Overblog
Suivre ce blog Administration + Créer mon blog
14 août 2014 4 14 /08 /août /2014 12:14

Nous avons rencontré Hauksbee en 1705 quand, en frottant dans l’obscurité un globe de verre dans lequel il avait fait le vide, il y faisait apparaître une étrange lueur qui semblait suivre le doigt qui s’en approchait.

 

Plus tard, l’abbé Nollet reprenait ces expériences dans une mise en scène qui leur assurait une durable publicité.



Expérience des vases lumineux réalisée par l’abbé Nollet


Sa méthode était plus efficace. Au lieu de frotter le récipient de verre, il l’électrisait en faisant pénétrer, à son autre extrémité, le classique canon de fer, suspendu par des cordons de soie, qui recevait l’électricité du globe de la machine électrique.

 

L’expérience était réalisée dans l’obscurité. Laissons parler Nollet :

 

"Si vous portez la main au robinet de métal qui tient à l’un des goulots du matras purgé d’air ou que vous approchiez vos doigts de la surface du verre tandis qu’on électrise le conducteur : vous verrez dans l’intérieur du vaisseau plusieurs jets d’une matière très lumineuse ; et si vous le touchez, vous apercevrez une pareille matière qui se répand dans son épaisseur, à peu près comme une huile imprégnée de phosphore." (Nollet, leçons de physique expérimentale). Notons que le terme de phosphore ne fait ici nullement référence à l’élément chimique dont la découverte en Europe date de la fin du 17ème siècle mais de façon générale, en accord avec l’étymologie grecque, à tout "porteur de lumière".

 

Pour Nollet, l’expérience indique qu’il est "très probable que la matière électrique est la même que celle du feu et de la lumière".

 

Bien plus tard, Faraday s’intéresse à son tour au phénomène. Il utilise un tube muni de deux électrodes à ses extrémités et dans lequel il peut faire le vide. Quand le vide n’est pas poussé à son maximum, une lueur l’emplit dès que les électrodes sont reliées à une source de haute tension.

 

Poussant plus loin le vide, il observe une frange sombre dans la colonne lumineuse du côté de la cathode. Cette zone sans lumière s’élargit quand le vide augmente. Cette observation sera mise à profit par son compatriote William Crookes.

William Crookes et la matière radiante.

 

L’étude des décharges dans les gaz raréfiés prend une nouvelle vigueur avec William Crookes (1832-1919). Le savant britannique est déjà célèbre pour avoir découvert un nouvel élément, le Thallium, et aussi pour son radiomètre.

 

L’appareil est encore commercialisé, souvent sous forme de curiosité. C’est un rotor léger, constitué par un ensemble de quatre plaques carrées dont l’une des faces est blanche et l’autre noire. Placé dans une ampoule vide de son air, le rotor tourne sous l’action de la lumière. Crookes en avait fait un usage scientifique, en particulier pour la mesure des radiations invisibles comme les radiations infrarouges.

 

Crookes accepte la théorie cinétique des gaz proposée par Bernoulli. Celui-ci considère les gaz comme formés de molécules se déplaçant en ligne droite mais changeant rapidement de direction à l’occasion des chocs avec les autres molécules ou les parois des vases les contenant. Dans les tubes de Faraday ou de Geissler, Crookes fait l’hypothèse que les molécules se chargent d’électricité au contact de la cathode et en sont violemment repoussées.

 

Si le vide est insuffisant elles rencontrent rapidement d’autres molécules, la violence du choc se traduisant par une émission lumineuse.

 

Si on pousse le vide, la trajectoire rectiligne des molécules, perpendiculairement à la surface de l’électrode, s’allonge et un espace sans lumière apparaît. Celui qui avait déjà été observé par Faraday. Un vide très poussé, comme celui auquel parvient Crookes, fait même disparaître tout effet lumineux à l’intérieur du tube. Seul est visible l’impact du faisceau sur le verre qui s’éclaire à l’endroit où il le rencontre.

 

Pour mettre en évidence l’existence de ce jet invisible, supposé être constitué de molécules, Crookes a l’idée de leur opposer des obstacles. Un montage célèbre est celui d"une roue à palettes montée sur des rails de verre. Soumise au rayonnement, elle tourne et avance. On peut choisir le sens du mouvement en choisissant l’électrode alimentée

 

On peut aussi placer dans le tube un écran fluorescent, par exemple recouvert de sulfure de carbone. Placé légèrement incliné le long du trajet du faisceau, il le rend visible. Le montage est encore présent dans nos lycées pour l’étude des rayonnements cathodiques.

 

Autre méthode : présenter sur le trajet du faisceau un obstacle dont l’ombre se verra sur l’extrémité élargie du tube. Le tube muni d’une croix inclinable à volonté deviendra un équipement classique des laboratoires.

 

Il résulte de cette étude une observation qui mériterait explication : les particules suivent un trajet rectiligne toujours perpendiculaire à la surface de la cathode. La place de l’anode n’a aucune influence. Il ne s’agit donc pas d’un "courant électrique" passant d’une électrode à l’autre mais d’un phénomène de type nouveau qui sera désigné par le terme de "rayonnement cathodique".

 

Le 16 janvier 1880 Crookes exécute ses expériences devant la Société française de physique. Elles laissent les spectateurs perplexes.

 

Le rayonnement est dévié par l’approche d’un corps chargé d’électricité et se comporte comme constitué de particules chargées d’électricité négative. Mais il est également dévié par un aimant comme le serait un courant électrique. Alors, flux de charges électriques ou courant d’électricité ?

 

N’oublions pas qu’en France les deux notions sont très différentes : un courant électrique est constitué par le déplacement simultané et en sens inverse des deux fluides. L’un positif, l’autre négatif.

 

Plus étrange. Deux pinceaux parallèles sont créés à partir de deux cathodes voisines. Vont-ils se repousser car constitués de particules de même charge ou s’attirer comme le font deux courants électriques de même sens ? Ils se repoussent, ce sont donc des particules chargées d’électricité et non des courants électriques tels que pouvait les décrire Ampère.

 

Mais quel type de particules ? Ces expériences se font dans des tubes où le vide est extrême. Crookes a mis au point des machines "pneumatiques" qui permettent de faire un vide particulièrement poussé. En les faisant fonctionner longtemps (jusqu’à quinze jours) il arrive à un vide qu’il estime à un millionième d’atmosphère. Les particules chargées ne peuvent donc pas être des molécules d’air résiduel. Crookes imagine un quatrième état de la matière, la "matière radiante", dont une des caractéristiques sera cette propagation rectiligne à partir de la cathode

 

Il faudra attendre la fin du siècle avec J.J. Thomson et la découverte de l’électron pour trouver une explication du phénomène acceptable par l’ensemble du monde scientifique. Les applications seront alors nombreuses : ampoules à vide équipant les premiers appareils électroniques, tubes cathodiques des oscilloscopes, des écrans de télévisions et des premiers ordinateurs, etc…

 

Le tube cathodique sera aussi à l’origine de découvertes aussi importantes que le rayonnement X et la radioactivité.

_______________________________________________________________________

Partager cet article
Repost0
13 août 2014 3 13 /08 /août /2014 15:30

 

Physicienne reconnue et personnalité politique de premier plan en Tunisie, Faouzia Farida Charfi offre avec ce livre un vibrant plaidoyer pour la science et l’autonomie de la pensée.

Puisant dans l’actualité récente mais aussi dans l’histoire, elle retrace ici les relations entretenues par l’islam et la science. Des relations qui, après un véritable âge d’or des sciences arabes et la période réformiste du XIXe siècle, sont désormais marquées du sceau de l’ambiguïté : oscillant entre le rejet et la fascination, les islamistes se livrent aujourd’hui à des tentatives pour concilier les théories scientifiques et le Coran, dénaturant ainsi et la science et l’islam sous prétexte de modernité.

Faouzia Farida Charfi analyse aussi le créationnisme pour dénoncer l’alliance objective des fondamentalismes – anglo-saxons ou musulmans – et le sort qu’ils réservent aux femmes. Elle rappelle enfin qu’on peut les combattre et ouvre quelques pistes en ce sens.

Un appel pour que la Tunisie se donne les moyens de son avenir.

Faouzia Farida Charfi est physicienne et professeur à l’Université de Tunis. Militante de la première heure, dès la présidence de Habib Bourguiba, elle a été nommée secrétaire d’État à l’Enseignement supérieur dans le gouvernement provisoire issu de la révolution du 14 janvier 2011. Elle en a démissionné peu après pour reprendre sa liberté de parole et d’action.

 

Un extrait de la conclusion de son ouvrage :

 

" ... la science est basée sur l'analyse de l'observation des faits de la nature ou des résultats d'expérience et sur leur traduction en termes de théories dont la validité peut constamment être remise en cause. Elle réunit autour d'elle un monde parlant le même langage et offre un cadre de discussions à une échelle autre que nationale et dans une certaine mesure, à l'abri des clivages idéologiques et politiques.

 

Le statut que la science a acquis lui vient de la persévérance des savants, de leur travail souvent solitaire, de leur résistance aux attaques dont ils ont été l'objet, de leur enthousiasme aussi par rapport au bonheur que procure la découverte. Ils laissent un legs scientifique dont la richesse est le fruit d'un questionnement libre et sans limite, excluant les dogmes. "

 

Et un autre message qui s'adresse à la jeunesse tunisienne mais qui pourrait s'adresser à la jeunesse d'Europe et en particulier de la France qui voit son enseignement scientifique déserté par les étudiants.

 

La jeunesse tunisienne "pourrait être en mesure de créer de nouveaux concepts scientifiques générant de nouvelles avancées dans différents domaines, tels que l'informatique, la biologie, les énergies renouvelables, et contribuer à la construction du savoir scientifique.

 

Cela implique que le savoir ne soit pas conçu comme un produit "utile", mais comme l'aventure d'un esprit libre et critique. Cela implique que la science entre par la grande porte, afin d'être appropriée, valorisée et enrichie. Et non pas des bouts de science repris, déformés, mis en avant pour donner un vernis de modernisme, l'illusion d'être dans le monde actuel de la technologie. Ces bouts de sciences ne peuvent être générateurs de connaissances.

 

Un long chemin reste encore à faire dans l'ensemble du monde arabe. Ma conviction est qu'il vaut la peine d'être parcouru malgré les obstacles et je nourris l'espoir que bientôt les pays arabes se hisseront au rang de ceux qui ont accès au monde de la connaissance et contribueront au savoir universel."

 

__________________________ ____________________________________________

 

 

 

 

Suivre l'interview de Faouzia Farida Charfi

 

Ecouter également sur RFI :

Peut-on espérer une révolution du savoir en Tunisie ?

 

 

 

Partager cet article
Repost0
12 août 2014 2 12 /08 /août /2014 18:27

Volta a réservé la primeur de sa découverte de la pile électrique à la Royal Society.

 

Sa lettre du 20 mars 1800 adressée à Joseph Banks parvient à Londres dans les premiers jours d’avril et, avant même sa publication officielle en juin, est communiquée aux membres de la compagnie. Dès lors chacun s’emploie à reproduire les expériences décrites et à en imaginer de nouvelles.


Parmi les premiers auditeurs, un chirurgien, Anthony Carlisle est très attentif à l’invitation expresse de Volta : rechercher tout ce que la pile, "organe électrique artificiel" comparable à celui des poissons torpilles, peut apporter à la médecine et à la physiologie.

 

Des monnaies d’argent, des rondelles de zinc et des rondelles de carton imprégnées d’eau salée lui permettent de monter une colonne de 17 couples. Avec son ami Nicholson, physicien averti, il se propose d’abord de vérifier la polarité de son montage à l’aide d’un électroscope et du condensateur à plateau de Volta. Voulant améliorer le contact entre le fil relié à l’un des pôles de la pile et le plateau du condensateur de l’électroscope, il dépose sur celui-ci une goutte d’eau dans laquelle il plonge le fil.

 

Bons observateurs, les deux amis ne manquent pas de remarquer, autour du fil, un dégagement de fines bulles d’un gaz dont l’odeur leur fait soupçonner qu’il s’agit d’hydrogène. L’eau serait-elle décomposée par le fluide électrique ? Le 2 mai de l’année 1800, ils le vérifient en reliant les deux pôles de la pile à un tube de verre de 30 centimètres de longueur et de quinze millimètres de diamètre, rempli d’eau de source et fermé par deux bouchons de liège traversés par un fil de cuivre.

 

Le tube est vertical, son électrode inférieure est reliée à la plaque d’argent, l’autre à la plaque de zinc. Dans un premier temps rien ne se passe. On rapproche les fils de cuivre et quand ils ne sont plus distants que de cinq centimètres :

 

"une longue traînée de bulles excessivement fines, s’éleva de la pointe du fil inférieur de cuivre qui communiquait avec le disque d’argent, tandis que la pointe du fil de cuivre opposé devenait terne, puis jaune orangé, puis noire".

 

Après deux heures et demie de ce fonctionnement, le sommet du tube contenait environ un demi-centimètre cube d’un gaz qui, en détonnant avec un mélange d’air, se révélait être de l’hydrogène. La base du tube recevait pour sa part un dépôt filamenteux tombant du fil supérieur et qui se révélait être de l’oxyde de cuivre. On pouvait soupçonner que ce composé était le résultat d’une combinaison du métal avec l’oxygène issu de la décomposition de l’eau. Pour le vérifier il suffisait de remplacer le cuivre par deux fils d’un métal inoxydable comme le platine. Ce qui fut fait.

 

Comme espéré, un dégagement de gaz se développa, alors, sur chaque électrode. En modifiant le montage il était possible de les recueillir séparément et de constater que le premier était de l’hydrogène et le second de l’oxygène. Possible aussi de mesurer leur volume et de retrouver les proportions établies par Lavoisier pour la composition de l’eau.

 

Par le moyen de l’étincelle électrique, Lavoisier avait provoqué la synthèse de l’eau. Par l’usage de la pile électrique Nicholson et Carlisle en avaient donc réalisé la décomposition.

 

Etait-ce si simple ? L’expérience reprise dans toute l’Europe scientifique donnait lieu à débat. L’eau était-elle réellement le corps décomposé ? Les problèmes soulevés sont nombreux :

 

- A l’évidence une eau additionnée de certains acides ou de certains composés alcalins donne de bien meilleurs résultats que l’eau pure. Le corps dissout ne pourrait-il pas être l’agent essentiel de l’apparente décomposition ?

 

- De l’eau soigneusement distillée continue à être décomposée mais le phénomène n’est-il pas lié à la dissolution, dans cette eau, de l’air ou même de la matière du récipient qui sert à l’expérience ?

 

Rapidement, l’interprétation de l’électrolyse d’une solution aqueuse apparaît comme étant extrêmement complexe. Mais cette complexité est plutôt stimulante pour la nouvelle génération de chimistes européens formée à l’école des Priestley, Cavendish ou Lavoisier. Parmi ceux-ci Humphry Davy.

 

Humphry Davy (1778-1829).

 

Davy a vingt deux ans quand il prend connaissance des travaux de Volta. Il est alors le collaborateur du docteur Beddoès qui dans "l’institution pneumatique" qu’il a fondée à Boston, étudie les propriétés anesthésiantes du protoxyde d’azote identifié par Priestley vers 1774.

 

Chimiste dans un établissement qui se livre à des recherches médicales, c’est donc en chimiste qu’il aborde le problème de l’électricité "galvanique". Dès sa première publication du 26 octobre 1800, avec la hardiesse propre à la jeunesse, il met à mal la théorie de Volta. Le phénomène, dit-il, n’est pas le résultat d’une différence dans la "tension électrique" propre à chaque métal. Ayant constaté l’oxydation du zinc pendant le fonctionnement de la pile, il en déduit que "le galvanisme est un procédé purement chimique" qui "dépend entièrement de l’oxydation de surfaces métalliques".

 

Il constate ensuite que "si les plaques de zinc sont humectées avec de l’eau pure, la pile n’agit pas" mais que l’action de la pile est infiniment plus puissante quand on emploie de l’acide nitrique :

 

" Cinq couples avec de l’acide nitrique donnent des étincelles égales à celles de la pile ordinaire ; avec vingt couples la secousse est insupportable."

 

Volta n’avait attribué, au liquide imbibant ses rondelles de carton, que le rôle modeste d’un conducteur. Il lui faudra à présent admettre que le moteur de sa découverte se trouvait dans ce "détail" expérimental. C’est, en réalité, l’action chimique du liquide employé qui est essentielle. Après une suite d’observations heureuses mais d’interprétations erronées était venu le temps de "l’électrochimie".

 

De cette nouvelle conception allaient sortir d’autres modes de construction des appareils "électromoteurs". Cruikshank, collaborateur de Carlisle et Nicholson choisit de rendre horizontale la pile verticale. Dans une boîte de bois recouverte d’un vernis isolant, il place des plaques rectangulaires de cuivre et de zinc glissées dans des rainures aménagées dans la boîte et scellées au mastic. Les couples délimitent ainsi des cases régulières dans lesquelles est versée la solution conductrice choisie. On peut ainsi associer un nombre important de plaques de grande surface.

 

Certainement aurait-il été plus judicieux de conserver pour ce nouveau montage le terme "d’électromoteur" proposé par Volta, mais on continuera, comme aujourd’hui encore, à nommer "pile" cette construction qui n’en est plus une.

 

Ces piles d’un nouveau style ont des effets prodigieux. Celle de Pepys construite en 1802 comporte soixante paires de plaques carrées, zinc-cuivre, de six pouces de côté, plongeant dans une solution d’acide nitrique. Le courant obtenu fait fondre des fils de fer ayant jusqu’à trois millimètres de diamètre. La même année Davy en fait construire une qui exigeait d’être manipulée avec de nombreuses précautions. Elle se compose de quatre cents paires métalliques de cinq pouces carrés associées à quarante paires de un pied carré. Ce sont plusieurs centaines de volts qui sont ainsi disponibles entre ses pôles !

 

Son appareil construit, Davy se met au travail et livre ses premiers résultats le 29 décembre 1806 lors d’une lecture faite devant la "Royal Society". Après avoir étudié dans le détail l’expérience dite de "décomposition de l’eau", il s’attaque à l’action de la pile sur les solutions acides, alcalines ou salines.

 

Cherchant à décomposer la potasse et voulant éliminer l’influence de l’eau, il parvient à électrolyser le corps en fusion. Il voit alors apparaître, au pôle négatif, de petits globules, semblables à du mercure, et qui, très oxydables se recouvrent rapidement d’une couche terne.

 

Une course aux nouveaux éléments.

 

Davy vient de découvrir un métal nouveau auquel sera donné le nom de potassium. Il donne ainsi le départ d’une course à la recherche de nouveaux éléments. Lui-même découvre rapidement le sodium, le baryum, le strontium et le calcium.

 


Le laboratoire de Davy (Louis Figuer, Les Merveilles de la Science)


 

La renommée de Davy gagne le continent et, en 1808, l’Institut français des Sciences trouve enfin le successeur de Franklin et Volta et lui attribue le prix fondé par le Premier Consul et qui n’avait, jusqu’à présent, pu être attribué faute de candidat sérieux.

 

Cette réussite anglaise incite aussi Napoléon à faire construire au sein de l’école polytechnique une pile gigantesque de 600 couples cuivre/zinc de neuf décimètres carrés pour chaque plaque. L’ensemble avait 54 mètres carrés de surface et fut mis à la disposition des chimistes Gay-Lussac et Thénard.

 


La grande pile de l’Ecole Polytechnique (1813) (Louis Figuier, Les Merveilles de la Science)


 

Les Anglais ne voulant pas être en reste, une souscription permettait de construire, pour Davy, une nouvelle pile encore plus puissante. D’un type imaginé par Wollaston, elle associait deux cents éléments de dix plaques chacun associés en batterie soit un total de deux mille plaques. Trois fois plus que la pile de l’école polytechnique.

 


La pile de Wollaston construite en 1807 et utilisée par Davy (Louis Figuier, Les Merveilles de la Science)


 

Avec ce dispositif Davy découvrait l’arc électrique. En reliant les pôles de la pile par des charbons taillés en pointe, il observe la naissance d’une étincelle à l’éclat incomparable quand on approche ces deux pointes de quelques millimètres. En écartant ensuite les charbons on obtient un "arc" de plusieurs centimètres. La lumière obtenue peut, la nuit, éclairer, d’une lumière de plein jour, une pièce obscure. La chaleur de l’étincelle est suffisante pour volatiliser toute matière, aussi réfractaire soit-elle. Et ne parlons pas de la certitude d’être foudroyé si par inconscience on touchait, à la fois, les deux pôles de cette batterie.

 

La pile de Volta et ses premières applications ont totalement bouleversé la science électrique. La voie ouverte n’a rien à voir avec les approches passées. Finis les tubes et les sphères que l’on frotte pour observer des phénomènes que seuls les meilleurs manipulateurs sont capables d’obtenir. Il suffit d’une solution de sel ou d’acide et de plaques de métal réunies dans un montage à la portée de chacun pour obtenir des effets prodigieux.

 

Il est difficile d’imaginer que l’électricité n’a, pourtant, encore révélé qu’une modeste partie de son pouvoir. Et pourtant…


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.  Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

Partager cet article
Repost0
12 août 2014 2 12 /08 /août /2014 18:10

Avril 1764. Charles-Augustin Coulomb, jeune Ingénieur de 28 ans arrive à la Martinique pour diriger l’imposant chantier de la construction du Fort Bourbon qui doit défendre l’île contre les incursions anglaises. Chantier exténuant qui mobilise plus de mille hommes et qu’il mène avec la sûreté d’un bâtisseur confirmé. Trente ans plus tard nous le retrouvons, seul, dans son laboratoire parisien devant le délicat mécanisme d’une tige légère portant une boule de sureau et suspendue horizontalement à un fil d’argent plus fin qu’un cheveux. L’ingénieur, le bâtisseur, aurait été oublié si ce fragile montage ne lui avait pas permis d’établir la loi mathématique des attractions et répulsions électriques.

 

 

 

 

 

Coulomb (1736-1806) : le temps de la mesure.

 

Charles-Augustin Coulomb est né le 14 juin 1736 à Angoulême. Son père, inspecteur des Domaines du Roi, est d’abord nommé à Paris où son fils suit les cours du Collège Mazarin et où il se passionne pour les mathématiques. Des revers de fortune obligent la famille à rejoindre Montpellier. Charles-Augustin y poursuit ses études et est admis à l’Académie des Sciences de la ville qui jouit d’une flatteuse réputation. Pendant le même temps il se prépare au concours d’entrée à l’Ecole du Génie de Mézières, une école prestigieuse qui annonce les "grandes écoles" de la période napoléonienne. Il y entre en février 1760 avec le grade de lieutenant peu de temps avant que l’abbé Nollet y soit nommé en 1761 pour y assurer l’enseignement de la physique.

 

Sa carrière est d’abord celle d’un ingénieur du génie militaire. A la sortie de l’école, en 1761, il est nommé à Brest où pendant trois ans il travaille à la réalisation de cartes côtières. Il s’embarque pour la Martinique en 1764 et en revient en 1772 expérimenté mais épuisé.

 


Fort Bourbon à la Martinique.


 

Il occupe ensuite plusieurs postes sans intérêt majeur dans des garnisons militaires avant d’être élu membre de l’Académie des Sciences en 1781 et nommé à Paris. Il peut alors se consacrer totalement aux recherches sur le magnétisme et l’électricité qu’il n’avait pu mener jusqu’à présent que de façon épisodique.

 

Ses premiers travaux datent de 1776. Il est alors à Cherbourg où il refuse de se laisser gagner par la routine. Son ambition a toujours été de mettre à profit la riche culture scientifique, en particulier mathématique, qu’il a cultivée pendant ses études à Mézières. Il ambitionne surtout d’être élu à l’Académie des Sciences qui l’a distingué en lui accordant le titre de correspondant en 1774. Une occasion de se faire à nouveau connaître s’offre à lui quand, en 1775, l’Académie met au concours un prix concernant l’amélioration des boussoles et leur application à l’étude du magnétisme terrestre. L’enjeu est d’importance à un moment où il faut disputer aux anglais la maîtrise des mers. Le sujet n’est pas, à l’évidence, du domaine de compétence de Coulomb plus instruit à maîtriser les tonnes des matériaux de construction que la délicate aiguille marine. Cependant, ce concours, demandant peu de moyens matériels, se prête parfaitement au travail d’un chercheur isolé. Il lui permet surtout d’apporter la preuve de ses capacités à mener un programme rigoureux et de faire valoir ses connaissances mathématiques.

 

D’emblée, Coulomb définit l’objet de sa recherche et la façon dont il entend la mener : l’étude raisonnée des forces magnétiques exercées sur un aimant. Le débat n’est pas encore tranché entre ceux, que nous pourrions qualifier de "cartésiens", qui défendent l’idée de l’action mécanique d’un "fluide" entourant les corps magnétiques sous la forme de "tourbillons" agissant par contact et les "newtoniens" partisans des actions à distance.

 

Coulomb, rompant avec la plupart des électriciens français, se range dans le camp des derniers. Il considère "que ce ne sont point des tourbillons qui produisent les différents phénomènes aimantaires, et que, pour les expliquer, il faut nécessairement recourir à des forces attractives et répulsives de la nature de celles dont on est obligé de se servir pour expliquer la pesanteur des corps et la physique céleste". Il est vrai que depuis les travaux de Franklin, la théorie de Newton a gagné des adeptes parmi les électriciens français.

 

Quant à la méthode, elle est également nouvelle. Coulomb, pour éliminer les frottements sur l’axe de la boussole ou du barreau aimanté, propose de les suspendre à un cheveu ou un fil de soie. Il réalise ainsi un "pendule" de torsion et commence par établir la loi de la "torsion élastique" :

 

"Les forces de torsion qui ramènent un corps à sa situation naturelle sont nécessairement proportionnelles à l’angle de torsion"

 

Ces résultats sont distingués par un premier prix. Ils annoncent des recherches plus méthodiques dont les premières conclusions seront exposées à partir de 1784.

 

La loi de Coulomb.

 

En septembre 1784, Coulomb présente aux membres de l’Académie des Sciences le Mémoire où il traite des "Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal". Cette étude approfondit les résultats déjà obtenus sur la torsion. Surtout elle met en lumière l’intérêt d’une "balance" pour mesurer les forces de faible intensité comme les forces magnétiques et électriques. Il en fera usage dans une série de mesures qui occuperont 7 Mémoires dont le premier suffira à lui assurer la célébrité.

 

Ce Mémoire lu en Juin 1785 porte "sur l’électricité et le magnétisme" et en particulier sur la :

 

"Détermination expérimentale de la loi suivant laquelle les éléments des corps électrisés du même genre d’électricité se repoussent mutuellement".

 

Un dessin de sa balance de torsion illustre ce texte. Une tige légère porte une balle de sureau de 5mm de diamètre à l’une de ses extrémités et un disque de papier à l’autre. La fonction de ce dernier est celle d’un contrepoids et d’un frein opposé aux oscillations de la tige.

 

Celle ci est suspendue à un fil d’argent de 76cm de longueur. Un fil si fin que "1 pied de ce fil" ne pèse que "1/12 de grain" soit 0,16 grammes par mètre. L’ensemble est contenu dans une enceinte de verre constituée de deux cylindres. Une deuxième balle de sureau est introduite dans le cylindre inférieur au contact de la première. Il suffit alors de toucher l’une des balles par une tige chargée d’électricité (ici une tête d’épingle) pour que les balles de sureau se chargent à leur tour et se repoussent. On peut les obliger à se rapprocher par une torsion du fil pratiquée à sa partie supérieure. L’effort nécessaire est alors déterminé par l’angle de torsion mesuré par un micromètre.

 


Balance de Coulomb Mémoires de l’Académie des Sciences, 1785


Quatre chiffres suffisent à Coulomb pour annoncer un résultat :

 

" Premier essai : Ayant électrisé les deux balles avec la tête d’épingle, l’index du micromètre répondant à zéro, la balle a de l’aiguille s’est éloignée de la balle t de 36°.
 

- Deuxième essai : Ayant tordu le fil de suspension au moyen du bouton du micromètre de 126°, les deux balles se sont rapprochées et arrêtées à 18° de distance l’une de l’autre.
 

- Troisième essai : Ayant tordu le fil de suspension de 597°, les deux balles se sont rapprochées à 8°30’. "

 

Les angles totaux de torsion du fil (144° et 595,5°), c’est à dire les forces exercées, sont dans un rapport de 4,13 alors que les distances sont dans un rapport de 2,12, chiffre dont le carré est égal à 4,48. Cette différence de 8% entre les deux chiffres semble suffisamment faible à Coulomb pour qu’il puisse affirmer que :

 

"La force répulsive de deux petits globes électrisés de la même nature d’électricité est en raison inverse du carré de la distance du centre des deux globes"

 

Avec un vocabulaire plus moderne nous dirions que les forces exercées entre les deux charges électriques sont inversement proportionnelles au carré des distances qui les séparent.

 

Deux mesures pour dégager une loi ? Même si des mesures, bien plus nombreuses, furent exploitées dans les mémoires suivants, il ne manqua pas de commentateurs pour estimer que, telle que présentée, cette conclusion ne faisait pas preuve d’une réelle rigueur. Coulomb a-t-il su résister au désir de se présenter comme le Newton de l’électricité ? N’aurait-il pas voulu tout simplement vérifier une intuition forte, à savoir l’existence d’une loi analogue à celle établie et vérifiée dans le domaine de la gravitation ?

 

Jusqu’en 1825 il se trouvera des physiciens pour refuser ses conclusions et proposer, par exemple, une loi en 1/d au lieu de la loi en 1/d2. Quand il meurt en 1806, Coulomb n’est donc pas encore reconnu comme l’auteur véritable de la première loi mathématique de l’électricité. Loi d’où découleront toutes celles de l’électrostatique. Loi qui sera fondamentale pour définir les futures unités électriques. Il faudra l’énergie de ses disciples français, Biot, Haüy et Poisson pour que soit reconnue la valeur de son travail et que lui soit fait l’honneur de donner son nom à la loi d’action électrique à distance ainsi que, plus tard, à l’unité de charge électrique.

 

En même temps que sa loi sera validée, la balance de torsion dont il a été le premier à utiliser le principe, se perfectionnera pour devenir un instrument utile à la mesure des faibles effets mécaniques ou électriques. L’électromètre à quadrant de Thomson ou le galvanomètre à cadre mobile sont des exemples accomplis de l’usage de la balance de torsion et seront l’occasion de problèmes scolaires classiques jusqu’à la fin du 20ème siècle.

 

Coulomb clôt une époque fertile. Aussi habile expérimentateur que savant mathématicien, il donne réellement à l’électricité, sous sa forme "statique", le statut d’une science académique, c’est-à-dire d’une science capable de se voir appliquer, au travers de la loi d’action à distance, tous les concepts et les outils mathématiques de la mécanique "newtonienne".

 

S’ouvre alors une autre période, celle de l’électricité en mouvement, c’est à dire des courants électriques.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.

Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

 

_______________________________________________________________________

Partager cet article
Repost0
11 août 2014 1 11 /08 /août /2014 19:18

Deux espèces d’électricité ou une seule ? Nous avons vu que jusqu’à la fin du 19ème siècle deux système ont cohabité.

 

Celui initié par Dufay des deux espèces d’électricité : vitrée ou positive, résineuse ou négative.

 

Celui de Franklin : un seule espèce d’électricité chargeant les corps en plus ou en moins.

 

Il est vrai que le choix ne s’impose pas quand on étudie l’électricité à l’état statique.

 

Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?

 

 


La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Des charges jusqu’aux courants électriques.

 

Le concept de courant électrique est déjà en germe dans les lettres de Franklin à ses correspondants. En définissant l’électricité comme un fluide qui peut s’accumuler sur un corps ou en être extrait, en désignant par le terme de "conducteur" les corps susceptibles de transmettre ce fluide, on introduit nécessairement l’idée d’un écoulement. Le mot "courant" est d’ailleurs utilisé par Franklin pour décrire les "effluves" qui s’échappent des conducteurs et M.E. Kinnersley, l’un de ses correspondants, qui a déjà eu l’occasion de lui signaler les effets différents du verre et du soufre, lui propose un premier montage propre à faire circuler ce fluide :

 

" Si un globe de verre est placé à l’un des bouts du conducteur, et un globe de soufre à l’autre, les deux globes étant également en bon état, et dans un mouvement égal, on ne pourra tirer aucune étincelle du conducteur, parce que l’un des globes attire (le fluide électrique) du conducteur aussi vite que l’autre y fournit ! ".

 

Le même Kinnersley observe l’effet calorifique du courant électrique. Il relie par un fil d’archal (autre nom du laiton, alliage de zinc et de cuivre), les deux armatures d’une batterie de bouteilles de Leyde (nous parlerons bientôt de ces premiers condensateurs électriques) : "le fil d’archal fut chauffé jusqu’au rouge". L’interprétation du phénomène est très "moderne" :

 

" On peut inférer de là que, quoique le feu électrique n’ait aucune chaleur sensible lorsqu’il est dans un état de repos, il peut par son mouvement violent et par la résistance qu’il éprouve, produire de la chaleur dans d’autres corps, en y passant pourvu qu’ils soient assez petits. Une grande quantité passerait au travers du gros fil d’archal sans y produire de chaleur sensible, tandis que la même quantité passant au travers d’un petit, étant restreinte à un passage plus étroit, et ses particules plus serrées les unes sur les autres, et éprouvant une plus grande résistance, elle échauffera ce petit fil d’archal jusqu’à le faire rougir et même jusqu’à le faire fondre".

 

Quant à s’interroger sur le sens de circulation de ce courant de fluide électrique, la question n’est jamais posée par les partisans du fluide unique tant la réponse est évidente : il circule nécessairement à travers le conducteur du corps qui en porte "en plus" vers celui qui en porte "en moins".

 

Le même point de vue est exprimé par le français Jean-Baptiste Le Roy (1720 - 1800) qui préfère pour sa part parler d’électricité "par condensation" et d’électricité "par raréfaction". Il décrit sa machine électrique comme une "pompe à électricité" qui refoule celle-ci de son pôle positif (le plateau de verre frotté) et l’attire à son pôle négatif (les coussins de cuir responsables du frottement). La circulation du fluide est clairement décrite :

 

"Si le fluide est raréfié d’un côté et condensé de l’autre, il doit se former un courant tendant du corps où il est condensé vers celui où il est raréfié".

 

Pour les tenants de la théorie du fluide unique, la définition du sens de circulation du courant électrique ne doit donc rien ni au hasard ni à une quelconque convention. Il est imposé par le modèle choisi : c’est du "plus" vers le "moins".

 

Les machines de Jean-Baptiste Le Roy sont une tentative sur la voie des générateurs électriques, il faudra cependant attendre le début du XIXème siècle et la construction de la première pile électrique par Volta pour que l’étude des courants électriques et de leurs effets prenne le pas sur celle des phénomènes statiques. Pour suivre cette histoire jusqu’à sa conclusion provisoire, commençons notre excursion vers des périodes plus proches de notre présent.

 

De la pile Volta au Bonhomme d’Ampère.

 

Nous ne détaillerons pas ici l’observation publiée en 1791 par Luigi Galvani et qui devait amener Volta à la découverte de la pile électrique. Nous y reviendrons. Disons simplement, pour le moment, qu’en assemblant des rondelles de cuivre et de zinc alternées et séparées par des rondelles de carton imprégnées d’une solution acide, Volta réalise une générateur capable de faire circuler un courant électrique dans un conducteur extérieur (fil métallique ou solution conductrice).

 

Ce courant est, pour Volta, constitué d’un fluide unique tel que celui décrit par Franklin. Un fluide qui circule, à l’extérieur de la "pile", de son pôle positif vers son pôle négatif. Mais les tenants des deux fluides ne désarment pas : la pile produit du fluide positif à l’un de ses pôles et du fluide négatif à l’autre, disent-ils. Deux courants en sens inverse, l’un de fluide positif, l’autre de fluide négatif, circulent donc dans le conducteur qui relie les deux pôles.

 

Ce sont d’abord les chimistes qui s’emparent avec bonheur de la pile voltaïque et ils ne tranchent pas la querelle. Des phénomènes extraordinaires se font jour au niveau des électrodes reliées aux pôles de la pile et plongées dans les multiples solutions conductrices testées. La nature et le sens de circulation du fluide électrique ne sont pas leur préoccupation première. Ils sont déjà suffisamment occupés par l’étude des propriétés de la multitude de nouveaux corps que l’électrolyse vient de leur faire découvrir.

Il faut attendre 1820 pour que Oersted ramène l’intérêt des physiciens sur les courants traversant les conducteurs métalliques en mettant en lumière leurs effets magnétiques et mécaniques.

 

Oersted : la pile et la boussole.

 

Malgré l’opposition établie par Gilbert, l’hypothèse de la nature commune de l’électricité et du magnétisme n’a pas été totalement abandonnée. L’aimantation de tiges de fer sous l’action de la foudre est déjà signalée dans les oeuvres de Franklin de même que le mouvement d’une aiguille aimantée à l’occasion de la décharge d’une bouteille de Leyde. Malheureusement ces recherches étaient vouées à l’échec tant que leurs auteurs ne disposaient pas d’une source continue d’électricité.

 

Hans Christian Oersted (1777-1851), professeur de physique à l’Université de Copenhague est celui à qui la chance sourira. Occupé pendant l’hiver 1819, à montrer à ses élèves l’effet calorifique de la pile Volta, il observe le mouvement d’une aiguille aimantée située à proximité du conducteur traversé par le courant électrique. Une étude attentive lui montre que l’effet est maximal quand le fil conducteur est placé parallèlement à l’aiguille aimantée. Celle-ci tend alors vers une position d’équilibre perpendiculaire au fil. Le sens de ce mouvement dépend de l’ordre dans lequel les pôles de la pile ont été reliés au conducteur.


JPEG

Expérience de Oesrsted.

Voir la vidéo sur le site Ampère/CNRS


Nous reviendrons sur cette expérience, acte de naissance de l’électromagnétisme. Pour le moment contentons nous de voir comment elle intervient dans la définition "du" sens du courant électrique.

 

Interprétant cette expérience nous dirions, aujourd’hui, que le sens de la déviation de l’aiguille dépend du sens du courant électrique. Oersted, lui, est adepte du modèle des deux fluides. Les courants de fluide positif et de fluide négatif, pense-t-il, se déplacent en sens inverse le long du conducteur. Héritier des théories cartésiennes, il les décrit sous la forme de deux "tourbillons" : La " matière électrique négative décrit une spirale à droite et agit sur le pôle nord" tandis que " la matière électrique positive possède un mouvement en sens contraire et a la propriété d’agir sur le pôle Sud ". Quand nous inversons les pôles de la pile auxquels est relié le fil conducteur, nous inversons le sens de chacun des courants et donc de leur effet sur la boussole.

 

Oersted réussit sans peine à faire entrer son interprétation dans le cadre théorique qui est le sien. La théorie des deux fluides résiste !

Ampère : le sens conventionnel.

 

On sait que dès l’annonce, en France, des observations faites par Oersted, Ampère (1775-1836) commençait la série d’expériences qui allaient l’amener à la mise au point de la théorie de "l’électromagnétisme". Chacun connaît le fameux "bonhomme" placé sur le fil conducteur de telle sorte que le courant électrique lui entre par les pieds. On pourrait penser qu’avec Ampère le courant unique a fini par l’emporter. Erreur ! Ampère est un ferme partisan des deux fluides. Il le rappelle dans son "Exposé des Nouvelles Découvertes sur l’Electricité et le Magnétisme" publié à Paris en 1822 :

 

"Nous admettons, conformément à la doctrine adoptée en France et par beaucoup de physiciens étrangers, l’existence de deux fluides électriques, susceptibles de se neutraliser l’un l’autre, et dont la combinaison, en proportions déterminées, constitue l’état naturel des corps. Cette théorie fournit une explication simple de tous les faits et, soumise à l’épreuve décisive du calcul, elle donne des résultats qui s’accordent avec l’expérience".

 

Par contre il rejette les termes d’électricité vitrée et résineuse, il leur préfère ceux de positive et négative à condition que ces termes ne conservent que le sens d’une convention :

 

"Lorsqu’on admit l’existence des deux fluides, on aurait dû dire : ils présentent l’un à l’égard de l’autre les propriétés opposées des grandeurs positives et négatives de la géométrie ; le choix est arbitraire, comme on choisit arbitrairement le côté de l’axe d’une courbe où ses abscisses sont positives ; mais alors celles de l’autre côté doivent être nécessairement considérées comme négatives ; et le choix une fois fait, comme il l’a été à l’égard des deux électricités, on ne doit plus le changer".

 

En toute logique, la pile produit ces deux types d’électricité :

 

" Dans la pile isolée, chaque électricité se manifeste à l’une des extrémités de l’appareil, l’électricité positive à l’extrémité zinc, et l’électricité négative à l’extrémité cuivre". (Ampère respecte ici les polarités proposées par Volta et dont nous verrons qu’elles étaient erronées).

 

La conclusion est naturelle :

 

"Deux courants s’établissent toujours, lorsque l’on fait communiquer les deux extrémités de la pile."

 

Le courant d’électricité positive part de la lame positive et celui d’électricité négative de la lame négative. Comme les phénomènes magnétiques s’inversent quand on change le sens de ces deux courants il est nécessaire, cependant, de bien repérer ces sens. C’est l’occasion pour Ampère de proposer une convention commode :

 

"Il suffit de désigner la direction du transport de l’un des principes électriques, pour indiquer, en même temps, le sens du transport de l’autre ; c’est pourquoi, en employant dorénavant l’expression de courant électrique pour désigner le sens dans lequel se meuvent les deux électricités, nous appliquerons cette expression à l’électricité positive, en sous-entendant que l’électricité négative se meut en sens contraire".

 

Voici donc enfin ce fameux "sens conventionnel". En réalité, ce qu’il décrit n’est pas le sens du courant mais celui des courants. En choisissant d’appeler "sens du courant" celui de la circulation du fluide positif, Ampère a eu l’habileté de trouver un vocabulaire commun aux hypothèses "anglaise" et "française". Dès lors, le fameux "bonhomme d’Ampère" peut servir d’outil aux deux modèles :

 

"Pour ... définir la direction du courant relativement à l’aiguille concevons un observateur placé dans le courant de manière que la direction de ses pieds à sa tête soit celle du courant, et que sa face soit tournée vers l’aiguille ; on voit alors que dans toutes les expériences rapportées ci-dessus le pôle austral de l’aiguille aimantée est porté à la gauche de l’observateur ainsi placé".

 

L’observateur d’Ampère reçoit bien le fluide positif par les pieds mais reçoit également le fluide négatif par la tête.


JPEG
"Bonhomme d’Ampère" nageant dans le courant
(Louis Figuier, Les Merveilles de la Science)

 

voir aussi :

 

Au sujet du sens du courant électrique, du bonhomme d’Ampère et du tire-bouchon de Maxwell.


Avec Ampère, c’est la théorie des deux courants qui s’impose en France et dans la plupart des Pays d’Europe, elle est encore classique dans les manuels du début du XXème siècle et exige des enseignants de véritables prouesses pédagogiques. Il n’est en effet pas commode d’exposer la façon dont les deux fluides peuvent se croiser sans se neutraliser.

Le retour de Franklin.

 

L’Angleterre est en général restée fidèle à Franklin et au fluide unique. Maxwell (1831-1879), par exemple, souhaite une grande prudence vis-à-vis de la notion même de fluide électrique :

 

"Tant que nous ignorons si l’électricité positive ou négative, ou si l’électricité même est une substance, tant que nous ne saurons pas si la vitesse du courant électrique est de plusieurs millions de lieues par seconde ou d’un centième de pouce à l’heure, ou même si le courant électrique marche du positif au négatif ou dans la direction opposée nous devrons éviter de parler de fluide électrique". (Maxwell, traité élémentaire d’électricité - Paris - Gautier Villars - 1884).

 

Malgré cette prudence il faut bien choisir l’un des modèles pour interpréter les phénomènes électromagnétiques, c’est alors le fluide unique et le modèle de Franklin qui auront sa préférence :

 

"S’il existe une substance pénétrant tous les corps, dont le mouvement constitue le courant électrique, l’excès de cette substance dans un corps, au delà d’une certaine proportion normale, constitue la charge observée de ce corps".

 

Aucune ambiguïté avec le modèle de la "vis" (ou du "tire-bouchon", comme le préfèrent les français) proposé par Maxwell pour décrire l’expérience d’Oersted : elle avance, le long du fil, dans le sens du courant :

 

"Supposons qu’une vis droite s’avance dans la direction du courant, en tournant, en même temps, comme au travers d’un corps solide, c’est à dire dans le sens des aiguilles d’une montre, le pôle Nord de l’aimant tendra toujours à tourner autour du courant dans le sens de rotation de la vis, et le pôle sud dans le sens opposé".

 

Nous pourrons terminer cette brève histoire avec J.-J. Thomson (1856-1940). En 1897, il reconnaît, lui aussi, que rien, jusqu’à présent, n’a pu départager la "théorie dualiste" de l’électricité de la "théorie unitaire" :

 

"Les fluides étaient des fictions mathématiques, destinées seulement à fournir un support spatial aux attractions et répulsions qui se manifestent entre corps électrisés... Aussi longtemps que nous nous bornons à des questions qui impliquent seulement la loi des forces se manifestant entre des corps électrisés et la production simultanée de quantités égales d’électricité positive et négative, les deux théories doivent donner le même résultat, et il n’y a rien qui puisse nous permettre de choisir entre les deux... Ce n’est que lorsque nous portons nos investigations sur des phénomènes impliquant les propriétés physiques du fluide, qu’il nous est permis d’espérer pouvoir faire un choix entre les deux théories rivales".( J-J.Thomson. Electricité et Matière. Paris : Gautier Villars - traduction-1922)

 

Thomson, à cette période de sa vie, étudie le "rayonnement" qui traverse un tube vidé de son air et dont les tubes "cathodiques" équipaient, il n'y a pas si longtemps, les écrans de récepteurs de télévision et d’ordinateurs.

 

Au moment où, dans ce rayonnement, il découvre le "corpuscule d’électricité" que l’on appellera plus tard "électron", il pense faire, d’une certaine façon triompher ses couleurs nationales. Constatant que les rayons cathodiques sont constitués de "grains" d’électricité négative de masse plus de mille fois inférieure à celle du plus petit des atomes, celui d’hydrogène, il ne peut douter d’avoir assuré la victoire de son camp. Se souvenant que Franklin considérait que "La matière électrique est composée de particules extrêmement subtiles", il écrit :

 

"Ces résultats nous conduisent à une conception sur l’électricité qui a une ressemblance frappante avec la "théorie unitaire" de Franklin".

 

Le triomphe cependant n’est pas total :

 

" Au lieu de considérer, comme le faisait cet auteur, le fluide électrique comme étant de l’électricité positive, nous le considérons comme de l’électricité négative... Un corps chargé positivement est un corps qui a perdu une partie de ses corpuscules".

 

Il reste, en effet, ce mauvais choix initial : le verre frotté ne se charge pas d’électricité, il en perd !

 

Situation bloquée.

 

Nous voici au moment où la situation se fige. Depuis un siècle et demi les conventions de Franklin ont imprégné la science électrique, Ampère a incrusté cette empreinte en fixant un sens conventionnel de circulation du courant. La découverte des électrons, puis des protons, impose une nouvelle interprétation de la conduction électrique. Les charges positives et négatives existent bien toutes les deux et il est vrai que, dans l’électrolyse, deux courants de charges opposées se croisent dans la solution d’électrolyte.

 

Dans les conducteurs métalliques, par contre, seules les charges négatives sont mobiles. Le fluide positif reste immobilisé dans les noyaux fixes des atomes. Le courant électrique doit à présent être considéré, dans un circuit métallique, comme un courant d’électrons se déplaçant du pôle négatif du générateur vers son pôle positif.

 

Cette découverte est-elle un évènement suffisant pour provoquer une révolution dans les conventions électriques ? Il faut constater qu’on s’accommodera de ces électrons qui se déplacent dans le sens inverse du sens "conventionnel". Ce déplacement n’est d’ailleurs pas spectaculaire. Nous pouvons à présent répondre à l’interrogation de Maxwell. La vitesse du courant d’électrons dans un courant continu n’est pas de plusieurs millions de lieues à la seconde et si elle est quand même supérieure à un centième de pouce à l’heure, elle ne dépasse pas quelques centimètres à l’heure. Ce résultat parle peu à l’imagination. Ce lent courant d’électrons s’accorde mal avec la puissance observée des phénomènes électriques. C’est peut-être pourquoi on préfère continuer à raisonner sur le courant mythique des premiers temps de l’électricité qui se précipitait du pôle positif où il était concentré vers le pôle négatif où il avait été raréfié.

 

Il reste un certain étonnement et parfois de l’irritation quand on présente au débutant cette contradiction dans la science électrique. Quoi ? Plus d’un siècle s’est écoulé et l’erreur n’est toujours pas réparée ?

 

D’une certaine façon cette "erreur" est bénéfique : elle casse le discours linéaire, elle force à l’interrogation et oblige à un retour sur l’histoire des sciences. Au moins les apprentis électriciens retiendront-ils que l’activité scientifique est une activité humaine, une activité vivante, et qu’on y rencontre parfois les cicatrices des erreurs passées.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


 

Partager cet article
Repost0
11 août 2014 1 11 /08 /août /2014 18:41

Un premier cours d’électricité est l’occasion d’une mise en scène classique dans la tradition expérimentale des professeurs de physique : Une tige d’ébonite est frottée, une boule de sureau suspendue à son fil de soie ou de nylon est attirée puis vivement repoussée. Commence alors une série de manipulations à base de chiffon de laine, de peau de chat, de tige de verre ou de règle de matière synthétique, supposée faire découvrir une propriété fondamentale de la matière : l’existence de deux espèces d’électricité.


Progressant dans le cours on arrive rapidement à la notion de courant électrique. C’est là qu’apparaît "le"problème. A peine a-t-on défini son sens conventionnel de circulation, du pôle positif du générateur vers son pôle négatif dans le circuit extérieur, qu’il faut ajouter que le fluide électrique est, en réalité, constitué d’électrons négatifs se déplaçant en sens inverse !

 

Une explication s’impose. Le professeur pressé évoquera une erreur ancienne. Peut-être même imaginera-t-il un hasardeux pile ou face. Il suffirait cependant d’un rapide retour sur l’histoire de l’électricité pour révéler, au lieu de décisions hâtives, la recherche obstinée d’une réalité physique. Dufay est l’un des premiers maillons de cette chaîne.

Dufay (1698-1739) et la répulsion électrique :

 

 

Charles-François de Cisternay Dufay est d’une famille de haute noblesse militaire. Lui même entre au régiment de Picardie, à l’âge de quatorze ans, comme lieutenant. Il participe à la courte guerre d’Espagne et conserve sa charge militaire jusqu’à 1723, année où il rejoint l’Académie des Sciences comme adjoint chimiste.

 

Comment un jeune homme de 25 ans peut-il sauter de la condition de soldat à celle de membre d’une prestigieuse académie scientifique ? Il faut, pour le comprendre, dire quelques mots de Dufay, le père.

 

Ce militaire avait été instruit par les jésuites à Louis-le-Grand. Il en conserve une culture qu’il continue à enrichir pendant ses campagnes militaires. « Les muses », disait-il, « guérissent des blessures de Mars ». Le propos se vérifie quand, en 1695, la perte d’une jambe met fin à sa carrière militaire. Il revient à Paris où il se consacre à l’éducation de ses enfants et à l’enrichissement d’une fabuleuse bibliothèque. Charles-François pourra y cultiver son goût pour les sciences dans le temps même où son père lui enseigne le métier des armes.

 

Chez les Dufay on rencontre de puissants personnages. Tel le Cardinal de Rohan qui soutient le jeune Charles-François quand celui-ci postule au poste d’adjoint chimiste à l’Académie, en 1723. Réaumur retient cette candidature.

 

Dufay mettra un point d’honneur à mériter cette distinction. Ses premiers travaux sont marqués par une curiosité débridée. Il passe de l’étude de la phosphorescence à celle de la chaleur libérée par "l’extinction" de la chaux "vive". De la solubilité du verre à la géométrie. De l’optique au magnétisme. Son énergie lui vaut d’être nommé Intendant du Jardin du Roi en 1732. C’est peu de temps après cette promotion qu’il entend parler des travaux de Gray. Il tient enfin "son" sujet. L’électricité lui donnera l’occasion de mettre en œuvre une méthode dont la rigueur n’aura pour équivalent que celle de Lavoisier, dans le domaine de la chimie, un demi-siècle plus tard.

 

De magnifiques découvertes seront au rendez-vous. Elles feront l’objet d’une série de mémoires publiés dans l’Histoire de l’Académie des sciences à partir d’avril 1733.

 

Le premier de ces mémoires se présente comme une "Histoire de l’Electricité". Ce texte reste, même lu avec le recul de près de trois siècles, un honnête document. Avant de faire état de son apport personnel, Dufay choisit de « mettre sous les yeux du lecteur, l’état où est actuellement cette partie de la physique ». Il souhaite, dit-il, rendre à chacun son mérite et ne conserver, pour lui, que celui de ses propres découvertes. Il veut surtout se libérer de l’obligation d’avoir à citer, à chaque moment, le nom de tel ou tel de ses prédécesseurs. Son projet, en effet, est ambitieux : il se propose de poser les premières pierres d’une véritable théorie de l’électricité. La plupart des auteurs qui l’ont précédé ont, dit-il, "rapporté leurs expériences suivant l’ordre dans lequel elles ont été faites". Son plan est différent : il veut classer leurs expériences et les siennes "afin de démêler, s’il est possible, quelques-unes des lois et des causes de l’électricité".

 

Un discours de la méthode :

 

Le second mémoire annonce sa méthode sous forme de six questions.

 

Il s’agit de savoir :

 

. Quels sont les corps qui peuvent devenir électriques par frottement et si l’électricité est une qualité commune à l’ensemble de la matière.

 

. Si tous les corps peuvent recevoir la vertu électrique par contact ou par approche d’un corps électrisé.

 

. Quels sont les corps qui peuvent arrêter ou faciliter la transmission de cette vertu et quels sont ceux qui sont le plus vivement attirés par les corps électrisés.

 

. Quelle est la relation entre vertu attractive et vertu répulsive et si ces deux vertus sont liées l’une à l’autre ou indépendantes.

 

. Si la "force" de l’électricité peut être modifiée par le vide, la pression, la température…

 

Quelle est la relation entre vertu électrique et faculté de produire la lumière, propriétés qui sont communes à tous les corps électriques.

 

Un beau programme qui sera mené avec une remarquable rigueur.

 

Les trois premières questions cernent le problème de l’électrisation des corps et de la conduction électrique. Nous avons déjà vu comment Dufay s’intercale entre Gray et Franklin pour en établir les premières lois. La quatrième question pose, pour la première fois, le problème de la répulsion.

 

La répulsion rejoint l’attraction.

 

Depuis William Gilbert, et même depuis l’antiquité, électricité est synonyme d’attraction. Dufay n’échappe pas à la règle et, dans l’introduction à son premier mémoire il définit l’électricité comme "une propriété commune à plusieurs matières et qui consiste à attirer les corps légers de toute espèce placés à une certaine distance du corps électrisé par le frottement d’un linge, d’une feuille de papier, d’un morceau de drap ou simplement de la main".

 

Cependant, il a été troublé par l’une des observations faites par Otto de Guericke : celle du globe de soufre qui repousse le duvet qu’il a d’abord attiré. Il avoue n’être jamais parvenu à la reproduire. Par contre il rencontre le succès avec une expérience similaire proposée par Hauksbee. Il s’agit de frotter un tube de verre tenu horizontalement et de laisser tomber sur sa surface une parcelle de feuille d’or. Le résultat est spectaculaire :

 

"Sitôt qu’elle a touché le tube, elle est repoussée en haut perpendiculairement à la distance de huit à dix pouces, elle demeure presque immobile à cet endroit, et, si on approche le tube en l’élevant, elle s’élève aussi, en sorte qu’elle s’en tient toujours dans le même éloignement et qu’il est impossible de l’y faire toucher : on peut la conduire où l’on veut de la sorte, parce qu’elle évitera toujours le tube".

 

Même si les prouesses réalisées par la "fée électricité" ont apaisé depuis longtemps notre soif de merveilleux, l’expérience, aujourd’hui encore, mérite d’être tentée. Il importe pour cela de se munir du tube de verre adéquat. Celui de Dufay est du type de celui utilisé par Gray et qui est devenu un standard. Il a une longueur proche de un mètre et un diamètre de trois centimètres. Il est réalisé dans un verre au plomb. Gray et Dufay ne disent rien de la façon dont il était frotté, peut-être tout simplement par la main bien sèche de l’expérimentateur comme le recommandent plusieurs auteurs.

 

Pour avoir tenté l’expérience, je peux témoigner de l’importance du choix du tube de verre. Un simple tube à essai ne conviendra pas et encore moins la tige de verre d’un agitateur (bien que ce soit de cette façon que, depuis le 19ème siècle, l’expérience est décrite dans les manuels de physique). Leurs diamètres sont insuffisants. Il faut au minimum celui d’une solide éprouvette à gaz. J’ai personnellement rencontré le succès avec le col, long de 50cm, d’un ballon de verre pyrex extrait d’un matériel de chimie. Bien séché et frotté en utilisant le premier sac de "plastique" récupéré, il donne des résultats spectaculaires. Trouver une feuille d’or n’est pas trop difficile si on connaît un marbrier ou un relieur. On peut plus simplement utiliser un duvet ou quelques fibres de coton. Je conseillerais pour ma part les plumets d’un chardon cueillis secs à la fin de l’été.

 

Bien réalisée, cette expérience montre que la répulsion électrique est beaucoup plus spectaculaire que l’attraction. La parcelle de feuille d’or, le duvet ou le plumet de chardon, que vous aurez lâché, va se précipiter sur le tube frotté pour en être violemment repoussé jusqu’à trente, quarante, cinquante centimètres, voire plus. Personne ne peut être insensible à l’étrangeté d’une telle "lévitation".

 

Dufay donne de ces faits une interprétation immédiate : "lorsqu’on laisse tomber la feuille sur le tube, il attire vivement cette feuille qui n’est nullement électrique, mais dès qu’elle a touché le tube, ou qu’elle l’a seulement approché, elle est rendue électrique elle même et, par conséquent elle en est repoussée, et s’en tient toujours éloignée".

 

Mais approchons le doigt ou un autre objet conducteur de la feuille : elle vient s’y coller pour retomber à nouveau sur le tube et à nouveau s’élever.

 

Explication simple encore, nous dit Dufay : "Sitôt que la feuille a touché ce corps, elle lui transmet toute son électricité, et par conséquent, s’en trouvant dénuée, elle tombe sur le tube par lequel elle est attirée, de même qu’elle l’était avant que de l’avoir touché ; elle y acquiert un nouveau tourbillon électrique" et est donc repoussée. Ainsi se trouve expliqué l’étrange comportement, parfois observé, de feuilles d’or dansant une sarabande entre le tube de verre et un objet proche.

 

Une simple remarque : Dufay parle de "tourbillon" électrique. La théorie des "tourbillons" est ici empruntée à Descartes. Pour celui-ci chaque corps céleste est entouré d’un tourbillon d’une matière subtile. Ces tourbillons en se touchant maintiennent les astres à distance l’un de l’autre et entraînent l’ensemble dans le mouvement d’horlogerie que chacun peut observer même si les rouages restent invisibles. De la même façon, les tourbillons "électriques" entourant deux corps électrisés les écarteront l’un de l’autre.

 

La loi de Dufay

 

Fort de cette interprétation, Dufay passe alors en revue les observations antérieures et en particulier celles de Hauksbee concernant des fils de coton attachés à l’intérieur d’un globe de verre frotté et qui " s’étendent en soleil du centre à la circonférence". Tous ces faits le conduisent à une première loi de la répulsion :

 

"Il demeure pour constant, que les corps devenus électriques par communication, sont chassés par ceux qui les ont rendu électriques".

 

Par ce mécanisme de "l’attraction – contact – répulsion", (A.C.R), Dufay explique avec élégance une foule d’observations. Le phénomène doit cependant être approfondi. Il faut, en particulier, répondre à la question suivante :

 

Deux corps chargés d’électricité à deux sources différentes vont-ils également se repousser ?

 

En cherchant à le vérifier Dufay fait accomplir à l’électricité un nouveau bond en avant : "cet examen", dit-il," m’a conduit à une autre vérité que je n’aurais jamais soupçonnée, et dont je crois personne n’a encore eu la moindre idée".

 

Le moment est suffisamment important pour que nous lui laissions la parole :

 

" Ayant élevé en l’air une feuille d’or par le moyen du tube (de verre), j’en approchais un morceau de gomme copal (résine d’arbre exotique de la famille des légumineuses) frottée et rendue électrique, la feuille fut s’y appliquer sur le champ, et y demeura, j’avoue que je m’attendais à un effet tout contraire, parce que selon mon raisonnement, le copal qui était électrique devait repousser la feuille qui l’était aussi ; je répétais l’expérience un grand nombre de fois, croyant que je ne présentais pas à la feuille l’endroit qui avait été frotté, et qu’ainsi elle ne s’y portait que comme elle aurait fait à mon doigt, ou à tout autre corps, mais ayant pris sur cela mes mesures, de façon à ne me laisser aucun doute, je fus convaincu que la copal attirait la feuille d’or, quoiqu’elle fût repoussée par le tube : la même chose arrivait en approchant de la feuille d’or un morceau d’ambre ou de cire d’Espagne (cire végétale extraite de certaines espèces de palmiers) frotté.

 

Après plusieurs autres tentatives qui ne me satisfaisaient aucunement, j’approchai de la feuille d’or chassée par le tube, une boule de cristal de roche, frottée et rendue électrique, elle repoussa cette feuille de même, afin que je ne pus pas douter que le verre et le cristal de roche, ne fissent précisément le contraire de la gomme copal, de l’ambre et de la cire d’Espagne, en sorte que la feuille repoussée par les uns, à cause de l’électricité qu’elle avait contractée, était attirée par les autres : cela me fit penser qu’il y avait peut-être deux genres d’électricité différents."

 

Une hypothèse aussi hardie effraie d’abord son auteur. Si deux électricités existent réellement, comment ne les a-t-on pas encore signalées ! De nombreuses vérifications s’imposent. Dufay frotte toutes les matières dont il dispose : il faut bien se rendre à l’évidence, le phénomène est général.

 

" Voilà donc constamment deux électricités d’une nature différente, savoir celle des corps transparents et solides comme le verre, le cristal, etc. et celle des corps bitumineux ou résineux, comme l’ambre, la gomme copal, la cire d’Espagne, etc.

 

Les uns et les autres repoussent les corps qui ont contracté une électricité de même nature que la leur, et ils attirent, au contraire, ceux dont l’électricité est de nature différente de la leur."

 

Que dire de plus ? La loi d’attraction et de répulsion électrique est toute entière dans ces deux phrases. Si nous cherchons son énoncé dans un manuel contemporain nous l’y retrouvons pratiquement au mot près. Reste à nommer ces deux électricités différentes :

 

" Voilà donc deux électricités bien démontrées, et je ne puis me dispenser de leur donner des noms différents pour éviter la confusion des termes, ou l’embarras de définir à chaque instant celle dont je voudrais parler : j’appellerai donc l’une l’électricité vitrée, et l’autre l’électricité résineuse, non que je pense qu’il n’y a que les corps de la nature du verre qui soient doués de l’une, et les matières résineuses de l’autre, car j’ai déjà de fortes preuves du contraire, mais c’est parce que le verre et la copal sont les deux matières qui m’ont donné lieu de découvrir ces deux espèces d’électricités."

 

Électricité vitrée, électricité résineuse... ces deux termes ont au moins le mérite de proposer des étalons commodes. La fin du mémoire constitue d’ailleurs un début de classement. Au registre des corps qui présentent de l’électricité résineuse nous trouvons l’ambre, la cire d’Espagne, la gomme copal, la soie, le papier. L’électricité vitrée apparaît sur le verre et aussi le cristal, la laine, la plume... mais laissons à Dufay le soin de présenter son plus bel exemple :

 

"Rien ne fait un effet plus sensible que le poil du dos d’un chat vivant. On sait qu’il devient fort électrique en passant la main dessus ; si on approche alors un morceau d’ambre frotté, il en est vivement attiré, et on le voit s’élever vers l’ambre en très grande quantité ; si, au contraire, on en approche le tube, il est repoussé et couché sur le corps de l’animal".

 

Ainsi débute la longue tradition des peaux de chat dans les laboratoires de nos lycées.

 

Après les découvertes fondamentales que sont la conduction et l’électrisation par influence, la découverte des deux espèces d’électricité ouvre des voies prometteuses. La conclusion du mémoire manifeste l’espoir de progrès rapides.

 

"Que ne devons nous point attendre d’un champ aussi vaste qui s’ouvre à la physique ? Et combien ne nous peut-il point fournir d’expériences singulières qui nous découvriront peut-être de nouvelles propriétés de la matière ? "


 

 


Quand il écrit ces lignes, Dufay a trente cinq ans. Sa mort prématurée cinq ans plus tard lui laissera peu de temps pour tracer plus loin son sillon. Il lui aura surtout manqué le temps de défendre une théorie trop hardie pour la plupart de ses contemporains. Son disciple direct, l’Abbé Nollet, à peine plus jeune que lui, est le premier à la rejeter.

 

La théorie de Dufay et L'abbé Nollet.

 

Dans son "Essai sur l’électricité des corps", il se livre à une vigoureuse critique de la théorie des deux électricités :

 

" Question : Y a-t-il dans la nature deux sortes d’électricité essentiellement différentes l’une de l’autre ?

 

Réponse : Feu M. Dufay séduit par de fortes apparences et embarrassé par des faits qu’il n’était guère possible de rapporter au même principe il y a trente ans, c’est à dire dans un temps où l’on ignorait encore bien des choses qui se sont manifestées depuis, M. Dufay dis-je, a conclu par l’affirmation sur la question dont il s’agit. Maintenant bien des raisons tirées de l’expérience, me font pencher fortement pour l’opinion contraire ; et je suis pas le seul de ceux qui ont examiné et suivi les phénomènes électriques, qui abandonne la distinction des deux électricités résineuse et vitrée".

 

Il propose pour sa part la théorie d’une matière électrique unique qui quitterait et rejoindrait les corps électrisés dans un double mouvement simultané.

 

" La matière électrique s’élance du corps électrisé en forme de rayons qui sont divergents entre eux et c’est là ce que j’appelle matière effluente ; une pareille matière vient, selon moi, de toutes parts au corps électrisé, soit de l’air atmosphérique soit des autres corps environnants et voilà ce que je nomme matière affluente ; ces deux courants qui ont des mouvements opposés, ont lieu tous deux ensemble. ".

 

Théorie confuse et sans réelle portée explicative mais l’Abbé Nollet est devenu le "Physicien électriseur" le plus célèbre des cours d’Europe et ses avis ont force de loi. Pendant de longues années il sera un obstacle, hélas efficace, à la diffusion de la théorie des deux électricités.

 

Nous ne quitterons pas Dufay sans un regret. Des découvertes de portée équivalente ne restent généralement pas anonymes. Coulomb, Volta, Galvani, Ampère, Laplace...vivent toujours dans le vocabulaire électrique à travers une loi, parfois une unité. Qui connaît encore Dufay ?

 

Déjà en 1893, Henri Becquerel, qui avait choisi d’en faire l’éloge à l’occasion du centenaire du Muséum d’Histoire Naturelle, devait constater cet oubli :

 

"Parmi les statues et les bustes qui ornent nos galeries, parmi les noms gravés sur nos monuments, j’ai cherché en vain la figure ou même le nom seulement d’un des hommes qui firent le plus de bien et le plus d’honneur au vieux Jardin des Plantes, le nom du prédécesseur de Buffon. Que dis-je, j’ai cherché jusqu’à son souvenir, et ni dans tout le muséum, ni dans Paris même, je n’ai pu trouver un portrait de Charles-François de Cisternay du Fay, intendant du Jardin Royal des Plantes".

 

Nous pourrions prolonger la longue période oratoire de Becquerel :

 

"J’ai vainement cherché son souvenir dans les livres de physique, dans le nom des lois et des unités électriques...".

 

Est-il vraiment trop tard pour perpétuer le souvenir de ce physicien talentueux ?

 

Rien ne nous empêche de signaler dans nos cours et dans nos manuels que la loi d’attraction et de répulsion électrique est la "loi de Dufay".

 

Dufay oublié, il faudra une longue suite d’observations et d’interprétations contradictoires pour que la théorie des "deux électricités" nous revienne. Le second maillon de cette chaîne est, à nouveau, Benjamin Franklin.

 

Benjamin Franklin (1706-1790) : un vocabulaire neuf pour un fluide unique.

 

Contrairement à son prédécesseur, la renommée n’a pas oublié Franklin, "l’inventeur" du paratonnerre, avec qui nous pouvons, à présent, faire plus ample connaissance.

 

Dans le domaine de la physique il se décrit lui-même comme un amateur. Né à Boston en 1706, il est autodidacte. Son père est un modeste fabricant de chandelles et c’est chez son frère imprimeur qu’il peut assouvir sa passion pour la lecture. Il rencontre l’électricité par hasard vers l’âge de quarante ans. Il est alors à Philadelphie où il participe aux activités des cercles cultivés de la ville. Ceux-ci ont reçu d’Angleterre un "coffret électrique contenant "un tube de verre avec une note explicative sur l’emploi qu’on en peut faire" pour réaliser "certaines expériences électriques". L’auteur de cet envoi est Peter Collinson, membre de la Royal Society, l’académie des sciences anglaise. C’est un marchand Quaker de Londres entretenant des relations commerciales avec les colonies d’Amérique et qui ambitionne d’encourager les américains dans l’étude des sujets scientifiques. Il n’a pas manqué de joindre à son envoi une notice explicative : une relation des expériences spectaculaires menées en Allemagne par Bose et ses successeurs. Une "bouteille de Leyde" (nous reparlerons de ce premier condensateur électrique) est jointe au colis, elle procurera de vigoureuses secousses au "Tout-Philadelphie" pendant plusieurs mois.

 

Franklin fait de ce matériel un usage plus scientifique dont il rend compte, à partir de mars 1747, sous forme de plusieurs lettres à son correspondant anglais M. Collinson, membre de la Royal Society.

 

Nous avons déjà évoqué la proposition qui servira de socle à toutes ses interprétation ultérieures : l’électricité est un fluide qui imprègne tous les corps. Le frottement a pour effet d’en faire passer une certaine quantité d’un corps à l’autre.

 

Cette nouvelle façon de percevoir l’électricité est parfaitement illustrée par la deuxième lettre qu’il adresse à Pierre Collinson. Trois personnages y sont mis en scène : A, B et C.

 

A est isolé sur un gâteau de cire, il frotte un tube de verre qu’il tend à B lui-même isolé. B approche la main du tube et en reçoit une étincelle. A ce moment le personnage C resté au sol, en contact avec la terre, tend les doigts vers A et B et reçoit de chacun une décharge électrique. Franklin propose une interprétation séduisante :


"Nous supposons que le feu électrique est un élément commun, dont chacune des trois personnes susdites a une portion égale avant le commencement de l’opération avec le tube : la personne A qui est sur un gâteau de cire, et qui frotte le tube, rassemble le feu électrique de son corps dans le verre, et sa communication avec le magasin commun (la terre) étant interceptée par la cire, son corps ne recouvre pas d’abord ce qui lui manque ; B, qui est pareillement sur la cire, étendant la jointure de son doigt près du tube, reçoit le feu que le verre avait ramassé de A ; et sa communication avec le magasin commun étant aussi interceptée, il conserve de surplus la quantité qui lui a été communiquée. A et B paraissent électrisés à C, qui est sur le plancher ; car celui-ci ayant seulement la moyenne quantité de feu électrique, reçoit une étincelle de B, qui en a de plus, et il en donne à A qui en a de moins...

 

De là quelques nouveaux termes se sont introduits parmi nous. Nous disons que B (ou tout autre corps dans les mêmes circonstances) est électrisé positivement et A négativement ; ou plutôt B est électrisé plus et A l’est moins, et tous les jours dans nos expériences nous électrisons les corps en plus ou en moins suivant que nous le jugeons à propos.".

 

Pour la première fois, est donc exprimée la notion de charges positives et négatives. Cependant, nous l’avons compris, Franklin ignore l’interprétation de Dufay en termes de deux espèces d’électricité. Pour lui, le fluide électrique est unique, un corps chargé positivement en porte une quantité supplémentaire, un corps chargé négativement en a perdu. "Plus " et "moins" ne sont donc pas une nouvelle convention pour désigner deux électricités différentes mais ont le sens réel de gain et de perte.

 

Ce modèle, opposé à celui de Dufay, peut facilement convaincre. Il présente cependant de sérieuses lacunes. Comment peut-on affirmer, comme une évidence, que l’homme qui frotte le tube de verre fait passer l’électricité de son corps vers le tube ? Etait-il plus difficile d’imaginer que ce même homme arrache de l’électricité au tube frotté ? Franklin propose une étrange hypothèse : il imagine que la "chose frottante" perd une partie de son fluide au profit de la "chose frottée". Mais qui frotte et qui est frotté dans cette opération ?

 

Regrettons, au passage, que Franklin n’ait pas d’abord frotté du soufre. Il lui aurait, pour la même raison, attribué une charge positive ce qui, nous le verrons par la suite, aurait simplifié la tâche des professeurs des siècles suivants.

 

La publication de ces premières lettres lui vaut à ce sujet un courrier critique. Un de ses correspondants lui signale le comportement différent du soufre et du verre et suggère l’existence de deux électricités. Franklin maintient son interprétation initiale. Tout au plus doit-il admettre qu’un corps peut non seulement gagner de l’électricité quand on le frotte, mais aussi en perdre. Persévérant dans son intuition première il décrète cependant que c’est bien le verre qui se charge "en plus" tandis que le soufre se charge "en moins".

 

Une seconde mise en garde est plus sévère. On n’étonnera personne en disant que le sujet favori de Franklin aura été le tonnerre. Il en imagine le processus de la façon suivante : la terre est la réserve, le "magasin" de l’électricité. En s’évaporant pour former les nuages, l’eau arrache au globe terrestre une certaine quantité de fluide qui lui est ensuite restituée sous forme d’éclairs. Or, après la découverte du paratonnerre, Franklin est en mesure de prélever et d’analyser l’électricité portée par les nuages. Il constate alors qu’ils sont généralement chargés "en moins". Il faudrait donc que l’eau ait abandonné de l’électricité au sol et que, dans le phénomène du tonnerre, ce soit "la terre qui frappe les nuages et non pas les nuages qui frappent la terre". Cette constatation, contraire au sens commun, chagrine son auteur et, finalement, le doute s’installe :

 

"Les amateurs de cette branche de la physique ne trouveront pas mauvais que je leur recommande de répéter avec soin et en observateurs exacts, les expériences que j’ai rapportées dans cet écrit et dans les précédents sur l’électricité positive et négative, et toutes celles du même genre qu’ils imagineront, afin de s’assurer si l’électricité communiquée par le globe de verre est réellement positive..."

 

Il faudra presque un siècle et demi pour apporter une réponse à cette question. Cette réponse, hélas, sera négative.

 

Cela n’empêche pas la théorie du fluide unique de s’imposer. Elle possède, en effet, un pouvoir déductif très développé et sera la source d’un progrès rapide dans l’expérimentation. Aujourd’hui encore, le schéma proposé par Franklin reste à la base de la plupart de nos raisonnements.

 

Entre Dufay et Franklin : les bas de soie de Robert Symmer.

 

Robert Symmer (1707 - 1763) est écossais. Après une carrière dans la finance il se consacre aux sciences. En 1759 il publie dans les Philosophical Transactions de la Royal Society de Londres, le compte rendu d’expériences qui, malgré leur caractère étrange, lui vaudront une durable renommée.

 

Cela commence par une observation banale : des étincelles éclatent le soir quand il retire ses bas. Beaucoup de ses amis lui disent avoir fait la même observation mais, dit-il, "il n’a jamais entendu parler de quelqu’un qui ait considéré le phénomène de façon philosophique". C’est en effet une idée qui ne vient pas spontanément à l’esprit et c’est pourtant ce qu’il se propose de faire. Il décide donc de porter chaque jour deux paires de bas superposées, l’une de soie vierge l’autre de laine peignée. Heureuse initiative car alors le phénomène se renforce et surtout les deux paires de bas, quand on les sépare, manifestent une furieuse tendance à s’attirer. On peut même mesurer cette attraction en lestant l’une des paires au moyen de masses marquées de poids non négligeable.

 

Arrive un jour où un décès dans sa famille l’amène à porter le deuil. Il ne renonce pas pour autant à son expérience et enfile une paire de bas de soie noire sur ses habituels bas de soie naturelle. Ce soir là, au moment du déshabillage, l’effet est extraordinaire ! Jamais bas ne se sont attirés avec tant de fougue !

 

Quand la période de deuil touche à sa fin, et que des bas plus classiques reprennent leur place en position externe sur la jambe de Symmer, les phénomènes retrouvent leur cours plus modéré. Voici donc deux matériaux de choix pour une expérimentation sur les attractions électriques : la soie naturelle et la soie noire à laquelle le colorant a apporté de nouvelles propriétés. Pour décrire ces observations Symmer utilise d’abord le vocabulaire de Franklin mais, dans l’incapacité de décider lequel des deux bas perd ou gagne de l’électricité, il refuse un choix arbitraire et s’oriente, après avoir lu Dufay, vers l’idée de deux fluides électriques différents :

 

" C’est mon opinion, qu’il y a deux fluides électriques (ou des émanations de deux pouvoirs électriques distincts) essentiellement différents l’un de l’autre ; que l’électricité ne consiste pas en l’effluence et l’affluence de ces fluides, mais dans l’accumulation de l’un ou l’autre dans les corps électrisés ; ou, en d’autres termes elle consiste dans la possession d’une grande quantité de l’un ou l’autre pouvoir. Ainsi il est possible de garder un équilibre dans un corps, par contre si l’un ou l’autre pouvoir domine, le corps est électrisé de l’une ou l’autre manière".

 

Pour désigner ces électricités Symmer conserve les termes "positive" et "négative" qui associent une neutralité mathématique à la neutralité électrique de la matière. Tout en la sachant arbitraire il conservera également la convention de Franklin et appellera positive l’électricité qui apparaît en excès sur le verre frotté et négative celle qui s’accumule sur le soufre. C’est donc la théorie de Dufay habillée du vocabulaire de Franklin. C’est encore le modèle de nos "modernes" manuels.

 

Plusieurs auteurs souhaiteraient un armistice dans la querelle. C’est le cas du suédois T. Bergman qui propose en 1765, peu après la mort de Symmer, un "fluide neutre composé". Constitué de quantités égales de fluide négatif et de fluide positif, il ne se manifeste pas dans l’état normal d’équilibre. Certaines opérations, comme le frottement, le décomposent en deux fluides opposés. Cette théorie fera des adeptes après la découverte de la pile électrique.

 

Dufay, malgré la rigueur de sa méthode, a été rapidement oublié. Par contre, on trouve encore le nom de Symmer dans les manuels du début du XXème siècle.

 

Le XIXème siècle voit donc cohabiter deux modèles différents, celui du fluide unique plutôt enseigné en Angleterre et celui des deux fluides surtout utilisé en Europe continentale. Les raisons de choisir l’un ou l’autre sont souvent plus d’ordre philosophique que d’ordre pratique. Une attitude qu’illustre assez bien Charles-Augustin Coulomb (1736-1806), alors qu’il vient, en 1788, d’établir la loi mathématique de l’attraction et de la répulsion à distance.

 

Pour comprendre cette difficulté à choisir, il faut admettre que, certes, le modèle du fluide unique offre de sérieux avantages mais qu’il soulève également plusieurs difficultés qu’il serait trop commode de passer sous silence. Parmi elles, celle de la répulsion entre deux corps chargés négativement.

 

La répulsion entre deux corps portant "plus" d’électricité ne pose pas de problème à Franklin et à ses disciples : cette électricité supplémentaire forme, pensent-ils, une "atmosphère" qui entoure chaque corps chargé. Ces atmosphères, par leur simple action mécanique élastique, expliquent de façon simple la répulsion entre deux corps chargés positivement.

 

Le problème est différent avec deux corps ayant "perdu" de l’électricité. Aucune atmosphère ne les entoure. D’où alors provient la répulsion ? Ce phénomène qu’ils n’arrivent pas à expliquer de façon satisfaisante, sera la source d’un tourment permanent pour Franklin et ses partisans.

 

L’un d’entre eux, Franz Aepinus (1724-1802), professeur à Berlin puis à Saint-Pétersbourg, abandonne l’hypothèse des "atmosphères" électriques et adopte une vision "newtonienne" de l’action électrique. Celle-ci se ferait à distance, sans aucun support mécanique.

 

La matière "ordinaire" aurait le pouvoir d’attirer le fluide électrique jusqu’à s’en "gorger" comme une éponge et acquérir ainsi un état de neutralité électrique. Par contre, les particules de matière électrique, c’est admis, se repoussent entre elles. Deux corps chargés d’un surplus d’électricité doivent donc se repousser.

 

Mais pourquoi deux corps ayant perdu de l’électricité se repousseraient-ils ? Tout simplement parce que la matière ordinaire, privée d’électricité, a elle-même la propriété de répulsion à distance. Ainsi la répulsion se manifesterait entre deux corps chargés de trop d’électricité mais également entre deux corps ayant perdu du fluide électrique.

 

Cette "matière ordinaire", caractérisée par son volume, sa masse, son inertie, serait donc capable, à la fois, d’exercer sur elle-même des forces d’attraction à distance de nature gravitationnelle comme l’a proposé Newton et des forces de répulsion de nature électrique. Ce système assez compliqué ne pouvait convenir qu’à des franklinistes déjà convaincus. Ce n’est pas le cas de Coulomb :

 

" M. Aepinius a supposé dans la théorie de l’électricité, qu’il n’y avait qu’un seul fluide électrique dont les parties se repoussaient mutuellement et étaient attirées par les parties des corps avec la même force qu’elles se repoussaient... Il est facile de sentir que la supposition de M. Aepinius donne, quant aux calculs, les mêmes résultats que celle des deux fluides... Je préfère celle des deux fluides qui a déjà été proposée par plusieurs physiciens, parce qu’il me paraît contradictoire d’admettre en même temps dans les parties des corps une force attractive en raison inverse du carré des distances démontrée par la pesanteur universelle et une force répulsive dans le même rapport inverse du carré des distances". (Des deux natures d’électricité – Histoire de l’Académie Royale des Sciences – année 1788, page 671).

 

Il reste vrai, cependant, que le choix ne s’impose pas quand on étudie l’électricité à l’état statique. Le problème se pose-t-il différemment quand on considère la circulation de ce, ou de ces, fluide(s), c’est à dire quand on s’intéresse au "courant" électrique ?

 

La question sera très vite posée et nous allons nous autoriser à parcourir le temps qui nous mènera de Dufay à J.J. Thomson, en passant par Ampère et Maxwell, pour découvrir les différentes réponses qui lui seront apportées.

 

Mais ceci est une autre histoire.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès lesclasses de premières S et STI de nos lycées, et entre les mains  de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


On trouve dans le Volume 38 des "Philosophical Transactions of the Royal Society, 1734", une communication de Dufay dans laquelle il présente sa découverte des deux espèces d’électricités.

Partager cet article
Repost0
7 août 2014 4 07 /08 /août /2014 19:39

En 1731, paraît dans les "Philosophical Transactions", la publication de la "Royal Society", un texte qui allait faire accomplir un premier pas de géant à la toute jeune science électrique. Son auteur, Stephen Gray, n’est pourtant pas un personnage en vue. Considéré comme un "amateur", il a dû subir le mépris des scientifiques en place. Il se hissera, cependant, au niveau de son compatriote Gilbert dans l’estime des "électriciens" européens.

 

 


Stephen Gray (1670-1736).

 

Stephen Gray est fils d’un teinturier de Canterbury et teinturier lui-même. Il fait de sérieuses études qui l’amènent à s’intéresser plus particulièrement à l’astronomie. Il est, à ce titre, invité à participer aux travaux de l’astronome royal John Flamsteed à Greenwich, l’auteur du premier catalogue moderne du monde céleste donnant la position exacte de près de 3000 étoiles. En 1707, il est à nouveau appelé à Cambridge, également pour des travaux d’astronomie.

 

Cette expérience est décevante. Ses relations avec le milieu des savants académiques sont difficiles. Il constate avec amertume que ses communications sont refusées pour la publication, ce qui n’empêche pas qu’elles soient régulièrement pillées. Il regagne donc son commerce de Canterbury en 1708. Trop fatigué pour poursuivre son activité, il demande à être admis dans une maison de retraite connue sous le nom de Charterhouse. Cette institution, installée dans un ancien couvent de Chartreux, avait été créée pour être, à la fois, une école de jour pour des enfants pauvres et une pension pour personnes âgées. Ses pensionnaires étaient généralement des hommes distingués bénéficiant de sérieuses références. Gray dut attendre huit ans avant d’y être admis, en 1719, sur recommandation du Prince de Galles.

 

Libéré de ses soucis financiers, il entendait bien occuper cette retraite à cultiver son intérêt pour les diverses branches des sciences. Il s’était, en particulier, muni de divers tubes de verre et du petit matériel utile à des démonstrations électriques.

 

Déjà en, 1708, il avait adressé un mémoire à la Royal Society concernant de "nouvelles expériences sur la lumière et l’électricité". Il avait été étonné par la facilité avec laquelle il pouvait reproduire les expériences de Guericke en utilisant un simple tube de verre. La vertu "expulsive", en particulier se manifestait de façon spectaculaire. Une plume approchée du tube était d’abord attirée pour être ensuite repoussée. Elle pouvait rester longtemps à "planer" au-dessus du tube et même monter et descendre au rythme du frottement.

 

Il lui apparaissait cependant que la vertu "expulsive", loin d’être une propriété nouvelle du soufre ou de la terre, comme l’avait estimé Guericke, était, plus simplement, au même titre que l’attraction, une propriété de la vertu électrique.

 

Une autre observation méritait l’attention : si la plume, une fois repoussée, parvenait à proximité d’un corps extérieur au tube, elle en était attirée. Elle retombait ensuite sur le tube pour être à nouveau repoussée. Le manège pouvait ainsi durer de 10 à 15 allers et retours avant de s’arrêter. Ces observations amenaient Gray à supposer que la plume, placée à proximité du tube frotté, devait, elle-même, acquérir une vertu électrique.

 

De tels faits auraient dû attirer l’attention de ses contemporains, mais Hauksbee, à qui il adresse son mémoire, ne juge pas utile de le publier. Fort heureusement, ils continueront à obséder Gray et lui permettront une éclatante revanche.

Tardives et fabuleuses découvertes.

 

En février 1729, étant déjà depuis 10 ans à Charterhouse, il entreprend d’expérimenter sur l’électrisation des métaux. Ayant constaté qu’il lui était impossible de les électriser par frottement, il se propose d’y parvenir en les plaçant, comme il l’a déjà fait avec une plume, dans les "effluves" électriques entourant un tube de verre frotté.

 

Avant de commencer, il décide de tester son tube. Celui-ci, qu’il décrit avec précision, est un tube de verre au plomb de trois pieds cinq pouces (1 mètre) de long et de un pouce et 1/5 (3 centimètres) de diamètre. Ce tube est fermé, à chaque extrémité, par un bouchon de liège, afin que la poussière n’y entre pas. Gray a, en effet, remarqué que celle-ci nuit à l’efficacité du tube.

 

Les bouchons sont habituellement enlevés quand le tube est utilisé. Pourtant, cette fois, Gray veut tester l’efficacité du tube bouché. Il frotte donc l’extrémité d’un tube muni de ses bouchons et constate qu’il fonctionne tout aussi bien.

 

Soudain, le hasard lui offre un fabuleux cadeau.

 

Gray raconte :

 

« comme je tenais une plume de duvet vis-à-vis de l’extrémité supérieure du tube, j’aperçus qu’elle voulait aller vers le liège, et qu’elle était attirée et repoussée par lui, tout comme par le tube, lorsqu’il avait été excité par le frottement ; je tins donc le duvet vis-à-vis de la surface plate du liège, laquelle l’attira et le repoussa plusieurs fois de suite, à ma grande surprise, d’où je conclus que le tube excité avait certainement communiqué au liège une vertu attractive. »

 

La suite des expériences a un côté "surréaliste" :

 

« Ayant sur moi une boule d’ivoire, d’environ un pouce et 3/10 de diamètre, percée de part en part, je l’assujettis sur un morceau de bois de sapin, long d’environ quatre pouces, et je fis entrer l’autre bout du morceau de bois dans un des bouchons de liège, et frottant le tube, je vis que la boule attirait et repoussait la plume avec plus de force que le liège n’avait fait ; les attractions et répulsions se répétant un très grand nombre de fois tout de suite. »

 

Des tiges de bois de 8, puis 24 pouces, enfoncées dans le bouchon, sont essayées avec le même succès. Quelle distance peut-on ainsi atteindre ? Après plusieurs essais, Gray réalise un assemblage de roseaux et de baguettes de sapin totalisant plus de 18 pieds de long, ce qui correspond à la longueur de sa chambre. Le résultat est probant, l’attraction est aussi forte que celle obtenue à l’extrémité de tiges plus courtes.

 

Puis vient le tour d’une ficelle de chanvre de trois pieds de longueur. Attachée au tube, elle est lestée par la boule d’ivoire qui attire les feuilles de cuivre avec tout autant de facilité.

 

Une ficelle est un moyen de fixation commode. Elle sera bientôt lestée par une boule de plomb, une pièce d’or, un morceau d’étain, une pelle à feu, un vase d’argent, une bouilloire de cuivre tantôt vide et tantôt pleine d’eau, chaude ou froide. Tous ces corps métalliques attirent les feuilles de cuivre à la hauteur de plusieurs pouces quand le tube de verre est frotté. Les métaux, qui ne peuvent acquérir la "vertu" électrique par le simple frottement, peuvent donc la recevoir d’un tube de verre frotté auquel on les fait communiquer. De même des cailloux, des briques, un aimant, des tuiles, de la craie, des végétaux.

 

Gray sait qu’une voie royale vient de s’ouvrir devant lui, il s’y engage avec enthousiasme. Une question lui vient naturellement à l’esprit : jusqu’à quelle distance pourra-t-il ainsi transmettre la vertu électrique.

 

Une première réponse lui est donnée au mois de mai 1729 chez son ami John Godfrey dans sa propriété de Norton-Court dans le Kent. Une tige de 32 pieds de long est réalisée à partir de cannes creuses et de tiges de sapin, le tout terminé par l’habituelle boule d’ivoire : la vertu électrique est transmise à cette distance. Une ficelle de 26 pieds de long, pendue dans le vide, à partir d’un balcon fonctionne également. De même une corde de 34 pieds suspendue à une tige de 18 pieds, soit un parcours total de 52 pieds.

 

Les succès sont spectaculaires, mais survient le premier échec !

 

Voulant transmettre la vertu électrique horizontalement au moyen d’une ficelle, Gray soutient celle-ci par des cordes fixées aux poutres de la pièce où se pratique l’expérience. Le résultat est négatif.


Découverte de la conduction électrique par Gray
(Louis Figuier, Les Merveilles de la Science)


Gray n’en est pas particulièrement étonné. Les cordes de fixation, pense-t-il, transmettent une part essentielle de la vertu électrique aux poutres et il n’en reste plus qu’une infime partie qui puisse arriver jusqu’à la boule. Il lui faudra donc imaginer un autre dispositif.

 

L’occasion lui en est donnée le 2 juillet 1729. Il est alors chez son ami Granvil Wheler. Afin de tendre la ficelle, des fils de soie sont fixés entre les murs latéraux d’une longue galerie. Pourquoi de la soie ? C’est le fil qui allie la meilleure résistance à la plus grande finesse. Or Gray, alerté par son premier échec, est persuadé « qu’un pareil fil, attendu son peu de grosseur, pourrait faire réussir l’expérience, puisqu’il détournerait moins la vertu électrique de la ligne de communication » constituée par la ficelle.

 

L’hypothèse se vérifie. La vertu électrique peut, ainsi, être portée jusqu’à une distance de 147 pieds. La galerie devenant trop courte, on passe dans une grange où la distance de 293 pieds (près de 100 mètres) est facilement atteinte. A ce moment, un incident vient perturber cette course au record et faire prendre un nouveau cours aux observations.

 

On imagine facilement l’agitation qui pouvait accompagner une telle expérimentation. L’une des traverses de soie n’y résiste pas. Fort opportunément, Gray s’est muni d’un fil de laiton (alliage de cuivre et de zinc) présentant la finesse requise tout en étant plus solide. Il remplace donc la traverse de soie défectueuse par ce fil de laiton. Mais, avec ce dispositif, Gray doit constater son échec : « avec quelque vivacité qu’on frottât le cylindre, la boule ne produisit aucun mouvement, et n’excita pas la moindre attraction ».

 

Une évidence s’impose alors aux deux observateurs :

 

« nous fumes convaincus que nous devions la réussite de nos expériences précédentes aux traverses de soie, non pas à cause qu’elles étaient menues, comme je l’avais d’abord imaginé, mais parce qu’elles étaient de soie »

 

Ainsi la ficelle et le laiton ont un comportement différent de la soie. Forts de cette nouvelle donnée, Gray et Wheler reprennent leurs expériences. Ils savent à présent que des fils de soie, même d’un diamètre respectable, isoleront parfaitement la ficelle qu’ils supporteront. Après être passés de la galerie à la grange, les expérimentateurs passent au jardin et atteignent une distance de 650 pieds, plus de 200 mètres.

 

Engagé dans cette course au record, Gray découvre un nouvel effet de la "vertu électrique" : elle peut se transmettre sans contact ! Méticuleux, il note que cette révélation lui a été faite le 5 août 1729. Ce jour là il avait suspendu un poids de plomb de 14 livres à une corde de Crin. Sous la masse de plomb, des feuilles de cuivre ont été disposées. Il approche le tube de verre et, soudain :

 

« le tuyau ayant été frotté et tenu près de la corde, mais sans la toucher, le poids attira et repoussa les feuilles plusieurs fois de suite jusqu’à la hauteur, tout au moins, de trois pouces, si ce n’est quatre . »

 

Dès lors les expériences prennent un nouveau cours. On pourra transmettre la vertu électrique sans avoir à s’encombrer d’un bouchon, d’une baguette ou d’une ficelle. La simple approche du tube frotté suffira. La place est laissée libre à l’imagination. Gray n’en manque pas. Sa démonstration la plus spectaculaire inspirera des générations d’électriciens. Laissons-lui la parole :

 

« Le 8 avril 1730 je fis l’expérience suivante sur un garçon de 8 à 9 ans, qui pesait tout habillé 47 livres 10 onces. Je le suspendis horizontalement sur deux cordes de crin, (semblables à celles sur lesquelles on fait sécher le linge) longues de 13 pieds »

 

Ces cordes suspendues au plafond, chacune par deux crochets, se présentent comme deux boucles proches l’une de l’autre.


L’expérience de l’enfant suspendu
(Louis Figuier, Les Merveilles de la Science)


« On coucha sur ces deux cordes l’enfant la face en bas, une des cordes lui passant sous la poitrine, l’autre sous les cuisses. Les feuilles de cuivre furent posées sur un petit guéridon, rond, d’un pied de diamètre, recouvert de papier blanc, et soutenu par une tige haute d’un pied.
Aussitôt que l’on eut frotté le tube, et qu’on l’eut présenté vis-à-vis des pieds du petit garçon, mais sans les toucher, son visage attira les feuilles de cuivre avec beaucoup de force, jusqu’à les faire monter à la hauteur de 8 et quelquefois de 10 pouces. »

 

Un humain peut donc, sans dommage, recevoir et transmettre la vertu électrique !

 

Sans qu’il le sache, Gray vient d’inaugurer la mise en scène expérimentale la plus souvent répétée dans les "salons de physique" européens. Si l’on ne devait garder qu’une image des ouvrages d’électricité du 18ème siècle, ce serait celle d’une demoiselle richement vêtue et couchée sur un plateau retenu au plafond par des cordons de soie. Un jeune abbé approche de ses pieds un tube de verre frotté pendant que de jeunes gens lui présentent, sur un plateau d’argent, des feuilles d’or qu’elle attire à distance.

 

Ce n’est pas sans appréhension qu’on confie, aujourd’hui, sa précieuse personne aux démonstrateurs de musées qui, comme au Palais de la Découverte à Paris, proposent de vous faire dresser les cheveux sur la tête par la vertu de l’électricité. On imagine sans peine la hardiesse de ces premiers volontaires.

 

Gray n’est pas à court d’imagination. Il réussit même à électriser les bulles de savon produites au moyen d’une pipe.

 

Une dernière expérience « pour voir à quelle distance la vertu électrique pourrait être portée en ligne droite, sans que le tube touchât la ficelle » et le record est atteint. Il est de 886 pieds, près de 300m !

Dufay : premier classement.

 

Gray est enthousiaste mais brouillon. Le compte-rendu qu’il donne de ses expériences retient cependant l’attention de Charles-François de Cisternay Dufay (1698-1739), un jeune physicien français qui, à 35 ans, est déjà, depuis dix ans, membre de l’Académie des Sciences de Paris. Nous reparlerons plus longuement de Dufay.

 

Usant de méthode, il reprend d’abord le problème de l’électrisation des corps : la faculté d’attraction à distance existe-t-elle dans tous les corps ?

 

La question n’est pas nouvelle. Gilbert, le premier, l’avait abordée. Dufay, naturellement, reprend la liste impressionnante des corps déjà testés par Gray et ses prédécesseurs : l’ambre, les résines, les pierres précieuses, les verres de toutes natures, le soufre, la laine, la soie, les plumes, les cheveux. Il y ajoute des corps aussi divers que le marbre, le granit, le grès, l’ardoise, l’ivoire, l’os, l’écaille, les poils d’animaux.

 

Ces corps ne réagissent pas toujours à un simple frottement. Certains doivent être chauffés, parfois, même, jusqu’à s’y brûler les doigts. Tous, cependant, si on use de méthode et en particulier si on les a parfaitement séchés, peuvent être électrisés par frottement.

 

Tous ? Pas exactement. Il reste une catégorie qui résiste : celle des métaux : « quelque peine que je me sois donnée », dit-il, « et de quelque manière que je m’y soit pris, je n’ai pu parvenir, non plus que M. Gray, à les rendre électriques ; je les ai chauffés, frottés, limés, battus, sans y remarquer d’électricité sensible »

 

Il résulte de ces observations une première conclusion :

 

« à l’exception des métaux et des corps que leur fluidité ou leur mollesse met hors d’état d’être frottés, tous les autres qui sont dans la nature sont doués d’une propriété qu’on a cru longtemps particulière à l’ambre et qui, jusqu’à présent, n’avait été reconnue que dans un petit nombre de matières . »

 

Gilbert l’avait déjà signalé, l’électricité est donc bien autre chose qu’une vertu magique confinée dans l’ambre et les pierres précieuses. C’est une propriété générale de la matière digne d’une étude systématique.

 

Cependant, il existe deux classes de corps : Dufay propose de désigner sous le nom de "corps électriques", ceux qui, comme le verre, peuvent être électrisés par frottement. Ceux qui, tels les métaux, ne peuvent l’être, constitueront la classe des corps "non électriques".

Corps "électriques" et "non-électriques", quelles différences ?

 

D’abord le problème de l’attraction. Ces deux types de corps, les "électriques" et les "non-électriques", se différencient-ils par la façon dont ils sont attirés ?

 

Dufay approche son tube de verre frotté de râpures d’ambre, de gomme laque, de verre pilé, de sciure de bois dur et pesant, de brique pilée, ces corps étant "le plus qu’il est possible, de même volume et de même pesanteur comparés les uns aux autres". Il constate que les corps "qui ne sont pas électriques par eux-mêmes", comme les métaux, le bois ou même la brique sont plus fortement attirés que ceux qui le sont, comme l’ambre, le verre, la cire.

 

Dans nos expériences courantes, des fragments de coton ou des morceaux de papier conviendront dans la mesure où ils sont légers et "conducteurs" (comme nous qualifions aujourd’hui les corps "non-électriques"). Le corps idéal des expérimentateurs du 18ème pour montrer attractions et répulsions sera la feuille d’or à la fois très conductrice, très légère et offrant une large surface à l’influence électrique.

 

Deuxième problème : celui de la conduction. Il s’agit de déterminer "quels sont les corps qui peuvent arrêter ou faciliter la transmission" de la "vertu" électrique.

 

Tout naturellement Dufay reprend les expériences de Gray sur la conduction horizontale. Il se fait aider de l’abbé Nollet, son assistant, pour tendre des supports de soie entre les arbres de l’allée du jardin de sa propriété de Tremblay, à proximité de Paris.


Expérience de Dufay au Tremblay


La corde, préalablement mouillée, qui repose sur ces traverses transmet l’attraction électrique jusqu’à 1256 pieds, plus de quatre cents mètres, le record de Gray est largement battu ! Est-il nécessaire de poursuivre plus loin l’expérience ? Dufay n’en voit pas l’utilité :

 

"Ayant reconnu que l’électricité pouvait être portée à une si grande distance, il m’a paru inutile de prendre beaucoup de peine pour la faire aller plus loin, et si, après avoir fait un chemin de 1256 pieds, son effet est encore très sensible, il ne sera point étonnant qu’elle puisse encore agir fort au-delà."

 

Avant d’arriver à ce résultat spectaculaire il avait d’abord soigneusement multiplié les essais en utilisant des cordons et des tiges de différentes natures. "Je me suis servi" nous dit-il "de tuyaux de verre, de baguettes, de roseaux, de fil de fer et de cuivre, j’ai fait un grand nombre de combinaisons de cordons et autres corps continus". Il constate que les tuyaux de verre, les cordons de soie ne communiquent presque aucune "vertu". Par contre "la corde la plus commune et les cordons de fil, de la grosseur d’un tuyau de plume ou même plus gros, était ce qui se faisait de mieux.". Surtout si on avait pris la précaution de les humidifier.

 

Naturellement un fil métallique convient encore mieux mais il est plus facile, en 1733, de trouver 800m de ficelle de chanvre qu’un fil de cuivre de la même longueur.

 

Une nouvelle loi découlera de ces observations :

 

"Qu’il nous suffise, quant à présent, d’avoir reconnu et établi pour principe que les corps les moins propres à devenir électriques par eux-mêmes, sont ceux qui sont le plus facilement attirés, et qui transmettent le plus loin, et le plus abondamment la matière de l’électricité ; au lieu que ceux qui ont le plus de disposition à devenir électriques par eux-mêmes, sont les moins propres de tous à acquérir une électricité étrangère, et à la transmettre à un éloignement considérable."

 

En langage plus moderne, et pour simplifier, nous dirions qu’un corps non-électrique (comme un métal) sera facilement attiré par un corps électrisé et sera le plus efficace des conducteurs. Le verre (corps électrique) que le frottement rend si facilement attractif sera, au contraire, le meilleur des isolants.

 

Dufay ne cache pas sa satisfaction. C’est, dit-il "toujours beaucoup que de découvrir quelques vérités sur une matière aussi obscure, et aussi difficile par elle-même."

Franklin : le vocabulaire.

 

Avant de suivre Dufay sur la voie de nouvelles découvertes, arrêtons-nous un moment sur le concept de conducteur et d’isolant. S’il est clairement analysé par Dufay, il faut attendre Franklin (1706-1790) pour que le vocabulaire s’accorde avec l’idée.

 

Nous détaillerons par la suite les apports de Franklin à la science électrique. Qu’il nous suffise pour le moment de savoir que, dès son contact avec l’électricité, en 1747, il crée une véritable rupture.

 

L’électricité, dit-il, n’est pas créée par le frottement sur les "corps électriques". Ce n’est pas, non plus, une "vertu" propre à ces seuls corps. C’est un fluide qui imprègne tous les corps et qui est capable de passer d’un corps à l’autre.

 

Cette intuition l’amène tout naturellement à habiller d’un vocabulaire nouveau les anciennes catégories :

 

" En quoi consiste la différence entre un corps électrique et un corps non électrique ? Les termes électrique par soi-même et non-électrique furent d’abord employés pour distinguer les corps, dans la fausse supposition que les seuls corps appelés électriques par eux-mêmes contenaient dans leur substance la matière électrique qui pouvait être excitée par le mouvement, qu’elle en provenait et en était tirée, et communiquée à ceux qu’on appelait non-électriques, que l’on supposait dépourvus de cette matière... Je soupçonne à présent qu’elle (la matière électrique) est répandue assez également dans toute la matière du globe terrestre.
 

Cela étant ainsi, on pourrait abandonner comme impropres les termes "électrique par soi même" et "non-électrique" ; et puisque toute la différence est que quelques corps conduisent la matière électrique et que les autres ne la conduisent pas, on pourrait leur substituer les termes de "conducteur" et "non-conducteur".

 

On ne peut perfectionner la science sans perfectionner le langage, devait, plus tard, affirmer Lavoisier en introduction à son traité élémentaire de chimie (1789). "Quelque certains que fussent les faits, quelque justes que fussent les idées qu’ils auraient fait naître, ils ne transmettraient encore que des impressions fausses, si nous n’avions pas des expressions exactes pour les rendre.", ajoutait-il.

 

Franklin, qui fréquentera régulièrement son laboratoire lors de son séjour parisien, l’aura devancé dans cette voie. Les faits ont fait naître, dans son esprit, l’idée que l’électricité est un "fluide " qui imprègne tous les corps. Les faits, l’idée, exigent un vocabulaire précis : les corps ne se partagent pas en "électriques" ou "non-électriques", mais en "conducteurs" et "non-conducteurs" (nous disons aujourd’hui isolants).

 

Arrêtons-nous ici sur ce qui pourrait sembler un paradoxe : le premier conducteur connu, une ficelle de chanvre, est plutôt considéré, aujourd’hui, comme un isolant. Pour le comprendre, il faut se souvenir que, si les quantités d’électricité mises en œuvre dans les phénomènes électrostatiques sont infimes, les tensions qui leur correspondent sont, elles, de plusieurs milliers ou dizaines de milliers de volts. Sous l’effet de telles tensions même le chanvre devient conducteur. C’est pourquoi il est recommandé de ne pas jouer avec un cerf volant près d’une ligne à haute tension, ou encore d’écarter un câble tombé à terre au moyen d’une tige de bois. Car dans ce cas les fortes tensions s’accompagneraient de courants de forte intensité et l’électrocution serait au rendez-vous.

 

Les concepts de fluide électrique, de conducteur et d’isolant sont donc nés. L’idée, certes, avait également déjà germé chez plusieurs auteurs anglais, mais Franklin est celui qui aura franchi le pas avec le plus de hardiesse. Ceux qui, sur le vieux continent, sauront adopter ses vues n’auront qu’à s’en féliciter.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.

Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté
des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.


 

 

Partager cet article
Repost0
7 août 2014 4 07 /08 /août /2014 12:54

La Nature est généreuse. En dotant le soufre et le verre de la propriété d’attraction, elle a permis à tout un chacun de s’emparer du phénomène électrique. Le plus simple bâton de soufre ou le plus banal des tubes de verre donnent déjà de beaux effets. Mais ces matériaux se prêtent surtout à la fabrication de " machines " qui viendront compléter les " cabinets de curiosités ", attraction obligatoire de toute demeure noble ou bourgeoise qui se respecte, dès la deuxième moitié du 17ème siècle.


Otto de Guericke (1602-1686)

 

 

Parmi les constructeurs, un premier nom émerge, celui de Otto de Guericke. Il est le descendant d’une famille de notables de la ville franche de Magdebourg. Son père et son grand-père y ont tous deux occupé la fonction de bourgmestre, contribuant à en faire une cité prospère et populeuse. Il étudie d’abord à l’université de Leipzig puis rejoint Leyde pour compléter son instruction dans les langues ainsi que dans l’art des fortifications et des machines de guerre.

 

En 1626, il regagne Magdebourg où ses connaissances deviennent rapidement utiles car, en 1631, la cité protestante est assiégée par les armées de l’Empereur d’Allemagne en conflit avec la Suède dont la ville est alliée.

 

Le 20 mai, à l’aube, les troupes de mercenaires catholiques du seigneur de guerre Tilly, composées d’Espagnols, d’Italiens, de Français, de Polonais et d’Allemands pénètrent dans la ville. La population résiste de façon héroïque mais ne parvient pas à repousser les assaillants. Commence alors ce qui est resté dans les mémoires comme le "massacre de Magdebourg" : en quatre jours, vingt mille civils sont passés au fil de l’épée ou brûlés vifs dans l’incendie de leur maison.

 

Une fois la paix revenue, Otto de Guericke contribue à relever la ville de ses ruines et en devient maire. Dans cette fonction, il représente Magdebourg au congrès de paix qui, en 1648, clôt cette "guerre de trente ans". Bon négociateur, il obtient pour sa ville, la reconnaissance de ses anciens privilèges. Cette mission l’amène à siéger à la Diète impériale. C’est à l’une de ces réunions, à Ratisbonne, en 1654, qu’il choisit de révéler les capacités de la pompe à vide qu’il a récemment mise au point.

 

L’expérience dite des "hémisphères de Magdebourg " est bien connue. Elle fait suite aux expériences de Torricelli (1608-1647) sur la pression atmosphérique.

 

En 1643, pour répondre au problème posé par les fontainiers de Florence qui avaient des difficultés à pomper l’eau dans leurs puits au-delà de 32 pieds (environ 10 mètres), Toricelli avait renversé un tube plein de mercure sur une cuve contenant le même liquide. Il avait pu constater que le mercure descendait dans le tube pour se stabiliser à une hauteur de 28 pouces (76cm) au-dessus de la surface libre. Il démontrait ainsi l’existence de la pression atmosphérique mais aussi celle du vide dont, prétendaient ses adversaires, la Nature avait "horreur".

 

Le sujet passionne Otto de Guericke qui entreprend avec succès, la mise au point d’une pompe capable de faire le vide dans un récipient plein d’air. Après avoir tenté de vider un tonneau qui ne résista pas à l’expérience, Guericke fait fabriquer une sphère de cuivre, composée de deux demi-sphères jointives, et munie d’un robinet. Devant un nombreux public, il fait le vide dans cette sphère imposante d’une aune de diamètre (1,19 mètre). Vingt-quatre chevaux attelés aux hémisphères sont incapables de rompre l’adhérence entre les deux parties.

 

Cette expérience inaugure avec éclat la pratique de la "science spectacle" dont la popularité sera également déterminante dans l’avancement de la science électrique.

 

L’expérience des "Hémisphères de Magdebourg" est un repère dans l’histoire de la mécanique. La place de Guericke dans celle de l’électricité est plus modeste. Son apport dans ce domaine était d’ailleurs resté ignoré de la plupart de ses contemporains. Pourtant, près d’un siècle plus tard, plusieurs physiciens, et en particulier le français Dufay, constatent qu’on aurait gagné à considérer ses expériences avec plus d’attention.

 

Guericke, en réalité, ne s’intéresse qu’incidemment à l’électricité. Il ne la rencontre qu’à travers les questions qu’il se pose sur le fonctionnement de l’Univers. Il s’interroge d’abord sur celui de la terre. Parmi les "vertus" qu’il attribue à notre globe, deux lui semblent fondamentales. D’abord une vertu "conservative" : la terre attire à elle tous les matériaux qui sont nécessaires à sa formation, l’eau, les roches... Ensuite une vertu "expulsive" : elle repousse tout ce qui peut la détruire. Le feu, par exemple, dont la flamme monte vers le ciel.

 

Guericke en propose une spectaculaire démonstration. Prendre, dit-il, un ballon de verre de la taille de la " tête d’un enfant", le remplir de soufre finement moulu, chauffer jusqu’à fusion du soufre, laisser refroidir, casser le verre et recueillir le globe de soufre. Munir la boule d’un manche et la placer sur un support de bois. Frotter cette boule vigoureusement d’une main bien sèche.


La "machine électrique" de Otto de Guericke
(Louis Figuier, Les Merveilles de la Science)


La boule manifestera alors plusieurs des vertus terrestres. La vertu "conservative" d’abord, en attirant à elle des objets légers.

 

Plus étonnante est l’observation de la vertu "expulsive" ! Le globe repousse parfois ce qu’il a d’abord attiré. Une plume, par exemple, après avoir touché le globe en est repoussée. Ainsi suspendue dans l’air, elle peut être promenée dans toute la pièce. Mieux : quel que soit le mouvement du globe elle semble lui présenter toujours la même face. Exactement comme la lune vis à vis de la terre.

 

Guericke, qui a lu Gilbert, ne peut douter un seul instant que la vertu attractive de la terre ne soit tout simplement de nature électrique. Quant à la vertu répulsive, personne avant lui ne semble l’avoir notée. Il lui attribue une cause différente et l’imagine uniquement propre aux éléments constitutifs de la terre et parmi ceux-ci au soufre. Il passe, ainsi, à côté d’une vérité qui restera longtemps occultée jusqu’à ce que le Français Dufay en fasse l’étude approfondie et montre que l’électricité possède également une "vertu répulsive" !

 

Les récits de Guericke recèlent d’autres riches intuitions. Pour prouver que l’air n’est pas le véhicule de l’attraction, il montre que cette vertu peut se transmettre par l’intermédiaire d’un fil de lin, long de plus de un mètre, tendu à partir de la surface du globe. Cette première observation de la "conduction" électrique restera, elle aussi, sans lendemain. Il appartiendra à l’Anglais Gray de la redécouvrir près d’un siècle plus tard.

 

Même si son titre de gloire reste la fameuse expérience des hémisphères et si son apport théorique dans le domaine de l’électricité est resté limité, le talent d’observateur et d’expérimentateur de Guericke, reconnu par ses successeurs, mérite la place qui lui est réservée dans le Panthéon des électriciens.

 

Hauksbee ( ?- 1713)

 

 

L’électricité et le vide font également bon ménage dans les machines imaginées par Francis Hauksbee.

 

On connaît mal les premières années de sa vie. Autodidacte, il est remarqué par Newton. En décembre 1703, le célèbre physicien, auteur de la loi de gravitation universelle, devient président de la Royal Society of London, la plus importante Académie scientifique anglaise. Il engage Hauksbee comme son expérimentateur principal. Jusqu’en 1705, celui-ci anime donc les séances de l’Académie. En particulier par des expériences classiques sur le vide inspirées de Guericke.

 

A partir de cette date il s’oriente vers l’étude de la phosphorescence "mercurielle" ou "barométrique". Depuis 1675, une observation faite de façon fortuite intrigue les physiciens. Quand on bouscule, dans l’obscurité, un tube barométrique disposé dans les conditions de l’expérience de Toricelli, une lueur phosphorescente apparaît dans le vide libéré à la partie supérieure du tube. Au moment où Hauksbee s’attaque au problème, il est généralement admis que cette lueur provient d’une émanation du mercure. Pour sa part il choisit d’user de méthode et d’étudier les rôles respectifs du vide, du verre et du mercure.

 

Le vide ? Hauksbee emplit partiellement de mercure un ballon dans lequel il fait le vide. L’ensemble reste obscur tant que le liquide reste immobile. Il est donc clair que le vide n’est pas suffisant mais que, par contre, le frottement, provoqué par le mouvement, est indispensable.

 

Frottement sur le mercure ou sur le verre ? A partir de novembre 1705 Hauksbee utilise, pour répondre à cette question, un montage qui fait abstraction du mercure. Il s’agit d’une sphère de verre munie de deux pièces de cuivre diamétralement opposées lui servant d’axe. Cette sphère peut être mise en mouvement rapide en la plaçant sur une machine inspirée d’un tour de menuisier. Mais sa propriété essentielle est d’avoir été conçue pour qu’on puisse y réaliser le vide. Hauksbee a pris la précaution de ménager un robinet dans une des pièces de l’axe qui peut être relié à une pompe à vide.



La machine électrique de Hauksbee. Un robinet permet d’y faire le vide
(Louis Figuier, Les Merveilles de la Science)


La sphère, vidée de son air, est mise en mouvement et frottée par la main de l’expérimentateur. Soudain, dans l’obscurité, la sphère s’emplit d’une forte lueur diffuse. Un mur situé à dix pieds en est éclairé. Un livre tenu à proximité du globe peut être lu. Quand un doigt s’approche de la sphère, la lumière se concentre en filaments qui semblent attirés par ce doigt. La lumière diminue progressivement quand, peu à peu, on laisse entrer l’air dans le tube.

 

Même quand la pression atmosphérique est atteinte, on peut encore arracher quelques lueurs au globe. Elles sont externes cette fois, et se présentent sous la forme nouvelle d’étincelles. Hauksbee hésite encore mais pour Newton, la cause est entendue : La lumière ne provient ni du vide, ni du mercure mais du verre !

 

Nous savons, à présent, que si c’est bien le verre qui est électrisé, la lueur, elle, provient de l’air. Dans le globe "vide", il reste encore du gaz résiduel et celui-ci est "ionisé" sous l’effet du champ électrique créé par la friction du verre. Il devient, par ce fait, lumineux, à l’image du néon dans un tube d’éclairage. Naturellement cette interprétation était impossible à qui n’avait ni la connaissance de la nature de l’air, ni, à plus forte raison, de l’existence et de la constitution des atomes.

 

Cette "phosphorescence électrique" continuera à obséder des générations de physiciens. Son étude amènera aux tubes cathodiques qui, pour quelque temps encore, équipent nos écrans de télévision et d’ordinateurs. La découverte des rayons X, celle des électrons, celle de la radioactivité, seront également au bout de cette aventure que nous évoquerons par la suite.

 

Pour le moment, les démonstrations de Hauksbee, à la fois spectaculaires et inquiétantes quand elles se font dans l’obscurité d’un cabinet, deviennent les expériences vedettes des spectacles de physique.

 

Tube ou globe ?

 

Une chose est sûre : à ceux qui considéraient le verre comme un matériau secondaire et de peu d’effets électriques, et qui continuaient à lui préférer l’ambre, le soufre ou la cire, Hauksbee oppose un démenti convaincant.

 

Le verre s’impose donc, mais sous quelle forme ? Hauksbee lui-même pour ses démonstrations classiques renonce à ses sphères et n’utilise qu’un tube de flint-glass, ce verre au plomb utilisé pour l’optique et dont les Anglais sont les spécialistes. Avec un tube long de un mètre et de trois centimètres de diamètre, il attire de fines feuilles de cuivre à plusieurs dizaines de centimètres de distance. Ces feuilles de cuivre, ou mieux : d’or, plus sensibles que des morceaux de ficelles ou de papier, deviendront le matériau classique des laboratoires d’électricité. Pour les mettre en mouvement, un tube de verre est largement suffisant.

 

Le globe, monté sur un tour, sera oublié pendant trente ans jusqu’au moment où, vers 1733, un physicien allemand, Bose, en reprenne l’idée.

 

Bose (1710-1761)

 

Georg Matthias Bose, né à Leipzig, s’intéresse aux nouveautés de la physique et des mathématiques tout en poursuivant ses études de médecine. En 1738 il est nommé sur une chaire de "philosophie naturelle" à l’université de Wittenberg. De ce poste, il établit des relations suivies avec tout ce que l’Europe compte comme personnes de renom, aussi bien scientifiques que hommes de lettres, de religion ou de politique. L’aspect magique de l’électricité le séduit. Quand ses lectures l’amènent à rencontrer les expériences électriques de Gray et Dufay (deux personnages de première importance dont nous reparlerons), et en particulier celles sur les conducteurs et les isolants ; quand, de plus, il retrouve la description du globe de Hauksbee, il sait qu’il a trouvé, à la fois, sa vocation et son public.

 

Il complète d’abord le dispositif de Hauksbee par un montage qui deviendra le standard de tous les laboratoires européens. Un tube de fer, qui prend parfois la forme d’un canon de fusil, est suspendu horizontalement à deux cordons de soie. Il effleure, sans pourtant le toucher, le globe de verre frotté. Ce "premier conducteur" servira ensuite à distribuer le "fluide électrique", par l’intermédiaire de chaînes ou de conducteurs divers vers les dispositifs expérimentaux qui l’entourent.

 

Bose organise alors des "fêtes électriques" qui ne se limitent pas à son public d’étudiants. Imaginez un repas où vous avez convié tous les notables les plus en vue dans votre ville. Les pieds de la table ont été isolés par des galettes de cire de même que la chaise que vous vous êtes réservée. De la machine électrique que vous avez actionnée et que vous avez dissimulée, un fil conducteur est amené jusqu’à proximité de votre main. Au moment où vos convives voudront saisir leur fourchette, il vous suffira d’établir le contact avec la table pour qu’un choc électrique vienne les faire bondir sur leur chaise. Au dessert vous mettrez le feu à une coupe de liqueur alcoolisée simplement par l’approche de l’un de vos doigts d’où seuls les plus proches spectateurs auront vu sortir une étincelle. Vos invités seront alors tout disposés à vous suivre dans le cabinet de curiosités où vous les transporterez dans un univers à la fois merveilleux et terrifiant.

 

Merveilleux ! Des galettes de cire épaisse sont disposées sur le sol. Chaque participant monte sur l’une d’entre elles et tend la main à ses voisins, formant ainsi une chaîne dont le premier maillon tient fermement le canon de fusil suspendu au-dessus du globe de la machine. Quand le globe est mis en mouvement, la personne située à l’autre extrémité de la chaîne tend la main au-dessus de feuilles d’or placées sur une coupelle. Chacun voit alors les feuilles s’élever d’un vol léger, comme attirées par une volonté magique, vers la main ouverte de l’expérimentateur. Eteignons les bougies qui éclairent ce salon aux volets fermés et tendons le doigt vers le conducteur de la machine, nous en verrons jaillir de lumineuses étincelles. Sous forme d’apothéose on pourra proposer la démonstration de la "béatification électrique". La plus aimable personne de l’assemblée est conviée à monter sur un gâteau de cire et à saisir le conducteur. Quand la machine est vigoureusement actionnée ses cheveux se déploient en une auréole qui s’éclaire, dans l’obscurité, des milles lueurs de la sainteté.

 

Terrifiant ! L’homme qui a le courage de faire couler quelques gouttes de son sang les voit scintiller comme des perles de feu dans l’obscurité au moment où il se saisit du conducteur. Les doigts tendus d’une personne reliée à la machine peuvent tuer les pauvres mouches vers lesquelles on dirigera l’étincelle. Ne pourra-t-on demain faire de plus conséquentes victimes ? De telles manipulations auraient certainement valu le bûcher à leurs auteurs aux temps, encore proches, de l’Inquisition !

 

Terrifiant et traître ! Aussi belle soit la jeune personne auréolée par le contact de la machine, il ne faudra pas s’aviser de vouloir en approcher les lèvres pour un baiser. La "Vénus électrisée" défendra sa vertu par une sérieuse secousse électrique.


Electricité de salon
(Louis Figuier, Les merveilles de la science)


Les nouvelles de ces merveilles parviennent en France et en particulier à l’abbé Nollet qui est alors le plus en vue des électriciens européens. Il avoue n’avoir pu dormir avant d’avoir lui-même construit et perfectionné une machine qui devient alors un meuble volumineux.

 

L’abbé Nollet (1700-1770)

 

 

Le globe, de un pied de diamètre, utilisé par Nollet, est en verre épais. La roue qui l’entraîne au moyen d’une courroie passant par une poulie fixée sur son axe, doit avoir au moins quatre pieds de diamètre et être munie d’une manivelle qui permette à deux hommes de l’actionner. Nollet préfère frotter le globe à la main mais de nombreux physiciens européens ont choisi de lui adjoindre un coussin de cuir.


La Machine électrique de l’Abbé Nollet (1747)
(Louis Figuier, Les Merveilles de la Science)


Les machines à plateau.

 

Cette volumineuse machine équipera la plupart des cabinets de physique jusqu’à ce que l’Anglais Ramsden (1735-1800) construise la première machine à plateau en 1768. La machine à plateau se perfectionne rapidement et deviendra vraiment efficace quand apparaîtront les premières machines " à influence électrique ", c’est à dire ne nécessitant aucun frottement. La célèbre machine inventée par l’Anglais Wimshurst en 1883, équipe encore les laboratoires de nos lycées.

 

La machine de Van Marum construite en 1784 est encore une attraction remarquée au pavillon des Pays-Bas de l’Exposition Internationale d’électricité de Paris en1881. (La Nature, 1881)


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

JPEG

 

Commentaire du Bulletin de l’Union des Physiciens :

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, bref plaisant au possible.

la suite

Partager cet article
Repost0
7 août 2014 4 07 /08 /août /2014 12:38

Émanation, fluide, particule, onde… quelle est l’identité de cette chose insaisissable mais bien présente dont la quête remonte à vingt-cinq siècles et dont la réalité nous échappe dès qu’on pense l’avoir cernée ?

 

 

 

Au fil d’un récit imagé – celui d’une succession de phénomènes généralement discrets qui, sous le regard d’observateurs avertis, débouchèrent sur des applications spectaculaires – nous croiserons des dizaines de savants, d’inventeurs et de chercheurs dont les noms nous sont déjà familiers : d’Ampère à Watt et de Thalès de Milet à Pierre et Marie Curie, ce sont aussi Volta et Hertz, Ohm et Joule, Franklin et Bell, Galvani et Siemens ou Edison et Marconi qui, entre autres, viennent peupler cette aventure.

 

On y verra l’ambre conduire au paratonnerre, les contractions d’une cuisse de grenouille déboucher sur la pile électrique, l’action d’un courant sur une boussole annoncer : le téléphone, les ondes hertziennes et les moteurs électriques, ou encore la lumière emplissant un tube à vide produire le rayonnement cathodique. Bien entendu, les rayons X et la radioactivité sont aussi de la partie.

 

De découvertes heureuses en expériences dramatiques, l’électricité reste une force naturelle qui n’a pas fini de susciter des recherches et de soulever des passions.


 

Table des matières

 

 

_____

 

Quand est née l’électricité ?

L’ambre.

Une matière attirante.

Le long sommeil du succin.

William Gilbert, le premier électricien.

La naissance de l’électricité.

L’électricité est une propriété générale de la matière.

Les premières machines électriques.

Otto de Guericke (1602-1686).

Francis Hauksbee (? – 1713).

Tube ou globe ?

Georg Matthias Bose (1710-1761).

L’abbé Nollet (1700-1770).

Les machines à plateau.

Gray, Dufay, Franklin et la conduction électrique.

Stephen Gray (1666-1736).

Tardives et fabuleuses découvertes.

Dufay : premier classement.

Corps électriques et non-électriques, quelle différence ?

Benjamin Franklin : le vocabulaire.

 

De Dufay à Ampère : des deux espèces d’électricité aux deux sens du courant électrique.

Dufay (1698-1739) et la répulsion électrique.

Un discours de la méthode.

La répulsion rejoint l’attraction.

La loi de Dufay.

Benjamin Franklin (1706-1790) : un vocabulaire neuf pour un fluide unique.

Entre Dufay et Franklin : les bas de soie de Robert Symmer.

Des charges jusqu’aux courants électriques.

De la pile Volta au bonhomme d’Ampère.

Oersted : la pile et la boussole.

Ampère et le sens conventionnel.

Le retour de Franklin.

Une situation bloquée.

 

La bouteille de Leyde : la puissance cachée de l’électricité.

De terribles nouvelles venues de Leyde

Ce premier condensateur électrique, comment fonctionne-t-il ?

Une bouteille miracle.

 

A la conquête du feu céleste : le paratonnerre.

La longue histoire du tonnerre.

Un coup de tonnerre dans le ciel parisien.

Coulomb et le temps de la mesure.

La loi de Coulomb

De Galvani à Volta : la découverte de la pile électrique.

Galvani et les grenouilles.

Volta et la pile électrique.

Electricité et chimie.

Humphry Davy (1778-1829).

Une course aux nouveaux éléments.

L’autre pierre magique : l’aimant.

L’héritage chinois.

Pierre de Maricourt (XIIIe siècle).

William Gilbert.

Coulomb et la mesure.

Oersted, Ampère et la naissance de l’électromagnétisme,
ou quand l’ambre retrouve l’aimant.

Hans Christian Oersted (1777-1851).

Ampère (1775-1836).

Un montage ingénieux.

La Terre est un électroaimant.

Du cadre mobile au solénoïde.

Du solénoïde à l’aimant droit.

Faraday et les champs.

 

Michael Faraday (1791-1867).

Du moteur à la génératrice.

Lignes de force et champs.

La loi de Faraday.

Maxwell (1831-1879), la mise en équations.

 

Maxwell et les ondes : au rendez-vous de la lumière et de l’électricité.

L’éther lumineux.

L’éther électromagnétique et la nature de la lumière.

Etablir les équations de propagation d’une perturbation électromagnétique.

Construire un système cohérent d’unités électriques.

 

Hertz et la réalité des ondes électromagnétiques.

A la conquête des hautes tensions : la bobine de Ruhmkorff.

Vers la découverte des ondes hertziennes.

L’éther existe donc ? L’expérience de Michelson et Morley.

Branly, Marconi etb le début de la radiophonie.

Le temps des ingénieurs : l’Exposition internationale d’électricité de 1881.

L’époque des génératrices électriques.

L’exposition internationale d’électricité à Paris.

La lumière électrique.

Les nouvelles génératrices.

La force motrice de l’électricité.

Après l’exposition de 1881.

Le côté sombre de la force électrique.

Quel futur pour l’électricité ?

Les unités électriques, ou quand les électriciens font naître un langage universel.

Le système métrique décimal.

Naissance des unités électriques.

Avant 1881 : des systèmes nationaux différents.

1881 : premier congrès international des électriciens et preemier système international.

Un succès remarqué.

Les suites du congrès de 1881 : le joule, le watt…

Des mécaniciens dépassés.

Vers le système MKSA.

Une étrange lumière : le rayonnement cathodique.

William Crookes et la matière radiante.

Röntgen et les rayons X.

Röntgen et la découverte

L’épopée des rayons X.

Les rayons X, le dernier cri de la mode.

Le revers de la médaille.

Un monument à la mémoire des victimes des radiations.

Un nouveau rayonnement : le rayonnement radioactif.

Henri Becquerel : la découverte du rayonnement radioactif.

Marie Curie et les premières hypothèses.

Le polonium.

Le radium.

Vie et mort de l’électron.

Thomson et la découverte de l’électron.

L’électron et l’atome, de Thomson à Rutherford.

Planck, Einstein et la naissance du photon.

L’atome de Bohr.

Louis de Broglie et la nature ondulatoire de l’électron.

Quand l’incertitude devient un principe.

Et l’électricité, l’électron, la charge électrique dans tout cela ?

Histoire à suivre.

Pas de science sans son histoire.

Ce n’est qu’un début, l’histoire continue.

Bibliographie. Index des noms ; Index des matières. Les dates de l’électricité.
Partager cet article
Repost0
4 août 2014 1 04 /08 /août /2014 16:58

 

1890, deux ans après l'exposition de 1889 à Paris qui donne une large place à l'électricité, Albert Robida publie "Le vingtième siècle, la vie électrique".

Albert Robida (1848-1926)

Dans cette anticipation il propose des inventions intégrées à la vie courante et où il imagine les développements sociaux qui découlent de ses inventions : promotion sociale des femmes (qu'il voit électrices/éligibles, portant le pantalon, fumant, médecins, notaires ou avocates), tourisme de masse, pollution etc. Il inventera ainsi le téléphonoscope, un écran plat mural qui diffuse les dernières informations à toute heure du jour et de la nuit, les dernières pièces de théâtre, des cours et des téléconférences.

 

voir : L'Association des amis d'Albert Robida

 

 

" L'Électricité, c'est la Grande Esclave. Respiration de l'univers, fluide courant à travers les veines de la Terre, ou errant dans les espaces en fulgurants zigzags rayant les immensités de l'éther, l'Électricité a été saisie, enchaînée et domptée.

 

C'est elle maintenant qui fait ce que lui ordonne l'homme, naguère terrifié devant les manifestations de sa puissance incompréhensible; c'est elle qui va, humble et soumise, où il lui commande d'aller; c'est elle qui travaille et qui peine pour lui." (Robida)

 

 

Robida imagine également une région protégée du "progrès" : la Bretagne.

 

 

"Les vagues de l'Océan battent doucement en caresse le sable étincelant et doré d'une crique étroite, bordée de belles roches, escarpées par endroits, sur lesquelles se mamelonnent des masses de verdures suspendues parfois jusqu'au-dessus des flots. Il fait beau, tout sourit aujourd'hui, le soleil brille, le murmure du flot, comme une douce et lente chanson, s'élève parmi les roches où l'écume floconne.

 

Au fond de la crique, près de quelques barques hissées sur la grève, se voient quelques vieilles maisons de pêcheurs, couvertes d'un chaume roux, par-dessus lesquelles, au sommet de l'escarpement rocheux, trois ou quatre menhirs, fantômes des temps lointains, dressent dans le ciel leurs têtes grises et moussues. Au loin, sur le bord d'une petite rivière capricieuse et cascadante, un gros bourg cache à demi ses maisons sous les ombrages des chênes, des aulnes et des châtaigniers que perce une belle flèche d'église, élancée et ajourée. Un calme profond règne sur la région tout entière; d'un bout de l'horizon à l'autre, aussi loin que l'œil peut voir par-dessus les lignes de collines bleuâtres où surgissent aussi d'autres clochers çà et là, nulle trace d'usines ou d'établissements industriels, gâtant tous les coins de nature, polluant de leurs déjections infâmes les eaux des rivières, salissant tout au loin, en haut comme en bas, et jusqu'aux nuages du ciel; pas de tubes coupant le paysage d'une ligne ennuyeuse et rigide, point de ces hauts bâtiments indiquant des secteurs d'électricité, point d'embarcadères aériens, et pas la moindre circulation d'aéronefs dans l'azur.

 

Où sommes-nous donc? Avons-nous reculé de cent cinquante ans en arrière, ou sommes-nous dans une partie du monde si lointaine et si oubliée que le progrès n'y a pas encore pénétré?

 

Non pas! Nous sommes en France, sur la mer de Bretagne, dans un coin détaché des anciens départements du Morbihan et du Finistère, formant, sous le nom de Parc national d'Armorique, un territoire soumis à un régime particulier.

 

 

 

Voir la suite sur gutenberg.org

 

On peut également trouver l'original de ce livre sur Gallica.

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens