviter la confusion des termes, ou l’embarras de définir à chaque instant celle dont je voudrais parler : j’appellerai donc l’une l’électricité vitrée, et l’autre l’électricité résineuse, non que je pense qu’il n’y a que les corps de la nature du verre qui soient doués de l’une, et les matières résineuses de l’autre, car j’ai déjà de fortes preuves du contraire, mais c’est parce que le verre et la copal sont les deux matières qui m’ont donné lieu de découvrir ces deux espèces d’électricités."

 

Électricité vitrée, électricité résineuse... ces deux termes ont au moins le mérite de proposer des étalons commodes.

 

La fin du mémoire constitue d’ailleurs un début de classement. Au registre des corps qui présentent de l’électricité résineuse nous trouvons l’ambre, la cire d’Espagne, la gomme copal, la soie, le papier. L’électricité vitrée apparaît sur le verre et aussi le cristal, la laine, la plume... mais laissons à Dufay le soin de présenter son plus bel exemple :

 

"Rien ne fait un effet plus sensible que le poil du dos d’un chat vivant. On sait qu’il devient fort électrique en passant la main dessus ; si on approche alors un morceau d’ambre frotté, il en est vivement attiré, et on le voit s’élever vers l’ambre en très grande quantité ; si, au contraire, on en approche le tube, il est repoussé et couché sur le corps de l’animal".

 

Ainsi débute la longue tradition des peaux de chat dans les laboratoires de nos lycées.

 

Après les découvertes fondamentales que sont la conduction et l’électrisation par influence, la découverte des deux espèces d’électricité ouvre des voies prometteuses. La conclusion du mémoire manifeste l’espoir de progrès rapides.

 

"Que ne devons nous point attendre d’un champ aussi vaste qui s’ouvre à la physique ? Et combien ne nous peut-il point fournir d’expériences singulières qui nous découvriront peut-être de nouvelles propriétés de la matière ? "


 

 


Quand il écrit ces lignes, Dufay a trente cinq ans. Sa mort prématurée cinq ans plus tard lui laissera peu de temps pour tracer plus loin son sillon. Il lui aura surtout manqué le temps de défendre une théorie trop hardie pour la plupart de ses contemporains. Son disciple direct, l’Abbé Nollet, à peine plus jeune que lui, est le premier à la rejeter.

 

Dans son "Essai sur l’électricité des corps", il se livre à une vigoureuse critique de la théorie des deux électricités :

 

" Question : Y a-t-il dans la nature deux sortes d’électricité essentiellement différentes l’une de l’autre ?

 

Réponse : Feu M. Dufay séduit par de fortes apparences et embarrassé par des faits qu’il n’était guère possible de rapporter au même principe il y a trente ans, c’est à dire dans un temps où l’on ignorait encore bien des choses qui se sont manifestées depuis, M. Dufay dis-je, a conclu par l’affirmation sur la question dont il s’agit. Maintenant bien des raisons tirées de l’expérience, me font pencher fortement pour l’opinion contraire ; et je suis pas le seul de ceux qui ont examiné et suivi les phénomènes électriques, qui abandonne la distinction des deux électricités résineuse et vitrée".

 

Il propose pour sa part la théorie d’une matière électrique unique qui quitterait et rejoindrait les corps électrisés dans un double mouvement simultané.

 

" La matière électrique s’élance du corps électrisé en forme de rayons qui sont divergents entre eux et c’est là ce que j’appelle matière effluente ; une pareille matière vient, selon moi, de toutes parts au corps électrisé, soit de l’air atmosphérique soit des autres corps environnants et voilà ce que je nomme matière affluente ; ces deux courants qui ont des mouvements opposés, ont lieu tous deux ensemble. ".

 

Théorie confuse et sans réelle portée explicative mais l’Abbé Nollet est devenu le "Physicien électriseur" le plus célèbre des cours d’Europe et ses avis ont force de loi. Pendant de longues années il sera un obstacle, hélas efficace, à la diffusion de la théorie des deux électricités.

 

Nous ne quitterons pas Dufay sans un regret. Des découvertes de portée équivalente ne restent généralement pas anonymes. Coulomb, Volta, Galvani, Ampère, Laplace...vivent toujours dans le vocabulaire électrique à travers une loi, parfois une unité. Qui connaît encore Dufay ?

 

Déjà en 1893, Henri Becquerel, qui avait choisi d’en faire l’éloge à l’occasion du centenaire du Muséum d’Histoire Naturelle, devait constater cet oubli :

 

"Parmi les statues et les bustes qui ornent nos galeries, parmi les noms gravés sur nos monuments, j’ai cherché en vain la figure ou même le nom seulement d’un des hommes qui firent le plus de bien et le plus d’honneur au vieux Jardin des Plantes, le nom du prédécesseur de Buffon. Que dis-je, j’ai cherché jusqu’à son souvenir, et ni dans tout le muséum, ni dans Paris même, je n’ai pu trouver un portrait de Charles-François de Cisternay du Fay, intendant du Jardin Royal des Plantes".

 

Nous pourrions prolonger la longue période oratoire de Becquerel : "J’ai vainement cherché son souvenir dans les livres de physique, dans le nom des lois et des unités électriques...".

 

Est-il vraiment trop tard pour perpétuer le souvenir de ce physicien talentueux ?

 

Rien ne nous empêche de signaler dans nos cours et dans nos manuels que la loi d’attraction et de répulsion électrique est la "loi de Dufay".

 

Dufay oublié, il faudra une longue suite d’observations et d’interprétations contradictoires pour que la théorie des "deux électricités" nous revienne. Le second maillon de cette chaîne est, à nouveau, Benjamin Franklin.

 

Benjamin Franklin (1706-1790) : un vocabulaire neuf pour un fluide unique.

 

Contrairement à son prédécesseur, la renommée n’a pas oublié Franklin, "l’inventeur" du paratonnerre, avec qui nous pouvons, à présent, faire plus ample connaissance.

 

Dans le domaine de la physique il se décrit lui-même comme un amateur. Né à Boston en 1706, il est autodidacte.

 

Son père est un modeste fabricant de chandelles et c’est chez son frère imprimeur qu’il peut assouvir sa passion pour la lecture. Il rencontre l’électricité par hasard vers l’âge de quarante ans. Il est alors à Philadelphie où il participe aux activités des cercles cultivés de la ville. Ceux-ci ont reçu d’Angleterre un "coffret électrique contenant "un tube de verre avec une note explicative sur l’emploi qu’on en peut faire" pour réaliser "certaines expériences électriques". L’auteur de cet envoi est Peter Collinson, membre de la Royal Society, l’académie des sciences anglaise. C’est un marchand Quaker de Londres entretenant des relations commerciales avec les colonies d’Amérique et qui ambitionne d’encourager les américains dans l’étude des sujets scientifiques. Il n’a pas manqué de joindre à son envoi une notice explicative : une relation des expériences spectaculaires menées en Allemagne par Bose et ses successeurs. Une "bouteille de Leyde" (nous reparlerons de ce premier condensateur électrique) est jointe au colis, elle procurera de vigoureuses secousses au "Tout-Philadelphie" pendant plusieurs mois.

 

Franklin fait de ce matériel un usage plus scientifique dont il rend compte, à partir de mars 1747, sous forme de plusieurs lettres à son correspondant anglais M. Collinson, membre de la Royal Society.

 

Nous avons déjà évoqué la proposition qui servira de socle à toutes ses interprétation ultérieures : l’électricité est un fluide qui imprègne tous les corps. Le frottement a pour effet d’en faire passer une certaine quantité d’un corps à l’autre.

 

Cette nouvelle façon de percevoir l’électricité est parfaitement illustrée par la deuxième lettre qu’il adresse à Pierre Collinson. Trois personnages y sont mis en scène : A, B et C.

 

A est isolé sur un gâteau de cire, il frotte un tube de verre qu’il tend à B lui-même isolé. B approche la main du tube et en reçoit une étincelle. A ce moment le personnage C resté au sol, en contact avec la terre, tend les doigts vers A et B et reçoit de chacun une décharge électrique. Franklin propose une interprétation séduisante :

 

"Nous supposons que le feu électrique est un élément commun, dont chacune des trois personnes susdites a une portion égale avant le commencement de l’opération avec le tube : la personne A qui est sur un gâteau de cire, et qui frotte le tube, rassemble le feu électrique de son corps dans le verre, et sa communication avec le magasin commun (la terre) étant interceptée par la cire, son corps ne recouvre pas d’abord ce qui lui manque ; B, qui est pareillement sur la cire, étendant la jointure de son doigt près du tube, reçoit le feu que le verre avait ramassé de A ; et sa communication avec le magasin commun étant aussi interceptée, il conserve de surplus la quantité qui lui a été communiquée. A et B paraissent électrisés à C, qui est sur le plancher ; car celui-ci ayant seulement la moyenne quantité de feu électrique, reçoit une étincelle de B, qui en a de plus, et il en donne à A qui en a de moins...

 

De là quelques nouveaux termes se sont introduits parmi nous. Nous disons que B (ou tout autre corps dans les mêmes circonstances) est électrisé positivement et A négativement ; ou plutôt B est électrisé plus et A l’est moins, et tous les jours dans nos expériences nous électrisons les corps en plus ou en moins suivant que nous le jugeons à propos.".

 

Pour la première fois, est donc exprimée la notion de charges positives et négatives. Cependant, nous l’avons compris, Franklin ignore l’interprétation de Dufay en termes de deux espèces d’électricité. Pour lui, le fluide électrique est unique, un corps chargé positivement en porte une quantité supplémentaire, un corps chargé négativement en a perdu. "Plus " et "moins" ne sont donc pas une nouvelle convention pour désigner deux électricités différentes mais ont le sens réel de gain et de perte.

 

Ce modèle, opposé à celui de Dufay, peut facilement convaincre. Il présente cependant de sérieuses lacunes. Comment peut-on affirmer, comme une évidence, que l’homme qui frotte le tube de verre fait passer l’électricité de son corps vers le tube ? Etait-il plus difficile d’imaginer que ce même homme arrache de l’électricité au tube frotté ? Franklin propose une étrange hypothèse : il imagine que la "chose frottante" perd une partie de son fluide au profit de la "chose frottée". Mais qui frotte et qui est frotté dans cette opération ?

 

Regrettons, au passage, que Franklin n’ait pas d’abord frotté du soufre. Il lui aurait, pour la même raison, attribué une charge positive ce qui, nous le verrons par la suite, aurait simplifié la tâche des professeurs des siècles suivants.

 

La publication de ces premières lettres lui vaut à ce sujet un courrier critique. Un de ses correspondants lui signale le comportement différent du soufre et du verre et suggère l’existence de deux électricités. Franklin maintient son interprétation initiale. Tout au plus doit-il admettre qu’un corps peut non seulement gagner de l’électricité quand on le frotte, mais aussi en perdre. Persévérant dans son intuition première il décrète cependant que c’est bien le verre qui se charge "en plus" tandis que le soufre se charge "en moins".

 

Une seconde mise en garde est plus sévère. On n’étonnera personne en disant que le sujet favori de Franklin aura été le tonnerre. Il en imagine le processus de la façon suivante : la terre est la réserve, le "magasin" de l’électricité. En s’évaporant pour former les nuages, l’eau arrache au globe terrestre une certaine quantité de fluide qui lui est ensuite restituée sous forme d’éclairs. Or, après la découverte du paratonnerre, Franklin est en mesure de prélever et d’analyser l’électricité portée par les nuages. Il constate alors qu’ils sont généralement chargés "en moins". Il faudrait donc que l’eau ait abandonné de l’électricité au sol et que, dans le phénomène du tonnerre, ce soit "la terre qui frappe les nuages et non pas les nuages qui frappent la terre". Cette constatation, contraire au sens commun, chagrine son auteur et, finalement, le doute s’installe :

 

"Les amateurs de cette branche de la physique ne trouveront pas mauvais que je leur recommande de répéter avec soin et en observateurs exacts, les expériences que j’ai rapportées dans cet écrit et dans les précédents sur l’électricité positive et négative, et toutes celles du même genre qu’ils imagineront, afin de s’assurer si l’électricité communiquée par le globe de verre est réellement positive..."

 

Il faudra presque un siècle et demi pour apporter une réponse à cette question. Cette réponse, hélas, sera négative.

 

Cela n’empêche pas la théorie du fluide unique de s’imposer. Elle possède, en effet, un pouvoir déductif très développé et sera la source d’un progrès rapide dans l’expérimentation. Aujourd’hui encore, le schéma proposé par Franklin reste à la base de la plupart de nos raisonnements.

 

Entre Dufay et Franklin : les bas de soie de Robert Symmer.

 

Robert Symmer (1707 - 1763) est écossais. Après une carrière dans la finance il se consacre aux sciences. En 1759 il publie dans les Philosophical Transactions de la Royal Society de Londres, le compte rendu d’expériences qui, malgré leur caractère étrange, lui vaudront une durable renommée.

 

Cela commence par une observation banale : des étincelles éclatent le soir quand il retire ses bas. Beaucoup de ses amis lui disent avoir fait la même observation mais, dit-il, "il n’a jamais entendu parler de quelqu’un qui ait considéré le phénomène de façon philosophique". C’est en effet une idée qui ne vient pas spontanément à l’esprit et c’est pourtant ce qu’il se propose de faire. Il décide donc de porter chaque jour deux paires de bas superposées, l’une de soie vierge l’autre de laine peignée. Heureuse initiative car alors le phénomène se renforce et surtout les deux paires de bas, quand on les sépare, manifestent une furieuse tendance à s’attirer. On peut même mesurer cette attraction en lestant l’une des paires au moyen de masses marquées de poids non négligeable.

 

Arrive un jour où un décès dans sa famille l’amène à porter le deuil. Il ne renonce pas pour autant à son expérience et enfile une paire de bas de soie noire sur ses habituels bas de soie naturelle. Ce soir là, au moment du déshabillage, l’effet est extraordinaire ! Jamais bas ne se sont attirés avec tant de fougue !

 

Quand la période de deuil touche à sa fin, et que des bas plus classiques reprennent leur place en position externe sur la jambe de Symmer, les phénomènes retrouvent leur cours plus modéré. Voici donc deux matériaux de choix pour une expérimentation sur les attractions électriques : la soie naturelle et la soie noire à laquelle le colorant a apporté de nouvelles propriétés. Pour décrire ces observations Symmer utilise d’abord le vocabulaire de Franklin mais, dans l’incapacité de décider lequel des deux bas perd ou gagne de l’électricité, il refuse un choix arbitraire et s’oriente, après avoir lu Dufay, vers l’idée de deux fluides électriques différents :

 

" C’est mon opinion, qu’il y a deux fluides électriques (ou des émanations de deux pouvoirs électriques distincts) essentiellement différents l’un de l’autre ; que l’électricité ne consiste pas en l’effluence et l’affluence de ces fluides, mais dans l’accumulation de l’un ou l’autre dans les corps électrisés ; ou, en d’autres termes elle consiste dans la possession d’une grande quantité de l’un ou l’autre pouvoir. Ainsi il est possible de garder un équilibre dans un corps, par contre si l’un ou l’autre pouvoir domine, le corps est électrisé de l’une ou l’autre manière".

 

Pour désigner ces électricités Symmer conserve les termes "positive" et "négative" qui associent une neutralité mathématique à la neutralité électrique de la matière. Tout en la sachant arbitraire il conservera également la convention de Franklin et appellera positive l’électricité qui apparaît en excès sur le verre frotté et négative celle qui s’accumule sur le soufre. C’est donc la théorie de Dufay habillée du vocabulaire de Franklin. C’est encore le modèle de nos "modernes" manuels.

 

Plusieurs auteurs souhaiteraient un armistice dans la querelle. C’est le cas du suédois T. Bergman qui propose en 1765, peu après la mort de Symmer, un "fluide neutre composé". Constitué de quantités égales de fluide négatif et de fluide positif, il ne se manifeste pas dans l’état normal d’équilibre. Certaines opérations, comme le frottement, le décomposent en deux fluides opposés. Cette théorie fera des adeptes après la découverte de la pile électrique.

 

Dufay, malgré la rigueur de sa méthode, a été rapidement oublié. Par contre, on trouve encore le nom de Symmer dans les manuels du début du XXème siècle.

 

Le XIXème siècle voit donc cohabiter deux modèles différents, celui du fluide unique plutôt enseigné en Angleterre et celui des deux fluides surtout utilisé en Europe continentale. Les raisons de choisir l’un ou l’autre sont souvent plus d’ordre philosophique que d’ordre pratique. Une attitude qu’illustre assez bien Charles-Augustin Coulomb (1736-1806), alors qu’il vient, en 1788, d’établir la loi mathématique de l’attraction et de la répulsion à distance.

 

Pour comprendre cette difficulté à choisir, il faut admettre que, certes, le modèle du fluide unique offre de sérieux avantages mais qu’il soulève également plusieurs difficultés qu’il serait trop commode de passer sous silence. Parmi elles, celle de la répulsion entre deux corps chargés négativement.

 

La répulsion entre deux corps portant "plus" d’électricité ne pose pas de problème à Franklin et à ses disciples : cette électricité supplémentaire forme, pensent-ils, une "atmosphère" qui entoure chaque corps chargé. Ces atmosphères, par leur simple action mécanique élastique, expliquent de façon simple la répulsion entre deux corps chargés positivement.

 

Le problème est différent avec deux corps ayant "perdu" de l’électricité. Aucune atmosphère ne les entoure. D’où alors provient la répulsion ? Ce phénomène qu’ils n’arrivent pas à expliquer de façon satisfaisante, sera la source d’un tourment permanent pour Franklin et ses partisans.

 

L’un d’entre eux, Franz Aepinus (1724-1802), professeur à Berlin puis à Saint-Pétersbourg, abandonne l’hypothèse des "atmosphères" électriques et adopte une vision "newtonienne" de l’action électrique. Celle-ci se ferait à distance, sans aucun support mécanique.

 

La matière "ordinaire" aurait le pouvoir d’attirer le fluide électrique jusqu’à s’en "gorger" comme une éponge et acquérir ainsi un état de neutralité électrique. Par contre, les particules de matière électrique, c’est admis, se repoussent entre elles. Deux corps chargés d’un surplus d’électricité doivent donc se repousser.

 

Mais pourquoi deux corps ayant perdu de l’électricité se repousseraient-ils ? Tout simplement parce que la matière ordinaire, privée d’électricité, a elle-même la propriété de répulsion à distance. Ainsi la répulsion se manifesterait entre deux corps chargés de trop d’électricité mais également entre deux corps ayant perdu du fluide électrique.

 

Cette "matière ordinaire", caractérisée par son volume, sa masse, son inertie, serait donc capable, à la fois, d’exercer sur elle-même des forces d’attraction à distance de nature gravitationnelle comme l’a proposé Newton et des forces de répulsion de nature électrique. Ce système assez compliqué ne pouvait convenir qu’à des franklinistes déjà convaincus. Ce n’est pas le cas de Coulomb :

 

" M. Aepinius a supposé dans la théorie de l’électricité, qu’il n’y avait qu’un seul fluide électrique dont les parties se repoussaient mutuellement et étaient attirées par les parties des corps avec la même force qu’elles se repoussaient... Il est facile de sentir que la supposition de M. Aepinius donne, quant aux calculs, les mêmes résultats que celle des deux fluides... Je préfère celle des deux fluides qui a déjà été proposée par plusieurs physiciens, parce qu’il me paraît contradictoire d’admettre en même temps dans les parties des corps une force attractive en raison inverse du carré des distances démontrée par la pesanteur universelle et une force répulsive dans le même rapport inverse du carré des distances". (Des deux natures d’électricité – Histoire de l’Académie Royale des Sciences – année 1788, page 671).

 

Il reste vrai, cependant, que le choix ne s’impose pas quand on étudie l’électricité à l’état statique. Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?

 

La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Mais ceci est une autre histoire.

 

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Partager cet article
Repost0
29 janvier 2010 5 29 /01 /janvier /2010 11:33

Le bonhomme d’Ampère nous donne l’occasion de conclure un cours d’électricité sur le magnétisme d’un façon ludique en proposant aux volontaires de dessiner un bonhomme d’Ampère de leur choix.

 

Nous proposons ci-dessous quelques-unes des œuvres réalisées par des élèves landernéens des années 80/90 du siècle déjà passé.


Premier réflexe : caricaturer le prof.


Le même dans une nouvelle version.


 

La mode "punk" faisait fureur et il n’était pas exclu de voir un iroquois se battre au tableau avec la loi de Laplace. Ce bonhomme particulièrement réussi aurait sa place dans un musée d’art contemporain.


Mais le "hippy" aussi se portait bien.


 

En Bretagne, c’est la période Plogoff. Les lycéens de Landerneau ont été nombreux à y aller faire un tour. Les lance-pierres des manifestants échangent leurs projectiles avec les fusils lance-grenades des gardes mobiles. L’auteur de ce dessin choisit le "peace and love". Faites l’amour et pas le nucléaire !


 

Fin de la guerre froide. Le mur de Berlin est tombé. George Bush converti ?


Symbole de la fin des idéologies ?


 

Le MLF se réveille. Assez de la domination des mâles dans les sciences. ! Et pourquoi pas une "bonne-femme d’Ampère"


 

Et la défense des animaux ? Ne faudrait-il pas aussi rendre à la grenouille ce qui n’appartient pas au seul Galvani ?


 

Encore une bonne-femme d’Ampère directement sortie de sa bande-dessinée.


La BD inspire


Quatre Daltons pour un bonhomme


La tête de qui sur le billot ?


 

Du Bonhomme au Tire-bouchon.

 

Après Ampère et son bonhomme place à Maxwell et sa vis : le sens positif des lignes de champ circulaires qui entourent un fil parcouru par un courant est celui dans lequel tourne une vis qui avance dans le sens du courant.

 

Les français, peuple de "poètes", ont remplacé la vis de Maxwell par un tire-bouchon.


 

Concilier "bonhomme d’Ampère" et "Tire-bouchon de Maxwell" : une bonne idée à consommer modérément.


Pour en savoir plus :

 

Histoire de l’électricité. Au sujet du sens du courant électrique, du bonhomme d’Ampère et du tire-bouchon de Maxwell.

 

Les auteurs de ces dessins ont également, sans le savoir, participé au livre :

Histoire de l’électricité, de l’ambre à l’électron. Vuibert, 2009. Table des matières

Ci-dessus : Version féérique d"une "bonne-femme d’Ampère".


Pour nous contacter


Voir aussi :

 

Sur le sire ampère.cnrs Quelques bonshommes... par des potaches du XXe siècle

 


 

 

Partager cet article
Repost0
13 mai 2009 3 13 /05 /mai /2009 14:01

Lavoisier en Bretagne.


Dans l'année 1778, Lavoisier se trouve en Bretagne. Vraisemblablement en tournée d'inspection dans le cadre de sa charge de fermier général ou  de celle de régisseur de la régie royale des poudres.

 



Son séjour coïncide avec la visite que le Duc de Chartres fait, le 10 juin, aux mines de plomb argentifère de Poullaouen et Huelgoat dans l'actuel Finistère. Il se trouve alors dans cette localité et se joint à la visite.


Lavoisier découvre à Poullaouen une mine réputée pour son bon fonctionnement mais dont les techniques sont cependant encore proches de celles décrites par Agricola en 1556, dans "De Re Metallica", ouvrage dont plusieurs gravures illustrent le document réalisé en 1994 par des lycéens de Landerneau à l'occasion du bicentenaire de la mort de Lavoisier.( voir : Lavoisier à Poullaouen)

 


Les différentes machines nécessaires à l'extraction du minerai et aux opérations métallurgiques sont actionnées par l'eau d'une retenue qu'il a fallu alimenter par une multitude de canaux, d'aqueducs et même d'une galerie creusée dans le granit. Une machine à vapeur avait bien été installée en 1747 mais le coût prohibitif du charbon l'avait fait démonter dès 1752.

 



La visite fait l'objet d'une publication à l'académie des sciences. (voir Mémoire de l'Académie des sciences )


En chimiste, Lavoisier nous donne l'une des meilleures descriptions des procédés métallurgiques utilisés pour produire le plomb et en extraire l'argent. Le lecteur intéressé par l'histoire des sciences remarquera que le "père" de l'oxygène, qui vient de participer à la rédaction d'une nomenclature centrée sur ce corps, y fait la part belle au phlogistique dont il a combattu la thérie (voir : Lavoisier et le phlogistique ). Disons même que son exposé est un modèle de la théorie du phlogistique. Sans doute est-ce la condition pour que son mémoire soit retenu par ses pairs de l'Académie des Sciences non encore convertis à la nouvelle doctrine.


Le récit s'extrait de la chimie pour décrire un Duc de Chartre, futur Philippe Egalité, prenant des risques pour visiter tous les endroits de l'exploitation, y compris les galeries où il se fait montrer l'emploi des explosifs. Ou encore s'informant des conditions sociales de l'exploitation et en particulier des mesures prises pour "assurer aux ouvriers et à leur veuves une subsistance honnête dans les cas de vieillesse, d'infirmité ou d'accident".


La journée se termine par un concours de lutte bretonne suivi du traditionnel "fest noz", spectacle dont Lavoisier considère qu'il "retrace le tableau des mœurs antiques" à travers des jeux "tels que ceux que nous décrit Homère".


Passage par Brest.


Quelques jours plus tôt, le 5 juin, Lavoiser était à Brest. Dans une lettre qu'il adresse au chimiste Macquer, il décrit le spectacle que lui offrent les manœuvres de la flotte de guerre qui bientôt sera engagée contre l'Angleterre dans le cadre de la guerre d'indépendance des Etats Unis :


" J'ai dans le moment sous les yeux le spectacle de la plus grande partie des forces maritimes de la France. Vingt cinq vaisseaux de ligne sont en rade, deux sont prêts à sortir du port, cinq ou six autres seront prêts à la fin de la campagne. M. Dorvilliers commande la flotte. M. le Duc de Chartre et M. du Chaffau commandent chacun une division de neuf vaisseaux. Chaque jour la flotte fait des évolutions et on  fait détonner force salpêtre. Outre cette flotte il y a une chaîne de frégates depuis le port de Brest jusqu'aux côtes d'Angleterre qui sont en observation et par une communication de signaux on sait tout ce qui se passe en Angleterre. Je ne suis pas dans le secret mais on assure que l'amiral Keppel n'est pas sorti, que l'amiral Biron qui était sorti de Porsmouth est rentré à Plymouth peu de jours après ainsi M. Destaing sera passé sans obstacle."


La bataille qui engagera les deux flottes aura lieu le 27 juillet dans les parages de Ouessant. Considérée comme une victoire par la France (ce que contestent les anglais), la "Bataille d'Ouessant" voit le Duc de Chartre y prendre une part active et être qualifié de "héros" par les uns et de "maladroit" par les autres, la division qu'il commandait n'ayant pas su exploiter l'avantage quel avait acquis par une manœuvre audacieuse et ayant finalement laissé fuir les anglais.


L'escapade à Poullaouen n'était probablement, pour le Duc de Chartre comme pour Lavoisier, qu'un parenthèse entre d'autres affaires plus importantes. Le texte de Lavoisier, qui en résulte, est cependant d'une extrême importance par le témoignage qu'il apporte des procédés métallurgiques et du fonctionnement d'une mine à la fin du 18ème siècle.

__________________________________________________________________________
_______________________________________________________________________________________________








Partager cet article
Repost0
13 mai 2009 3 13 /05 /mai /2009 08:23

Lavoisier et le phlogistique.

 

Peut-on parler du modèle de la combustion proposé par Lavoisier sans parler du phlogistique ?

 

Un nom est attaché à la théorie du phlogistique, celui de Georg Ernest Stahl (1660-1734), chimiste et médecin du roi de Prusse. Nous n'exposerons pas ici le détail de la théorie de Stahl, mais nous pourrons l'évoquer dans une forme proche de celle qu'enseignait en France le chimiste Guillaume-François Rouelle (1703-1770).

 

Rouelle donnait à Paris des cours de chimie, véritables spectacles, qui attiraient la meilleure société de la capitale. Diderot a été son élève et a noté ses cours mais aussi Lavoisier. Sa "chimie phlogistique" y était présentée d'une façon claire et dépouillée.

 

Le phlogistique (du grec phlogos, flamme) est la matière du feu. Un corps qui brûle libère son phlogistique. Certains corps peuvent même être considérés comme du phlogistique pratiquement pur, le charbon par exemple qui disparaît presque totalement dans une combustion en ne laissant que peu de cendres. Les métaux aussi peuvent brûler, l'observation montre que l'on obtient ce que le 17ème siècle appelle une chaux métallique.

 

Selon l'interprétation de Stahl suivi par Rouelle, une chaux métallique est donc un métal qui a perdu son phlogistique : un métal déphlogistiqué.

 

C'est aussi cette même chaux que l'on trouve dans les minerais. L'observation des procédés métallurgiques apprend que, partant de cette chaux métallique, on obtient le métal par l'action du charbon qui, non seulement apporte la chaleur nécessaire à la fusion, mais qui doit également être au contact du minerai, jouant lui-même le rôle d'un réactif chimique.

 

La réaction de réduction de la chaux en métal s'interprète donc de façon simple : le phlogistique libéré par la combustion du charbon se fixe sur la chaux métallique et régénère le métal.

 

Chaux métallique         +        Charbon               ->   Métal

                     (métal déphlogistiqué)     (phlogistique) 

 

De même la combustion d'un métal :

 

Métal   ->  Phlogistique   +  Chaux métallique

 

La théorie est séduisante et, avant d'en être l'adversaire victorieux, Lavoisier s'exprimera lui-même en phlogisticien convaincu.

 

Un problème cependant : tous les métallurgistes savent qu'une livre de plomb fondu et maintenu en fusion sous le courant d'air d'un soufflet se transforme bientôt en une masse de litharge (chaux de plomb) de poids supérieur à celui du plomb initial. Le plomb a pourtant perdu son phlogistique, comment expliquer qu'il s'alourdisse ?   A l'inverse comment expliquer que ce même plomb retrouvant son phlogistique par l'action du charbon devienne plus léger ?

 

Une explication est communément avancée : le phlogistique  s'échappant du métal, celui-ci se resserre à l'image d'une éponge privée d'eau. Il deviendrait donc plus "lourd". Explication évidemment peu satisfaisante qui confond masse et densité et qui est pourtant celle de personnes considérées comme "savantes". Nos lycéens contemporains qui, eux aussi, confondent parfois les deux notions n'ont donc pas à en rougir.

 

Des Philosophes de la Nature mieux éclairés et plus imaginatifs évoquent un phlogistique à "masse négative", mais sans convaincre.

 

La nécessité de répondre à cette contradiction et sa connaissance de la nouvelle chimie des airs amènent Lavoisier à refuser une théorie unanimement admise mais dont les faiblesses sont de plus en plus évidentes. Un combat qu'il engage en 1777 par le rédaction de réflexions sur le phlogistique et qui trouve son aboutissement en 1877 avec la publication de la Méthode de nomenclature chimique en collaboration avec Guyton de Morveau, Berthollet et Fourcroy.

 

Refusant le Phlogistique, Lavoisier interprète les calcinations et combustions à partir d'un principe que nous considérons aujourd'hui comme évident mais qui était en rupture avec la tradition du moment, à savoir que l'air est  composé de deux gaz. L'un que Lavoisier proposera d'appeler Azote (qui prive de la vie), l'autre Oxygène (qui génère les acides).

 

La combustion devient alors un gain de matière, une "oxygénation", suivant un schéma désormais classique  : 

 

Métal   +   oxygène  ->   oxyde métallique

 

La réduction d'un minerai à l'état de métal par le carbone  devient :

 

Oxyde métallique   +   carbone   ->   métal   +  oxyde de carbone

 

Mais les chimistes français devront batailler ferme pour le faire admettre.

 

_________________________________

 

 

Quand Lavoisier était encore Phlogisticien

 

Au cours de l'année 1994, bicentenaire de la mort de Lavoisier, cherchant à en savoir plus sur le brillant chimiste, nous avons eu connaissance de sa visite dans le Finistère par un rapport adressé à l'Académie des Sciences.

 

L'année 1778, il participait à une visite d'inspection de la mine de plomb argentifère de Poullaouen près de Huelgoat et détaillait les méthodes métallurgiques utilisées. Depuis un an, le combat contre le phlogistique était engagé. Cependant le rapport de Lavoisier, acte de nature administrative, est un modèle de mise en œuvre de la théorie de Stahl et sans doute l'une des meilleures illustrations de cette théorie.

 

Le minerai de Poullaouen est un sulfure de plomb (la galène) qui doit d'abord subir un "grillage" pour être transformé en oxyde de plomb avec libération de dioxyde de soufre. L'oxyde devra alors être réduit en plomb par l'action du carbone.

 

Lavoisier décrit la méthode : " La première opération à faire est de griller la mine (le minerai) pour détruire le soufre par combustion et pour le volatiliser. Cette opération ne peut se faire sans qu'une partie du métal se réduise en chaux ; et on ne peut le ramener à l'état métallique que par l'addition de phlogistique".

 

Après avoir décrit le fourneau utilisé, Lavoisier décrit le procédé : " De temps en temps on jette dans le fourneau quelques pelletées de menu charbon de terre ou de bois, pour rendre le phlogistique au métal, et ce dernier, lorsqu'il est fondu et revivifié, se rassemble par la pente naturelle du fourneau dans le milieu, où on a soin de le tenir toujours couvert avec du charbon embrasé."

 

En cette année 1994, Lavoisier nous a amenés à parler du phlogistique dans une classe de seconde du lycée de l'Elorn qui marquait l'évènement par une exposition.

 

 

Les élèves ont positivement apprécié cette théorie qui, de leur avis, "n'était pas si mal imaginée". Certains qui étaient tombés dans les pièges tendus par le professeur dans des cours précédents( voir : Chimie au lycée. En classe avec Lavoisier.), ont eu le plaisir de constater que leurs "erreurs" d'aujourd'hui étaient assez proches de "vérités" de certains chimistes du 18ème siècle.

 

Le phlogistique ne fait plus partie de notre mémoire collective, pas même de celle de la communauté des chimistes, pourtant certains indices laissent entendre qu'il agit encore dans certaines franges de notre inconscient en orientant notre raisonnement vers de mauvaises pistes.

 

C'est sans doute une raison suffisante pour que la "révolution chimique" introduite par Lavoisier et les "chimistes français" mérite au moins d'être encore contée.

 

________________________________________

Voir aussi : Lavoisier : "Cette théorie est la mienne".

 

 

 

Partager cet article
Repost0
8 mai 2009 5 08 /05 /mai /2009 13:52

d

En Classe avec Lavoisier.
par Gérard Borvon

________________________________
 
Cet article est  issu de cours de chimie assurés pendant plusieurs années dans les classes de secondes du lycée de l'Elorn à Landerneau. Le principe de ce travail est d'utiliser l'histoire des sciences, non pas comme un simple accompagnement, mais comme un des outils de l'apprentissage. Dans le cas présent, il s'agit d'utiliser les travaux de Lavoisier pour construire le cours du premier trimestre d'enseignement de la chimie en classe de seconde.


Ce travail a fait l'objet de trois publications.

Dans le Bulletin de l'Union des physiciens sous le titre : "1789 dans le laboratoire de Lavoisier". n° 720. p 39-55
.1989.

Dans : Les Cahiers de Beaulieu. Université de Rennes. n°23. 1997.

Dans : Histoire des sciences et des techniques. Editions du CRDP de Bretagne.  p 365-379.
1997.

Suite à ces publications, les fiches et la méthode ont été mises en oeuvre par plusieurs collègues qui y ont apporté leur propre créativité.

Cet article, à ranger dans la catégorie "didactique", ne doit pas effrayer le lecteur occasionnel. Il a été rédigé pour s'adresser à des enseignants, futurs ou actuels mais il devrait pouvoir aussi concerner toute personne s'intéressant à l'éducation, à l'histoire ou aux sciences. C'est du moins le souhait de l'auteur.
 
__________________________________________________________


Une exposition au lycée de l'Elorn à Landerneau pour le bicentenaire de la mort de Lavoisier
_________________________________________________________________________________________

 

Lavoisier est entré dans notre classe, au lycée de l'Elorn à Landerneau, par l'intermédiaire de son Traité élémentaire de chimie publié en 1789. Un livre de cours à l'usage des chimistes débutants qui se proposait de former un chimiste en deux ans et auquel on peut encore emprunter quelques manipulations commodes.

 

La chimie, en classe de seconde des lycées, peut être considérée comme le passage de l'approche qualitative du collège à une approche plus quantitative. Nous allons apprendre la mole, les masses et les volumes molaires. Nous allons être capables de déterminer des proportions stœchiométriques d'une réaction et d'en déduire les quantités de produits obtenus. Lavoisier, le chimiste de la mesure, ne serait-il pas le meilleur des guides pour accompagner cette évolution ?

 

Nous hisser, après trois mois d'études, au niveau de la recherche "de pointe" de la fin du XVIIIe siècle, passer les résultats de Lavoisier au crible de nos connaissances actuelles, comparer son travail expérimental au nôtre, confronter son modèle de la combustion à nos représentations intuitives : voilà de quoi donner des couleurs à notre début de cours.

 

Un premier trimestre en classe de seconde.

 

Début septembre on prépare le terrain par un TP.

 

Commencer par une séance de travaux pratiques, un "TP", est une bonne façon de prendre contact au moment d'une rentrée scolaire. C'est, dès l'abord une occasion d'entrer en possession du laboratoire et du matériel, flacons, bec Bunsen, réactifs.

 

Ce premier TP aura pour thème : "Combustions dans le dioxygène, celle du carbone, du soufre (sous la hotte), du fer, du magnésium". Ce TP mettant en œuvre un matériel divers annonce déjà Lavoisier et l'observation de la combustion du fer qui l'amène à formuler l'hypothèse de l'existence du dioxygène dans l'air. Il est aussi l'occasion d'accumuler des écritures de réactions chimiques qui seront rapidement utiles dans la suite du cours et dans les exercices.

 

Pour la combustion du fer nous utilisons de la "laine de fer", produit généralement utilisé pour l'entretien du bois des meubles. Son intérêt est une combustion vive qui se fait avec une forte incandescence mais sans émission d'étincelles.

 

Première manipulation : Un flacon est empli de dioxygène. Un tampon de laine de fer est placé à l'extrémité d'un crochet suspendu à une plaque de bois assez grande pour obturer le flacon. Le seul fait de passer rapidement ce tampon dans la flamme éclairante d'un bec bunsen en enflamme quelques fragments. Il faut alors le plonger rapidement mais sans heurt dans le flacon. La goutte d'oxyde magnétique obtenue après combustion adhère fortement au crochet.

 

Un premier sondage nous permettra d'évaluer l'image que se font les élèves de la combustion, sujet déjà étudié en collège.

 

Dès la fin de la manipulation chacune et chacun est invité à prendre un papier afin d'y inscrire son nom  et de répondre à deux questions posées l'une après l'autre. :

 

1ère question : La matière qui reste fixée au crochet est-elle : moins lourde, de même masse, plus lourde, que celle du fer initial ?

 

2ème question : justifiez votre choix par une courte phrase (posée après la réponse à la première.

 

Les papiers sont ramassés sans autre commentaire immédiat. Le dépouillement effectué après le cours indiquera (chiffres de 1993 représentatifs de la répartition régulièrement observée) :

 

- 3 "moins lourd".
- 15 "même masse".
- 9 "plus lourd".

 

Les cours à venir semblent devoir être utiles !

 

En classe, on se sera contenté de traduire la réaction par l'équation :

 

3 Fe + 2 O2 -> Fe3O4

 

 

Cette équation, comme celles qui l'accompagnent dans ce TP, devront être retenues par cœur (c'est du moins le souhait du professeur). Nécessaire cet apprentissage ? Ces quelques formules seront un bagage, léger mais utile, pour les étapes ultérieures. Par exemple pour illustrer un calcul de masse molaire ou pour explorer le tableau périodique.

 

 

Début novembre : la mesure en chimie.

 

Dans un cours sur "La mesure en chimie", nous introduisons l'ensemble des outils utiles à un élève de seconde : le nombre d'Avogadro, la mole, les masses molaires, le volume molaire et la densité des gaz.

 

Des exercices faisant appel aux proportions stœchiométriques deviennent alors possibles. On peut, par exemple, calculer la masse d'oxyde magnétique obtenue à partir d'une quantité donnée de fer ainsi que le volume de dioxygène nécessaire. Le moment est alors venu de faire intervenir Lavoisier.

 

Mi-novembre : Lavoisier dans notre classe.

 

Les fiches ci jointes, relatant la combustion du fer par Lavoisier et proposant un exercice sur ce thème sont distribuées. Une courte présentation du chimiste est faite et les élèves sont eux-mêmes invités à rassembler une documentation et à réaliser un dossier personnel le présentant dans son époque et situant sa place dans le développement de la chimie. Les fiches et le dossier seront remis au professeur quinze jours plus tard.

 

__________________________________________________________

__________________________________________________________

 

Fiche n° 1 : Masses, longueurs, volumes à l'époque de Lavoisier.

 

Lavoisier est véritablement le premier chimiste à avoir accordé toute son importance à la mesure en chimie. Son activité de fermier général fait de lui un homme riche qui peut utiliser revenus pour faire fabriquer les meilleurs instruments de l'époque. Son laboratoire est aujourd'hui une des pièces essentielles présentées dans le musée des Arts et Métiers à Paris.

 

Dans son "Traité élémentaire de chimie", il relève la difficulté pour le commerce de la diversité des étalons de mesure, en particulier ceux des masses. La livre, dit-il "diffère d'un royaume à un autre, d'une province et souvent même d'une ville à une autre".

 

Les chimistes, par contre, devraient pouvoir échapper à ces inconvénients dans la mesure où les réactions chimiques sont une question de proportions. Peu importe la livre choisie pourvu que les masses soient partout exprimées avec les mêmes divisions. D'où la proposition par Lavoisier d'un système décimal :

 

"Ces considérations m'ont fait penser qu'en attendant que les hommes, réunis en société, se soient déterminés à n'adopter qu'un seul poids et qu'une seule mesure les chimistes, de toutes les parties du monde, pourraient sans inconvénient se servir de la livre de leur pays, quelle qu'elle fût, pourvu qu'au lieu de la diviser, comme on l'a fait jusqu'ici, en fractions arbitraires, on se déterminât par une convention générale à la diviser en dixièmes, en centièmes, en millièmes, en dix-millièmes, etc. c'est-à-dire, en fractions décimales de livres".

 

A la fin de son traité de chimie, Lavoisier propose donc des tables de conversion entre le système de mesure français et un système décimal. Lui-même fait fabriquer des masses décimales pour ses propres balances.

 

Exercice : compléter les tableaux suivants.

 

Mesure des masses : Au 18ème siècle le système de masse, en France, comprend : la livre, le marc, l'once, le gros, le grain.

 

 

 

 

Unité du 18ème siècle

Définition

Valeur en grammes

Livre

Marc

Once

Gros

grain

 

1 marc=1/2 livre

1 once= 1/16 livre

1 gros=1/8 once

1 grain=1/72 gros

489,5 g

 

 

Mesure de longueurs : Le système comprend le pied, le pouce, la ligne, le 1/12 de ligne.

 

 

Unité du 18ème siècle

définition

Valeur en cm

Pied (de roi)

Pouce

Ligne

1/12 de ligne

 

1 pouce=1/12 pieds

1 ligne=1/12 pouce

32,5 cm

 

 

 

Volumes : Les chimistes utilisent le pouce cube (ou pouce cubique).

 

Convertir.

 

1 pouce cube =               cm3

1 litre =                             pouce cube

 

 

Exercice : Lavoisier trouve qu'une livre d'eau a un volume de 24,687 pouces cubiques. Etes-vous d'accord ? (à rédiger sur feuille séparée)

 

__________________________________________________________

__________________________________________________________

 

Fiche n° 2 : Analyse d'une expérience fondamentale : la combustion du fer dans l'oxygène.
 

 

Dans son traité élémentaire de chimie (1789), Lavoisier décrit une combustion de fer dans le dioxygène qui ressemble beaucoup à celle que nous réalisons au laboratoire.

 

"Tout le monde connaît aujourd'hui la belle expérience de M.Ingenhouz sur la combustion du fer. On prend un bout de fil de fer très fin BC, (figure ci-contre), tourné en spirale, on fixe l'une de ses extrémités B , dans un bouchon de liège A, destiné à boucher la bouteille DEFG. On attache à l'autre extrémité de ce fil de fer, un petit morceau d'amadoue C. Les choses ainsi disposées, on emplit avec de l'air dépouillé de sa partie non respirable*, la bouteille DEFG.

 

 

On allume l'amadou C, puis on l'introduit promptement, ainsi que le fil de fer BC dans la bouteille, et on la bouche comme on le voit dans la figure que je viens de citer.

 

Aussitôt que l'amadoue est plongée dans l'air vital*, elle commence à brûler avec un éclat éblouissant ; elle communique l'inflammation au fer, qui brûle lui-même en répandant de brillantes étincelles, lesquelles tombent au fond de la bouteille, en globules arrondis qui deviennent noirs en se refroidissant, et qui conservent un reste de brillant métallique. Le fer ainsi brûlé, est plus cassant et plus fragile, que ne le serait le verre lui-même ; il se réduit facilement en poudre et est encore attirable à l'aimant, moins cependant qu'il ne l'était avant sa combustion."

 

*remarque : " l'air dépouillé de sa partie non respirable" est l'oxygène ou "air vital". A ce moment de son cours, Lavoisier n'utilise pas les mots oxygène et azote qu'il a cependant déjà définis deux ans plus tôt mais qui ne sont pas encore dans le langage courant. Il les introduira dans la suite de son livre. La "poudre d'algoroth", le "sel alembroth", le "pompholix", le "turbith minéral", sont des termes familiers aux chimistes du 18ème siècle alors que les mots oxygène ou hydrogène sont considérés comme barbares !

 

Pour pouvoir effectuer des mesures précises, Lavoisier élabore un montage d'une grande ingéniosité ( voir figures 3 et 11).

 

 

Le fer est placé dans une soucoupe sous une cloche contenant du dioxygène, l'ensemble étant posé sur une cuve à mercure. On peut ainsi mesurer le volume de dioxygène consommé dans la combustion et la masse de l'oxyde de fer formé. Remarquez (figure 11) l'emploi d'une loupe pour enflammer une mèche à travers le verre de la cloche.

 

 

Quand la combustion est terminée :

 

"On enlève doucement la cloche ; on détache de la capsule les globules de fer qui y sont contenus ; on rassemble soigneusement ceux qui pourraient s'être éclaboussés et qui nagent sur le mercure, et on pèse le tout. Ce fer est dans l'état de ce que les anciens chimistes on nommé éthiops martial ; il a une sorte de brillant métallique ; il est très cassant, très friable, et se réduit en poudre sous le marteau et sous le pilon. Lorsque l'opération a bien réussi, avec 100 grains de fer on obtient 135 à 136 grains d'éthiops. On peut donc compter sur une augmentation de poids au moins de 35 livres par quintal.

 

Si l'on a donné à cette expérience toute l'attention qu'elle mérite, l'air se trouve diminué d'une quantité en poids exactement égale à celle dont le fer a augmenté. Si donc on a brûlé 100 grains de fer et que l'augmentation de poids que ce métal a acquise ait été de 35 grains, la diminution du volume de l'air est assez exactement de 70 pouces cubiques à raison d'un demi grain par pouce cube. On verra dans la suite de ces Mémoires, que le poids de l'air vital est en effet, assez exactement d'un demi-grain par pouce cube."

 

Par la description qu'il en donne, on aura compris que le corps appelé par Lavoisier éthiops martial est ce que nous appelons oxyde magnétique auquel nous avons déjà donné la formule Fe3O4.

 

Relevons encore dans le texte suivant le souci de rigueur expérimentale chez Lavoisier :

 

"Je rappellerai ici une dernière fois que dans toutes les expériences de ce genre, on ne doit point oublier de ramener par le calcul le volume d'air au commencement et à la fin de l'expérience à celui qu'on aurait eu à 10 degrés du thermomètre, et à une pression de 28 pouces : j'entrerai dans quelques détails sur la manière de faire ces corrections, à la fin de cet ouvrage."

 

Aujourd'hui nous savons que le volume molaire des gaz est 22,4 l à la température de 0°C et à la pression de 760mm de mercure. On vérifiera facilement que la pression de 28 pouces est très proche de la valeur précédente. Par contre la température de 10° correspond à l'échelle Réaumur qui va du 0°R de la glace fondante au 80°R de l'eau bouillante, c'est donc une température correspondant à 12,5°C de notre échelle.

 

L'utilisation de la "loi des gaz parfaits" nous permettra de calculer le volume molaire des gaz dans les conditions du laboratoire de Lavoisier : 23,5 l.

 

Nous pouvons maintenant comparer nos connaissances avec les résultats expérimentaux de Lavoisier.

 

__________________________________

 

Exercice : (à rédiger sur feuille)

 

1) Quelle masse de fer exprimée en grammes représentent 100 grains de fer.

 

2) Quelle quantité théorique d'oxyde magnétique (exprimée en grammes puis en grains) peut-on obtenir par la combustion de ces 100 grains de fer ? Comparez à la valeur mesurée par Lavoisier.

 

3) Quel est le volume théorique de dioxygène (exprimé en litres puis en pouce-cubes) consommé dans cette réaction si le volume molaire des gaz est 23,5 l ? Comparez à la valeur proposée par Lavoisier.

 

4) Lavoiser indique que la masse (le "poids") du dioxygène ("air vital") est assez exactement d'un demi-grain par pouce-cube. Déterminez la masse volumique du dioxygène en g/cm3 puis en grain/pouce cube et comparez à la valeur proposée par Lavoisier ( le volume molaire des gaz étant 23,5 l).

 

__________________________________________________________

__________________________________________________________


Len résultat est généralement intéressant. La lecture du texte de Lavoisier est commode, l'étude stœchiométrique de la réaction de combustion du fer a déjà été faite en classe sous forme d'exercice d'application, le travail avec les valeurs proposées par Lavoisier est donc une forme de révision. C'est surtout une façon de comparer les calculs résultant de la théorie enseignée aux valeurs expérimentales de Lavoisier et de constater la remarquable précision de celles-ci.

 

Nous laisserons aux chimistes en herbe et à leurs professeurs le soin de compléter ces fiches. Pour répondre à la curiosité du lecteur pressé, disons simplement que le calcul indique une masse de 138 grains  d'oxyde magnétique obtenus pour 100 grains de fer, à comparer aux 135 ou 136 grains mesurés par Lavoisier. Ce qui donne à l'expérience de Lavoisier un rendement expérimental de 98% qui mérite d'être signalé.

 

Plus tard, dans un autre TP dont nous reparlerons, les élèves seront eux-mêmes mis en mesure de mesurer et de comparer leurs propres résultats expérimentaux avec ceux du célèbre ancêtre.

 

Les dossiers remis par les élèves sont également généralement de bonne qualité. Les moyens de reprographie et de traitement de textes disponibles dans les années 90 permettent des présentations agréables en un minimum de temps. Internet n'existe pas encore dans les centres de documentation des lycées, la recherche demandait donc un travail d'investigation relativement important, pourtant, de l'avis général, ce travail était plutôt considéré comme un des bons moments du cours de chimie.

 

L'expérience pourrait s'arrêter là mais il est logique de poursuivre.

___________________________________________________________________________

___________________________________________________________________________

 

 

Travaux pratiques avec Lavoisier ou comment sortir d'un piège didactique.

 

Fin novembre, une nouvelle séquence de travaux pratiques est proposée sous le titre "Combustion du fer dans le dioxygène. Proportions stœchiométriques".  La réaction a déjà été réalisée au premier TP, elle a fait l'objet de plusieurs exercices en classe, il est clairement exposé que l'intérêt de la refaire réside dans notre capacité nouvelle à en prévoir les conditions quantitatives initiales et le résultat final à partir d'un calcul.

 

La séance commence donc par la résolution d'un problème portant sur les conditions initiales de l'expérience :

 

Problème : On souhaite réaliser la combustion de 1g de fer dans le dioxygène. Quel est le volume de dioxygène nécessaire ? (on prendra 24 l pour volume molaire des gaz). Le flacon utilisé contient 650 cm3 de dioxygène. Est-ce suffisant ?

 

Le calcul indique un volume minimum de 286 cm3 de dioxygène, les conditions sont donc remplies et il est possible de passer à la manipulation.

 

Manipulation : 1 g de laine de fer est pesé, le tampon fixé au crochet est rapidement passé dans la flamme d'un bunsen et plongé dans le flacon de dioxygène. La combustion se fait sans étincelles et la boule brillante d'oxyde magnétique reste à nouveau fixée au crochet.

 

 

C'est alors que les élèves sont invités à prendre un papier et que deux questions leur sont posées.

 

1ère Question : La matière qui reste fixée au crochet est-elle, moins lourde, de même masse, plus lourde, que celle du fer initial ?

 

2ème Question (posée après la réponse à la première) : justifiez votre choix.

 

On aura reconnu les questions posées dès la première séance, avant même que le cours soit abordé. Cette façon d'agir était initialement destinée à vérifier les progrès des élèves, on verra par la suite que son objectif aura varié.

 

Les papiers sont ramassé, ils seront dépouillés par la suite. Cependant il est possible de faire un sondage oral. Nous donnerons ici encore les chiffres de l'année 1993-1994.

 

-         Qui a répondu moins lourd ? 2 élèves (3 en septembre)

 

-         Qui a répondu même masse ? 15 élèves ( 17 en septembre)

 

-         Qui a répondu plus lourd ? 9 élèves (9 en septembre)

 

Des proportions figées à trois mois d'intervalle malgré un enseignement particulièrement répété. De quoi désespérer le professeur le mieux trempé quand, du moins, il rencontre ce résultat  pour la première fois. Le professeur averti saura que le même test pratiqué plusieurs années de suite donne à chaque fois des résultats proches.

 

La question était donc en elle-même un "piège didactique" dans lequel professeur et élèves semblaient être tombés. Restait à en sortir honorablement et, pourquoi pas, en faire un élément d'apprentissage.

 

Trois réponses différentes donc dans la classe. Comment trancher ? Les balances sont à portée de main sur les paillasses et tout naturellement quelqu'un propose : et si on pesait ?

 

Mais la mesure n'est pas encore faite qu'une agitation gagne les rangs. Un premier qui avait pronostiqué une masse égale se ravise : "Ah oui, bien sur, je me suis trompé, on a fait l'exercice, cela doit peser plus".  Avis rapidement partagé par une écrasante majorité. L'autorité de la chose enseignée vient de faire irruption dans la classe et a rapidement raison de l'intuition première pourtant solidement ancrée quelque part, dans un de ces lieux secrets du cerveau.

 

Pesons tout de même ! Et nous obtenons une série de mesures comprises entre 1,30g et 1,40g. La masse augmente bien !

 

La vérification par la pesée. Aujourd'hui, à la place du trébuchet, on trouverait des balances électroniques sur les paillasses.

 

Et maintenant calculons ! Un calcul rapide prévoit une masse de 1,38g d'oxyde magnétique. Certaines, ou certains, se rappellent alors que Lavoisier obtenait de 135 à 136 grains d'éthiops martial  à partir de 100 grains de fer. Et chacun de comparer son travail à celui de Lavoisier, et le professeur de rappeler que celui-ci disposait des meilleurs instruments de mesure de l'époque ce que chacune et chacun  est invité à aller le vérifier, à l'occasion d'un passage à Paris, en visitant le musée du Conservatoire des Arts et Métiers.

 

A la fin de cette séance, Lavoisier est un peu plus présent dans la classe. La conscience de l'importance de l'expérience, et surtout de la mesure, en sort renforcée. Sur un plan plus pratique, chacun a la conviction qu'il ne tombera plus dans ce piège (hélas, les professeurs ont le secret des pièges dans lesquels on tombe si facilement ! ).

 

J'ai retrouvé l'année suivante, en première, quelques uns et quelques unes de ces élèves. A l'occasion d'un travail sur la "chimie de la photographie" (c'était encore l'époque du noir et blanc argentique officiellement né, en 1839, avec Niepce et Daguerre), j'ai interrogé l'ensemble de la classe sur l'époque à laquelle on pouvait situer le début de la chimie. A la totale surprise de leurs camarades, ces élèves se sont rappelés Lavoisier, sa découverte du rôle de l'oxygène, sa mort sur l'échafaud en 1794. Je ne sais pas si le piège de la combustion du fer aurait encore fonctionné, mais au moins j'ai pu vérifier qu'un morceau de "culture scientifique" s'était installé pour quelque temps dans leur mémoire.

 

_________________________________________________

_________________________________________________

 

Analyse d'un piège didactique

 

 

Pour éclairer la persistance du pourcentage de réponses "justes" et "fausses" après un trimestre de cours, il est intéressant d'analyser les explications apportées par les élèves pour justifier leur choix.

 

 

 

 

Pourquoi "moins lourd" ?

 

 

C'est la réponse de 3 élèves sur 29.

 

Aurélien : Elle est moins grande qu'avant, une partie de la masse de fer a été brûlée par le dioxygène.

 

Maël : Moins lourd car le fer s'est consumé, donc sa masse a diminué par rapport à sa masse initiale.

 

Les mots "combustion", "brûler", "consumer", induisent presque nécessairement l'idée d'une perte de matière. L'image forte est celle du bois qui se consume en ne laissant que peu de cendres.

 

 

Il n'est d'ailleurs que de consulter un dictionnaire courant pour le vérifier. Par exemple, dans le Larousse en trois volumes (édition 1970).

 

"Combustion : action d'un corps qui se consume par le feu : quelques tourbes ne laissent qu'un faible résidu après la combustion"

 

"Consumer : v.tr. (lat.consumere, détruire peu à peu). Détruire peu à peu en réduisant à rien : la rouille consume le fer - une maison consumée par les flammes  - la passion le consume - il se consume de chagrin - les bûches se consument lentement."

 

Nous pouvons trouver quelque excuse à nos élèves si les très sérieux auteurs du Larousse ont de la combustion l'image de la rouille "consumant" le fer.

 

Lavoisier, dans son introduction à la Méthode de nomenclature (1787), puis dans celle de son Traité élémentaire de chimie (1789), insistait sur la nécessaire précision du mot :

 

"Toute science physique est nécessairement formée de trois choses : la série des faits qui constituent la science ; les idées qui les rappellent ; les mots qui les expriment. Le mot doit faire naître l'idée ; l'idée doit peindre le fait : ce sont trois empreintes d'un même cachet ; et comme ce sont les mots qui conservent les idées et qui les transmettent, il en résulte qu'on ne peut perfectionner le langage sans perfectionner la science, ni la science sans le langage, et que quelque certains que fussent les faits, quelques justes que fussent les idées qu'ils auraient fait naître, ils ne transmettraient encore que des expressions fausses, si nous n'avions pas des expressions exactes pour les rendre."

 

 

Le mot combustion fait naître une idée : celle d'une bûche qui se consume dans un foyer et qui se réduit à presque rien. Lavoisier propose de le remplacer par le terme oxygénation. Mais les mots ont la vie dure et même les professeurs de chimie continueront longtemps à parler de combustion (comme il continuent, d'ailleurs, à parler d'oxydation pour des réaction ne faisant pas intervenir l'oxygène).

 

Notre mise en scène aura été utile si elle fait comprendre que la combustion du chimiste n'est la combustion ordinaire et qu'il faudra surveiller ce mot à l'avenir. Nous aurons d'ailleurs d'autres occasions de signaler à nos élèves qu'il en est souvent ainsi des mots de la physique et de la chimie, il faut apprendre à les dépouiller de leurs habits de tous les jours.

 

Mais revenons à notre questionnaire et aux autres réponses des élèves.

 

 

Pourquoi de même masse ?

 

 

 

réponse de 17 élèves sur 29, très majoritaire (59%).

 

Keltia : égale parce que la paille de fer a fondu, elle est devenue plus petite mais elle a conservé son poids.

 

Séverine : égale. En effet, toutes les particules se sont regroupées, cela forme une boule très compacte.

 

Delphine : je pense que la masse reste la même mais que c'est le volume qui change.

 

Ici c'est l'observation qui guide l'interprétation. Ce que l'on perçoit, c'est d'abord une fusion et chacun sait que lamasse se conserve dans une telle opération physique. C'est la réponse de 59% des élèves et elle répond à une logique. Pendant des siècles les métallurgistes ont décrit leur art comme celui de la simple fusion des minerais provoquée par le feu et facilitée par les "fondants" qu'on y ajoutait.

 

Pour d'autres élèves, l'interprétation est aussi guidée par un "savoir chimique mal assimilé".

 

Céline : La masse est égale, les proportions se conservent.

 

Frédéric : Egale, rien ne se perd dans une réaction chimique. Rien ne se gagne dans une réaction chimique.

 

La loi des proportions définies, celle dite de Lavoisier (qui ne l'a jamais énoncée), trouvent ici une curieuse application. 

 

Passons à présent à la dernière série de réponses.

 

Pourquoi plus lourd ?

 

 

réponse de 9 élèves sur 29.

 

En septembre, environ un tiers des élèves a répondu "plus lourd". On pourrait se satisfaire de ce résultat si l'analyse des réponses ne révélait quelques surprises.

 

Stéphanie :  plus lourd parce que le fer est devenu plus compact, il a durci.

 

Vincent : plus lourd, la limaille de fer rassemblée en boule est plus lourde que quand elle est dispersée.

 

Natacha : supérieure, parce que la paille de fer est légère mais lorsqu'elle a brûlé toute la paille de fer a fondu sur elle-même, elle pèse doc plus lourd.

 

Thomas : le fer a diminué de volume donc sa masse est supérieure.

 

L'interprétation est ici encore celle d'une simple fusion mais mal analysée. La confusion entre masse et densité est classique : il est difficile d'admettre que le kilogramme de plomb ne "pèse" pas plus lourd que le kilogramme de plumes.

 

Il nous reste cinq élèves qui ont su mobiliser les connaissances acquises au collège pour nous donner une réponse en rapport avec le modèle enseigné.

 

Cynthia : la masse de l'oxyde est plus grande car le fer est associé à un autre corps, le dioxygène.

 

Guillaume : l'oxygène s'est associé avec le fer en lui conférant ainsi sa masse ce qui donne l'oxyde magnétique.

 

En novembre huit élève donneront la réponse attendue. Après un trimestre de cours et un même exercice répété sous différentes formes, le taux de réponses "correctes", avant vérification expérimentale, n'est toujours que de 30%. Même si l'ultime vérification par la balance a probablement fait progresser le score final, cette constatation est propre à convaincre le professeur du fait que l'art d'enseigner est d'abord celui de savoir répéter sans avoir l'air de le faire.

 

Il est remarquable de constater que les résultats de ce questionnaire se confirment d'année en année. Par exemple pour trois années successives.

 

Année

(en novembre)

Moins lourd

Masse égale

Plus "lourd"

(plus dense)

Plus lourd

(combinaison)

1992

1993

1994

4

2

4

8

15

9

7

1

7

10     (34%)

8       (31%)

8      (28%)

 

 

Il est également intéressant d'observer la stabilité des réponses avant et après enseignement : rappelons les résultats de 1993-1994.

 

Mois

Moins lourd

Masse égale

Plus lourd

(plus dense)

Plus lourd (combinaison)

septembre

novembre

3

2

17

15

4

1

5       (17%)

8     (31%)

 

 

Si la proportion de réponse justes passe de 17% à 31%, c'est surtout la persistance d'un taux élevé d'erreurs qui saute aux yeux.

 

A y regarder de plus près, la lecture des phrases d'explication est une véritable révélation dans la mesure où elle indique une étonnante persistance dans les idées. Ceci particulièrement chez les élèves considérant que la masse ne varie pas.

 

Xavier en septembre : égale, la combustion n'allège pas le matière.

Xavier en novembre : égale, la combustion n'allège pas le fer.

 

Frédéric en septembre : égale. Rien ne se perd dans une réaction chimique. Rien ne se gagne dans une réaction chimique.

Frédéric en novembre : égale. Dans une réaction chimique, à une masse, rien n'est ajouté, rien n'est enlevé.

 

Céline, en septembre :  égale parce que la paille de fer est devenue plus compacte mais sa masse n'a pas changé.

Céline, en novembre : égale parce que la paille de fer s'est condensée mais sa masse n'a pas changé.

 

Non seulement les idées se sont conservées mais les mots qui les expriment sont restés les mêmes. Les élèves auteurs de ces réponses sont les premiers étonnés quand on les met en face de ce constat.

 

Une chose est certaine : la notion de combustion n'est pas simple  et il n'y a rien d'étonnant à ce que Lavoisier et les chimistes français qui partageaient ses idées aient dû mener bataille pour faire triompher leurs vues.

 

Nous invitons les lectrices et lecteurs intéressés à lire l'article que nous consacrons au sujet de leur combat contre la théorie du phlogistique.

 

_________________________________________________________

 

 

Dernier test.

 

Après quelques années consacrées à peaufiner et à faire varier ce dialogue entre notre classe et Lavoisier, un doute à commencé à germer dans l'esprit du professeur.

 

La combustion, au sens classique, c'est bien celle du charbon. Il faut un chimiste comme Lavoisier pour considérer que le fer est lui même un "combustible". Un retour aux sources ne serait-il pas nécessaire ?

 

Après avoir "brûlé" du fer et constaté l'augmentation de masse de l'oxyde obtenu. Après avoir nous être efforcés de corriger des intuitions "fausses", revenons à une manipulation classique.

 

Manipulation : Portons au rouge, dans la flamme chauffante d'un bunsen, un point d'un charbon de bois suspendu à un couvercle et plongeons celui-ci dans le dioygène contenu dans un flacon.

 

L'expérience avait déjà été faite dès le premier TP et le gaz carbonique obtenu testé à l'eau de chaux. L'équation de la réaction avait plusieurs fois été utilisée pour déterminer les proportions de la réaction, en particulier pour illustrer la notion de volume molaire des gaz. Il était donc logique, dans ce cas aussi, de proposer un test sous forme d'une question.

 

Question (répondez rapidement par écrit) : le morceau de charbon restant à la fin de la combustion est-il : plus lourd, de masse égale, moins lourd ... qu'il ne l'était au départ.

 

Le test est révélateur : une moitié de la classe se partage entre "moins lourd" et "même masse ou plus lourd" et il faut proposer de refaire l'expérience en pesant pour que les choses se remettent en ordre et que la grande majorité accepte l'idée que la masse a diminué car, cette fois, l'oxyde n'est plus un solide fixé au corps initial mais un gaz qui s'en est échappé.

 

L'expérience réalisée en pesant est d'ailleurs une excellente façon d'aborder la notion de rendement d'une réaction.

 

Qu'en conclure ? Qu'il faut un long cheminement avant de cerner la notion de "combustion". Qu'il faut savoir que le mot est trompeur et qu'il est essentiel de bien en préciser le sens chimique.

 

Et bien d'autres choses livrées à la réflexion de chaque lectrice ou lecteur.

 

Voir aussi : Lavoisier et le phlogistique

 

_________________________________________________________

 

Retour à la vie civile.

 

La combustion des déchets ménagers, opération à laquelle on à, aujourd'hui, attribué la dénomination "d'incinération", est un des grands sujets d'actualité. Dans l'esprit de la plupart de nos concitoyennes et concitoyens, pourtant passés sur les bancs de nos écoles et  ayant  subi nos cours de chimie, cette opération est la meilleure façon d'éliminer.

 

Question posée à un public intéressé par le sujet :

 

Question : A partir d'une tonne de déchets ménagers obtient-on : 10 kg, 100 kg, 1 tonne, deux tonnes, quatre tonnes... de produits ultimes ?

 

Question "piège" qui amène généralement une réponse majoritaire pour les 100 kg voire même 10 kg.

 

Il faut alors rappeler à nos concitoyens le bon vieux temps de leur cours de chimie et leur rappeler que leurs déchets étant essentiellement composés de matières organiques, c'est-à-dire de carbone, d'hydrogène et d'azote ils produiront de l'oxyde de carbone 3,67 fois plus lourd que le carbone initial, de la vapeur d'eau 9 fois plus lourde que l'hydrogène du départ et différents oxydes d'azote, le tout s'échappant par les cheminées dans une atmosphère devenue l'ultime poubelle (oublions les dioxines et autres produits du même genre). On peut leur rappeler aussi que le poids du mâchefer qu'il faudra ensuite gérer est supérieur à celui des métaux contenu dans leurs déchets.

 

En gros : en incinérant 1 tonne de déchets, ce sont bien environ quatre tonnes de nouveaux déchets qui viendront alimenter l'effet de serre ou encombrer nos "décharges".

 

C'est peut-être aussi pour ce rappel de notions anciennes fait à d'anciens collégiens et lycéens devenus citoyens adultes, qu'il est bon de bien décortiquer la notion de combustion dans nos cours de collège et de lycée.

 

____________________________________

 

Pour comprendre la persistance d'intuitions erronées, on peut lire :

 

Lavoisier et le phlogistique  

__________________________________________________________

 

Documents joints :

 

On trouvera les premières fiches de ce travail proposées en 1986 par le lien ci dessous. On notera leur nature manuscrite correspondant à une période sans traitement de texte et sans internet. La photocopieuse elle même était d'usage limité. 

 

Lavoisier au Laboratoire

 

 

___________________________________
 

 

 

Une copie en 1989

 

 

 

__________________________________________________________

 

 

 

 

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens