Overblog
Suivre ce blog Administration + Créer mon blog
18 avril 2025 5 18 /04 /avril /2025 20:31

Notre époque charge le dioxyde de carbone, le CO2 d'une lourde malédiction. C'est l'ennemi numéro un de notre environnement, le coupable, clairement désigné, de "crime climatique".

 

Qui peut encore le nier après les rapports successifs du GIEC ? Et qui peut refuser de voir que la dangereuse augmentation du CO2 dans l'atmosphère est le résultat de l'emballement d'un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d'années et les disperse sous forme d'objets inutiles et de polluants multiples.

 

Rappelons que, il y a à peine plus de deux siècles, le dioxyde de carbone ne faisait pas partie de la liste des corps nommés par les chimistes. Les mots mêmes de gaz, de carbone et d'oxygène ne faisaient pas partie de leur vocabulaire.

 

La brève histoire que nous allons conter ici est celle de la prise de conscience de l'existence de ce gaz qui, fatal ou vital, est au centre des débats ne nos sociétés en ce début de 21ème siècle.

 

XXXXXXXX

 

Le premier personnage que nous allons rencontrer est un médecin adepte des procédés alchimiques.

Jean-Baptiste Van Helmont et le gas silvestre.

 

 

Jean-Baptiste Van-Helmont (1579-1644) est né à Bruxelles, alors ville des Pays-Bas espagnols. Après des études de philosophie à l’université du duché de Brabant, il étudie l’astronomie, l’algèbre, la géométrie. Il se tourne ensuite vers la médecine dont il obtient le diplôme en 1599. Rejetant les enseignements de Hippocrate et de Galien, il s’inspire de la médecine pratiquée par Paracelse (1493-1541) et les alchimistes faisant intervenir des remèdes essentiellement issus du monde minéral.

 

Van-Helmont se singularise, également, par son une opposition à la théorie des quatre éléments de Platon et Aristote qui est encore, à cette époque, à la base de toute réflexion sur la matière.(voir : Les œuvres de Jean-Baptiste Van Helmont)

 

"Les Anciens, dit-il, ont établi les quatre éléments pour fondement de la nature, & attribuent toutes leurs opérations aux qualités et aux complexions qui résultent de leur mélange.

 

 

Comme cette doctrine a été nourrie et continuée dans les écoles de siècle en siècle, 

pour l’enseignement de la jeunesse au préjudice des mortels, aussi faut-il tâcher d’en réprimer l’abus afin qu’on puisse dorénavant reconnaître les erreurs qui se sont glissées par-là envers la cause des maladies."

 

Pour Van Helmont, ce ne sont pas quatre mais un seul élément qui génère l’ensemble des corps. Tous, animaux, végétaux et minéraux sont faits uniquement d’eau !

 

Tous les corps, dit-il, qu’on a cru être mixte, "de quelque nature qu’ils puissent être, opaques ou transparents, solides ou liquides, semblables ou dissemblables (comme pierre, soufre, métal, miel, cire, huile, cerveau, cartilages, bois, écorce, feuilles, etc.) sont matériellement composés de l’eau simple et peuvent être totalement réduits en eau insipide sans qu’il y reste la moindre chose du monde de terrestre".

 

Il ne se contente pas de l’affirmer, le prouve ! Et ceci en faisant appel à l’expérience, ainsi que le note son traducteur. Celle-ci concerne la croissance des végétaux.

 

"Il prit un grand vase de terre, auquel il mit 200 livres de terre desséchée au four qu’il humecta avec de l’eau de pluie. Puis il y planta un tronc de saule qui pesait cinq livres. Cinq années après le saule, qui avait cru en ladite terre, fut arraché et se trouva pesant de 169 livres et environ 3 onces de plus.

Le vaisseau était fort ample, enfoncé en terre, et couvert d’une lame de fer blanc étamé percé, en forme de crible, de force petits trous afin qu’il n’y ait que l’eau de pluie ou l’eau distillée seule (de laquelle la terre du vaisseau était arrosée lorsqu’il en faisait besoin) qui y puisse découler. Les feuilles ne furent point pesées parce que c’était en automne quand les feuilles tombent que l’arbre fut arraché.

 

Il fit derechef ressécher la terre du vase et la terre ne se trouva diminuée que d’environ deux onces qui s’étaient pu perdre en vidant ou emplissant le vaisseau. Donc il y avait 164 livres de bois, d’écorce et de racines qui étaient venues de l’eau."

 

De même dit-il "La terre, la fange, la boue, & tout autre corps tangible tirent leur véritable matière de l’eau et retournent en eau tant naturellement que par art".


L’expérience de Van Helmont dans une représentation contemporaine.


 

Van Helmont observe, cependant, que tous les corps ne se transforment pas immédiatement en eau. L’exemple le plus remarquable est celui du charbon dont il affirme que, pendant sa combustion, il libère un " esprit sauvage nommé gas ". Cet esprit constituerait d’ailleurs l’essentiel du charbon, car, dit-il "soixante deux livres de charbons consumés ne laissent guère plus d’une livre de cendres. Donc les soixante livres de surplus ne seront qu’esprit".

 

Ce "gas silvestre", cet esprit sauvage, Van Helmont le retrouve dans une multitude d’observations. Il se dégage dans les fermentations du vin, de l’hydromel, du pain qui lève. Il s’échappe de la poudre à canon qui s’enflamme. Hélas ce "gas" fait une entrée peu chaleureuse dans l’univers chimique. C’est à lui que Van Helmont attribue, avec justesse, les effets funestes de la grotte du chien dans la région de Naples, les suffocations des ouvriers dans les mines ou des vignerons dans les celliers où le vin fermente.


La grotte du chien près de Naples.


 

Lavoisier, qui a noté l’intérêt des œuvres de Van-Helmont, relève que le mot "gas" vient du mot hollandais ghoast qui signifie esprit. Il ajoute que les Anglais "expriment la même idée par le mot ghost et les Allemands par le mot geist". Quant à lui, dans le premier chapitre de son Traité élémentaire de chimie publié en 1789 il expose sa conception des trois états de la matière : "presque tous les corps de la Nature sont susceptibles d’exister sous trois états différents ; dans l’état de solidité, dans l’état de liquidité et dans l’état aériforme […] Je désignerai dorénavant ces fluides aériformes sous le nom générique de gaz". (voir)

 

Nous avons compris que le "gas silvestre" de Van-Helmont, qui provoque l’asphyxie des vignerons imprudents, est notre CO2 , il faudra pourtant bien des étapes avant de comprendre son rôle dans le cycle du vivant. La première étape passe par le Britannique Stephen Hales.


XXXXXXXXXXXXXXXXXXXXXX


Stephen Hales (1677-1761).

Quand l’air se transforme en pierre !

 


Connu comme chimiste et physiologiste, Stephen Hales communique en 1727, à la Société Royale de Londres, le résultat de ses expériences sur la physiologie des végétaux. Ces travaux initient une nouvelle façon de produire et de recueillir ce que nous désignons aujourd’hui par le mot "gaz".

 

Buffon qui a lu sa communication trouve indispensable de la traduire. Elle paraît en 1735 sous le titre : "La statique des végétaux et l’analyse de l’air".

 

Le traducteur est enthousiaste. "L’Angleterre produit rarement d’aussi bonnes choses", écrit-il. "La nouveauté des découvertes et de la plupart des idées qui composent cet ouvrage, surprendra sans doute les Physiciens. Je ne connais rien de mieux dans son genre, et le genre par lui-même est excellent". Il note en particulier le passage sur l’air qui est "le plus bel endroit de son livre" :

 

"Aurait-on imaginé, écrit-il, que l’air pût devenir un corps solide ? Aurait-on crû qu’on pouvait lui ôter et lui rendre sa vertu de ressort ? Aurions nous pu penser que certains corps, comme la Pierre de la Vessie ou le Tartre sont pour plus des deux tiers de l’air solide et métamorphosé ? "

JPEG - 50 ko

 

On peut comprendre cet enthousiasme. La théorie des quatre éléments avait instauré des barrières rigides entre principe solide (terre), liquide (eau), et gazeux (air). Comment imaginer qu’un corps aussi volatil que l’air puisse se transformer en bois, en os et même en pierre !

 

C’est pourtant bien ce qu’affirme Hales dans son étude sur la physiologie des végétaux. Il y montre que ceux-ci absorbent beaucoup "d’air"

"non-seulement par la racine, mais aussi par le tronc & les branches" pendant leur croissance.

 

Nous savons aujourd’hui que cet "air", devenu matière solide dans les plantes, est le "gas sylvestre" de Van Helmont, notre actuel dioxyde de carbone (CO2). Pour Hales et ses contemporains il ne pouvait s’agir que "d’air solidifié".

 

Le sixième chapitre de son livre contient l’essentiel de ses expériences :

 

"l’on y verra, dit-il, que tous les corps contiennent une grande quantité d’air ; que cet air est souvent dans ces corps sous une forme différente de celle que nous connaissons ; c’est-à-dire dans un état de fixité où il attire aussi puissamment qu’il repousse dans son état ordinaire d’élasticité"

 

Cet air "fixé" dans les plantes peut en être chassé :" l’on verra, ajoute Hales, que ces particules d’air fixe qui s’attirent mutuellement sont […] souvent chassées des corps denses par la chaleur ou la fermentation, & transformées en d’autres particules d’air élastique ou repoussant [.] C’est par cette propriété amphibie (souligné dans le texte) de l’air, que se font les principales opérations de la nature".


 

Montage de Stephen Hales pour recueillir les "airs" fixés dans les plantes et autres corps denses.


 

Noter l’apparition de ces deux types d’air, "l’air fixe", ou air fixé dans les corps organiques et végétaux (bientôt le nom sera réservé au seul dioxyde de carbone) et l’air élastique dont on connaît les lois de compressibilité depuis Boyle et Mariotte.

 

Hales, considérant ces cycles de décompositions et de recombinaisons, invite ses contemporains à considérer l’air comme un véritable réactif chimique :

 

"Puisque l’air se trouve en si grande abondance dans presque tous les corps ; puisque c’est un principe si actif et si opératif ; puisque ses parties constituantes sont d’une nature si durable, que l’action la plus violente du feu ou de la fermentation, n’est pas capable de les altérer jusqu’à leur ôter la faculté de reprendre par le feu ou la fermentation, leur élasticité, … ne pouvons nous pas adopter ce protée (souligné dans le texte), tantôt fixe, tantôt volatil, & le compter parmi les principes chimiques, en lui donnant le rang que les Chymistes lui ont refusé jusqu’à présent, d’un principe très actif".

 

"Je souhaite, ajoute-t-il, que cet essai puisse engager d’autres personnes à travailler dans le même goût ; le champ est vaste, il faut pour le défricher plusieurs têtes et plusieurs mains" .

 

Message reçu par ses compatriotes qui construiront, étape par étape, non pas une chimie "de l’air" mais une chimie "des airs". Au premier rang de ceux-ci Joseph Black.


XXXXXXXXXXXXXXXXXXXXXX

 


Joseph Black (1728-1799) et l’air fixe.

 

 


Joseph Black est l’élève de William Cullen, médecin et professeur écossais. Celui-ci dispose d’un laboratoire bien équipé, en particulier pour les mesures des masses et des volumes gazeux.

 

A la demande de son professeur, il s’attache en premier lieu à étudier, de façon quantitative, la calcination de la craie et sa transformation en chaux vive. Il constate que cette opération s’accompagne d’une perte de poids de la chaux obtenue.

 

Dans le même temps un gaz se dégage auquel il donne le nom, déjà utilisé par Hales, d’air fixe car "fixé" dans la craie.

 

"Je lui ai donné le nom d’air fixe, dit-il, et peut-être très improprement, mais j’ai pensé préférable d’utiliser un nom familier en philosophie, que d’inventer un nouveau nom avant que nous soyons mieux informés de la nature et des propriétés de cette substance, ce qui sera probablement le sujet de mes prochaines recherches."

(J.Black,“Expériences sur la magnésie blanche, la chaux vive, et sur d’autres substances alkalines" p.210).

 

Experiments upon magnesia alba, quick-lime, and other alcaline substances, p70


 

Four à chaux (encyclopédie)


 

Son choix de conserver ce nom d’air fixe, "familier en philosophie", sera approuvé par ses contemporains qui, jusqu’à Lavoisier, continueront à qualifier "d’air fixe" le gaz que nous désignons aujourd’hui comme dioxyde de carbone (CO2 ).

 

Cette réaction de calcination peut se traduire par les équations :

 

Craie → Chaux vive + Air fixe

 

carbonate de calcium → Oxyde de Calcium + dioxyde de Carbone

 

CaCO3 → CaO + CO2

 

Ainsi la craie (pour nous du carbonate de calcium CaCO3) résulterait de la combinaison de la chaux vive (oxyde de calcium CaO) et de l’air fixe (CO2). Sa calcination aurait pour effet de libérer cet "air fixe" en le séparant de la chaux.

 

Notons que le sens initial du mot calciner est : transformer en chaux.

 

Une autre expérience vient confirmer cette vue.

 

Black et ses compatriotes savent que la chaux vive est très avide d’eau avec laquelle elle réagit avec un fort dégagement de chaleur pour donner de la "chaux éteinte", notre hydroxyde de calcium Ca(OH)2

 

Précipitation du calcaire :

 

Chaux dissoute + air fixe → Calcaire

 

L’expérience est d’ailleurs devenue classique : en soufflant au moyen d’une pipette dans un verre d’eau de chaux incolore, on observe qu’elle se trouble et qu’un précipité blanc de calcaire insoluble se dépose au fond du récipient sous l’action du gaz carbonique contenu dans l’air expiré. Ce nouveau calcaire pourrait, à son tour, être calciné et redonner de la chaux et de l’air fixe.

 

Cet air fixe (notre CO2), facilement caractérisable par sa réaction avec l’eau de chaux, Black l’observe aussi dans l’action d’un acide sur la craie et également dans un grand nombre d’autres opérations. Par exemple, comme Van Helmont, dans la combustion du charbon ou dans les fermentations.

 

Ainsi se précisent les contours de cet être nouveau, l’air fixe, aux propriétés très différentes de celles du classique air atmosphérique. Notons qu’il est caractérisé, au premier abord, par le fait qu’il n’autorise ni les combustions ni la vie animale. Encore désigné sous le nom d’air méphitique, il commence mal sa nouvelle vie dans l’univers des corps chimiques.

 

C’est, cependant, un nouveau "principe" dont il convient d’étudier l’ensemble des propriétés chimiques. Dans cette tâche Black sera relayé par plusieurs de ses compatriotes.


XXXXXXXXXXXXXXXX

 


Henry Cavendish (1731-1810).

 

 


Deuxième fils du Duc de Devonshire, Henry Cavendish, reçoit, de son oncle, un riche héritage qui lui permet de constituer un laboratoire bien équipé qu’il utilise avec une rigueur peu commune parmi ses contemporains.

 

En 1766, il présente devant l’Association Royale de Londres une communication sur les airs factices. Son exposé traite de l’air fixe tel que le définit Black, à savoir : "cette espèce particulière d’air factice qui est extrait des substances alcalines par dissolution dans les acides ou par calcination" (Philosophical Transactions, 1766, p141).


matériel de laboratoire de Cavendish.


 

Si la description de l’air inflammable (notre hydrogène) constitue, par sa nouveauté, la partie la plus remarquable du travail de Cavendish, nous retiendrons qu’il multiplie également les expériences sur l’air fixe. Il l’obtient par l’action de l’esprit de sel (l’acide chlorhydrique) sur le marbre.

 

Il en étudie d’abord la solubilité dans l’eau. Elle est importante. Cette observation sera retenue quand il faudra, ensuite, expliquer la richesse de la vie aquatique. Il constate aussi, entre autres observations, que l’air fixe se dissout plus facilement dans l’eau froide. Une observation qui nous concerne dans cette époque présente où l’augmentation de la température des océans limite leur rôle de "pièges à carbone".

 

En utilisant une vessie animale, Cavendish mesure la densité de l’air fixe. Ayant constaté que l’air ordinaire est 800 fois moins dense que l’eau, il trouve que l’air fixe ne l’est que 511 fois moins. Il en déduit que l’air fixe a une densité de 1,56 par rapport à l’air ordinaire (à comparer à la valeur de 1,52 actuellement admise).

 

Le résultat mérite d’être noté, l’air fixe, plus dense que l’air se concentre donc dans les parties basses des enceintes où il est produit. Ceci explique l’asphyxie des ouvriers dans les fosses d’aisance ou des vignerons dans les cuves mal aérées, ou encore celle des animaux dans les grottes désignées comme "grotte du chien" : c’est au raz du sol que le gaz "méphitique" menace. Cette donnée intéresse également les expérimentateurs qui savent qu’ils peuvent conserver l’air fixe dans un flacon ouvert dont l’ouverture est dirigée vers le haut, disposition commode pour leurs expériences.

 

Toujours attaché à mesurer, Cavendish cherche à déterminer la quantité d’air fixe contenue dans le marbre. Le fort pourcentage de CO2 trouvé (40,7% de la masse) est proche de la valeur admise aujourd’hui. Le marbre et la craie, décomposés par un acide, deviendront ainsi l’une des sources essentielles de la production d’air fixe.


XXXXXXXXXXXXXXXXXXXXXXXXXXX


Joseph Priestley (1733-1804).

Air fixe et air phlogistiqué.

 


 

Joseph Priestley, théologien, philosophe, homme politique britannique est aussi physicien, auteur d’une remarquable "Histoire de l’électricité".

 

Il est également connu pour ses travaux en chimie et la place importante qu’il occupe dans la "chasse aux airs". En mars 1772 il présente devant l’Académie Royale de Londres ses Observations sur différentes espèces d’air.


 


Habitant à proximité d’une brasserie, il multiplie d’abord les expériences sur l’air fixe, le gaz carbonique, qui se dégage de la fermentation du malt. Constatant sa capacité à se dissoudre dans l’eau il met au point des méthodes de préparation d’eaux gazeuses qui, dit-il, peuvent rivaliser avec "l’eau naturelle de Pyrmont" qui est une eau minérale, importée d’Allemagne, très en vogue à cette époque. On pourra juger de cette popularité à la lecture d’un article publié dans la Revue médicale des grands hôpitaux de Paris en 1829 :

 

"On compte peu de bains en Europe qui aient obtenu autant de vogue et de célébrité. Il nous suffira de dire qu’en 1556 cette célébrité devint telle, qu’en moins d’un mois on fut obligé de dresser un camp pour recevoir plus de dix mille personnes, qui s’y rendirent de l’Allemagne, de l’Angleterre, de la France, du Danemark, de la Norvège, de la Suède, de l’Italie, de la Russie, de la Pologne ; et enfin cet établissement était si réputé par les vertus de ses eaux, de ses fêtes, ses bals, ses spectacles, etc., qu’avant la révolution une demoiselle de condition se réservait, presque toujours dans son contrat de mariage, d’être conduite, au moins une fois, aux bains de Pyrmont".

 

Pourquoi ne pas imaginer, comme le fait Priestley, qu’une "eau de Pyrmont" à bon marché, préparée à base de craie et d’acide sulfurique, pourrait avoir, elle-même, un avenir commercial ? C’est un industriel allemand, Johann Jacob Schweepe (1740-1821), qui en fera le pari et déposera, en 1783, un brevet pour une boisson médicinale utilisant le procédé de gazéification de Priestley et qui créera, à Londres, la fabrique d’une eau gazeuse diffusée plus tard sous la marque Schweepes. Pendant ce temps, une observation d’une tout autre portée va mobiliser Priestley.


 

Cuve d’une brasserie (encyclopédie)


Les plantes ne fonctionnent pas comme les animaux !

 

Il est connu que quand on enferme une bougie dans une enceinte pleine d’air, celle-ci fini par s’éteindre. De même un animal y meurt rapidement. Mais que se passe-t-il quand on y met une plante ? Va-t-elle dépérir à son tour ?

 

"On pourrait imaginer, écrit Priestley, que comme l’air commun est autant nécessaire à la vie végétale qu’à la vie animale, les plantes comme les animaux devraient être affectés de la même manière. J’avais moi-même cette intuition quand je mis pour la première fois un plan de menthe dans un flacon de verre renversé sur une cuve à eau. Mais quand il a continué à y pousser pendant quelques mois, je trouvai que l’air du flacon n’éteignait pas une chandelle et qu’il n’avait aucun effet négatif sur une souris que j’y avais mise."

 

Priestley mesure l’importance de l’observation.

 

"Je me flatte, écrit-il, d’avoir découvert accidentellement une méthode pour restaurer l’air qui a été pollué par la combustion des chandelles et d’avoir découvert un des remèdes que la nature emploie dans ce but. C’est la végétation.

 

Par quel procédé la nature agit-elle pour produire un effet aussi remarquable, je ne prétends pas l’avoir découvert, mais nombre de faits se déclarent en faveur de cette hypothèse".

 

Priestley s’emploie alors à multiplier les observations sur la croissance des plantes dans l’air confiné d’une enceinte de verre. Ayant constaté qu’une chandelle pouvait brûler dans l’air où avait poussé une plante, il imagine qu’une plante pourrait même rendre sa qualité à l’air où avait déjà brûlé une bougie.

 

Priestley note que l’expérience qu’il réalise pour répondre à cette question débute le 17 août 1771. Il place un plan de menthe dans une enceinte où une chandelle a brûlé jusqu’à s’éteindre et trouve que le 27 du même mois une autre chandelle qu’on y place y brûle parfaitement.

 

D’autres plants que ceux de menthe sont testés. Constat ? Ce n’est pas l’émanation odorante de la menthe qui purifie l’air, la preuve : les épinards semblent même être bien plus efficaces.

 

Ces premiers résultats sont communiqués à Franklin, avec qui Priestley est en correspondance régulière. Celui-ci en tire argument pour dénoncer la "rage" qui a gagné ses compatriotes et qui consiste à abattre les arbres qui se trouvent autour des habitations sous prétexte que leur voisinage serait malsain. Il est persuadé du contraire car les Américains, dit-il, vivent au milieu des bois et "personne dans le monde ne jouit d’une meilleure santé et n’est plus prolifique". La déforestation… déjà une affaire de santé publique.

 

Dans la même lettre, Franklin émettait l’hypothèse que, dans la réaction de purification de l’air, les plantes agissaient en retirant quelque chose de l’air vicié et non en y ajoutant quelque chose.

 

En retirer quelque chose ? On sait à présent que, effectivement, les plantes absorbent "quelque chose" : le dioxyde de carbone présent dans l’air. Mais pour Priestley et Franklin ce "quelque chose" ne pouvait être que le "phlogistique" libéré par la respiration animale ou par les putréfactions et qui avait pour effet d’empoisonner l’air. La théorie du "phlogistique", ce principe du feu contenu dans les corps combustibles, dominait alors dans l’esprit des chimistes.

 

Priestley et Franklin ne voient pas non-plus le fait le plus important : les plantes ajoutent également "quelque chose", dans l’air où elles poussent. Quelque chose d’essentiel à la vie : l’oxygène.

 

L’air fixe. Poison ou remède ?

 

Revenons sur les "observations sur les différentes espèces d’air", mémoire présenté par Priestley devant la Société Royale des Sciences en 1772.

 

Ayant su voir les propriétés des plantes pour purifier l’air vicié, il décide, à présent, de chercher d’autres procédés pour y parvenir. Disons le tout de suite, cet épisode nous montrera un savant prestigieux se laissant entraîner, par ses convictions, sur des voies hasardeuses.

 

Des souris font les frais de ses multiples essais. Non seulement il observe la façon et le temps qu’elles mettent à mourir dans un air confiné suivant qu’elles sont petites, grosses, jeunes ou vieilles, mais pour obtenir un air réellement putride, il les y laisse se décomposer pendant plusieurs jours après leur mort. Les animaux qu’il y introduit ensuite n’y vivent évidemment pas longtemps.

 

Il teste ensuite différentes façons de traiter l’air vicié renfermé dans l’enceinte et croit constater qu’en y introduisant de l’air fixe (rappelons à nouveau qu’il s’agit du dioxyde de carbone) la putréfaction semble arrêtée et, plus surprenant, Priestley va même jusqu’à considérer que la qualité de l’air s’est améliorée.

 

Très pratique, et persuadé d’avoir fait une nouvelle découverte utile à l’humanité, il en propose une première application à grande échelle : "si l’air fixe tend à corriger l’air qui a été pollué par la putréfaction ou la respiration d’un animal, les fours à chaux, qui libèrent de grandes quantités d’air fixe, seraient sains dans le voisinage des cités populeuses dont l’atmosphère est riche en effluves putrides".

 

Combattre le mal par le mal, neutraliser les effluves putrides des villes par les exhalaisons méphitiques des fours à chaux, voilà une proposition qui aurait manifestement mérité l’application d’un "principe de précaution" !

 

Notons que cette indulgence vis-à-vis du gaz carbonique n’était sans doute pas étrangère au fait que c’est en utilisant ce gaz qu’il avait proposé de fabriquer une "eau de Pyrmont" artificielle, cette eau minérale dont personne ne mettait en doute les propriétés médicinales. Il s’adresse donc aux médecins pour leur proposer des traitements à base d’air fixe.

 

"Je serais amené à penser aussi, dit-il, que les médecins pourraient profiter de l’utilisation de l’air fixe dans plusieurs maladies putrides, dans la mesure où on pourrait facilement l’administrer sous forme de clystère". Rappelons qu’un "clystère" est un "lavement intestinal" et que le traitement consisterait ici à insuffler un gaz au lieu du liquide habituellement administré dans ce genre d’intervention. Mais, prévient Priestley, par ce moyen il n’y aurait pas à craindre de gonflement des intestins dans la mesure où cet air fixe est "immédiatement absorbé par n’importe quel fluide ou quelle substance humide".

 

Il se pourrait aussi, pense-t-il, qu’il puisse être absorbé par les pores de la peau. Sans doute se souvient-il de ses premières observations dans une brasserie, d’où l’idée spectaculaire de suspendre une personne, "excepté la tête" précise-t-il, au-dessus d’une cuve pleine d’un liquide en fermentation. "Si le corps était exposé presque nu, ajoute-t-il, il y aurait peu de danger dû au froid, et l’air, ayant un accès plus libre, produirait un meilleur effet".

 

"N’étant pas médecin, je ne cours aucun risque en lançant cette hasardeuse, et peut-être bizarre, proposition" écrit-il.

 

Hasardeux et bizarre en effet !

 

Pourtant Priestley réussit à convaincre deux médecins, les docteurs Hird et Crowther, de l’opportunité de tenter l’expérience en administrant à leurs patients des lavements à l’air fixe et en leur faisant boire de grandes quantités de liquides fortement imprégnées de ce gaz. Naturellement le compte-rendu de l’un des médecins, publié par Priestley en annexe de son mémoire, annonçait des résultats positifs.

Vraiment bizarre ?

 

Pourtant, tout dans ces observations était-il si hasardeux, si bizarre ? Le traitement proposé à une personne atteinte de maladie putride n’a sans doute pas eu réellement l’efficacité escomptée mais on sait aujourd’hui que les principaux micro-organismes responsables de la putréfaction des tissus animaux sont des bactéries aérobies et que l’une des méthodes préconisées pour le conditionnement des viandes est de faire cette opération sous atmosphère enrichie en gaz carbonique.

 

Notons aussi que la "carboxythérapie", à base de cures "d’eau gazeuse", de bains "carbo gazeux" et même d’injection sous-cutanée de CO2, a été introduite dans l’arsenal de certaines stations thermales.

 

Vous avez dit bizarre ?


Carboxythérapie

hier le clystère

aujourd’hui la seringue


 

Au moins serons nous tentés de considérer avec indulgence les conclusions aventureuses de Priestley en constatant qu’il avait quand même été, dans ce domaine, un bon, et peut-être utile, observateur.

 


JPEG - 54.7 ko

Notons le fascicule édité par Priestley sur la méthode de préparation d’une "eau de Pyrmont".


Notons aussi en France "L’essai sur l’art d’imiter les eaux minérales" de Claude-François Duchanoy (1780).

 

Cité par Louis Figuier, "Les merveilles de l’Industrie, industrie chimique, p416"

Après Van Helmont, Hales, Black, Cavendish et Priestley, nous allons rencontrer le biologiste Suisse Charles Bonnet.

XXXXXXXXXXX

 


Charles Bonnet (1720-1793) et l’alimentation des plantes par leurs feuilles.

 

 


En 1754 il publie ses "Recherches sur l’usage des feuilles dans les plantes".S’inspirant des études de Stephen Hales, il souhaite étudier la nature des échanges dans les feuilles et en particulier la façon dont elles participent à l’absorption de l’eau.

 

Les deux faces d’une feuille sont différentes, "la surface supérieure est ordinairement lisse et lustrée" observe-t-il, "la surface intérieure au contraire est pleine de petites aspérités ou garnies de poils courts", il imagine donc une série d’expériences à partir d’une hypothèse :

 

"Ces différences assez frappantes ont sans doute une fin. L’expérience démontre que la rosée s’élève de la terre. La surface inférieure des feuilles, aurait-elle été principalement destinée à pomper cette vapeur et à la transmettre dans l’intérieur de la plante ? "

 

Pour y répondre, il imagine d’observer le comportement de feuilles disposées à la surface de l’eau en alternant les faces en contact avec le liquide. Celui-ci est contenu dans le récipient qui lui semble le mieux adapté par la largeur de son col : un poudrier.

 

Il multipliera les expériences ainsi que la nature des feuilles : lilas, poirier, vigne, tremble, laurier, cerisier, prunier, marronnier d’inde, murier blanc, tilleul, peuplier, abricotier, noyer, noisetier, chêne…

 

Les résultats obtenus n’auraient pas laissé une trace impérissable si une observation fortuite n’avait modifié le programme initial. C’est maintenant la totalité de la feuille qu’il décide de plonger dans l’eau.

 

"Au commencement de l’été de 1747, j’introduisis dans des Poudriers pleins d’eau, des rameaux de vigne. Ces rameaux appartenaient au cep planté dans le milieu d’un jardin.

 

Dès que le soleil commença à échauffer l’eau des vases, je vis paraître sur les feuilles des rameaux, beaucoup de bulles semblables à de petites perles. J’en observais aussi, mais en moindre quantité, sur les pédicules et sur les tiges.

 

Le nombre et la grosseur de ces bulles augmentèrent à mesure que l’eau s’échauffa davantage. Les feuilles en devinrent même plus légères ; elles se rapprochèrent de la superficie de l’eau".

 

Au fur et à mesure de la journée, les bulles qui adhèrent fortement aux feuilles grossissent au point que le diamètre de certaines "égalait à peu près celui d’une lentille". Mais une surprise attend l’observateur :

 

 


 

 

Expérience de Bonnet : feuille dans un poudrier plein d’eau.


 

Les bulles réapparaissent encore le jour suivant mais en moins grande quantité. Pourtant, remarque Charles Bonnet, la température a augmenté. Ce qui ne manque pas de l’étonner dans la mesure où il imagine que l’émission de bulles est liée à la température de l’eau. Sans doute n’avait-il pas remarqué que l’ensoleillement, comme on peut le penser, avait, quant à lui, diminué.

 

Que contiennent ces bulles ? Il n’imagine pas que cela puisse être autre chose que de l’air qui est encore, pour lui comme pour Stephen Hales, un élément indécomposable.

 

Quelle conclusion de ces observations ? Charles Bonnet sait que l’air se dissout dans l’eau et ceci d’autant plus que celle-ci est froide. Il sait, aussi, que de l’air entre dans les feuilles des plantes par leurs pores. Un échange entre les feuilles et l’eau aurait donc lieu. La chaleur ferait sortir l’air, des pores des feuilles, en trop grande quantité pour que l’eau puisse le dissoudre. Il se formerait donc des bulles retenues sur leur surface. Le froid produirait l’effet inverse.

 

Charles Bonnet n’aura pas vu le rôle réel du soleil ni su caractériser le gaz qui se dégage. Il aura quand même eu le mérite d’avoir su observer un phénomène que d’autres interpréteront avec plus de bonheur. Son nom et son dispositif expérimental ne seront pas oubliés.

 


L’expérience de Bonnet dans un manuel contemporain.


Trente ans plus tard, un médecin et botaniste Britannique d’origine néerlandaise, Jan Ingenhousz (ou Ingen-Housz, 1730-1799), saura comprendre le rôle de la lumière solaire dans ce mécanisme.


XXXXXXXXXXXXXXXXX


Jan Ingenhousz : le soleil rythme la vie des végétaux.

 


Il publie en 1779, à Londres ses "Expériences sur les Végétaux" avec comme sous-titre : "Spécialement sur la propriété qu’ils possèdent à un haut degré, soit d’améliorer l’air quand ils sont au soleil, soit de le corrompre la nuit, ou lorsqu’ils sont à l’ombre".

 

Il traduit lui-même, en français, l’ouvrage rédigé en anglais, car, dit-il dans son introduction, "ce fût la crainte seule qu’un traducteur ne saisît pas partout mes idées, qui me détermina à le traduire moi-même". Le livre en français est publié pour la première fois dans l’été 1780, puis plusieurs fois réédité, notamment en 1787. Il sera ultérieurement traduit en hollandais et allemand.

 

Le sous-titre est explicite. Il connait les travaux de Priestley, dont il fait un éloge prononcé. Il lui reconnaît le mérite d’avoir montré que les plantes pouvaient purifier l’air vicié dans lesquelles on les plaçait. Il revendique, par contre, celui d’avoir montré le rôle de la lumière solaire dans ce phénomène, ce que n’avait pas vu Priestley.

 

"Il n’existe aucun ouvrage publié avant le mien, dans lequel l’auteur ait déduit … en termes exprès, que les végétaux répandent de l’air déphlogistiqué alentour d’eux au soleil seulement ".

 

Une des raisons de son succès est le fait que son dispositif expérimental tranche avec celui de Charles Bonnet. Que peut-on prouver en faisant agir le soleil sur des plantes recouvertes d’eau, dit-il, vu qu’elles ne "sont pas couvertes d’eau dans l’état naturel" ?

 

Il est vrai que les conditions expérimentales guident l’observation. Placer les feuilles dans l’eau, le jour, au soleil, fait immédiatement apparaître un dégagement de bulles d’oxygène parfaitement visibles. Par contre, le dioxyde de carbone étant très soluble dans l’eau, aucune bulle de ce gaz n’apparaît quand il se dégage le jour ou la nuit.

 

Ingenhousz, quant à lui, s’inspire des montages expérimentaux de Priestley qui place une plante sous une cloche pleine d’air ou d’un autre gaz.

 

C’est, en effet, après avoir pris connaissance de ses expériences sur la respiration des plantes qu’il a lui-même engagé ce travail, "brûlant de suivre les traces de la Nature dans ses merveilleuses opérations, annoncées et mises dans un si beau jour par cet homme respectable".

 

"Lorsque je trouvais dans les ouvrages de ce génie inventeur, écrit-il, de ce célèbre physicien, le docteur Priestley, l’importante découverte que la végétation d’une plante devient plus vigoureuse dans un air putride, et incapable d’entretenir la vie d’un animal, et qu’une plante refermée dans un vase plein d’air devenu malsain par la flamme d’une chandelle, rend à nouveau à cet air sa pureté primitive, et la faculté d’entretenir la flamme, je fus saisi d’admiration".

 

Il reconnaît, surtout, à Priestley, la découverte de "ce fluide aérien merveilleux qui surpasse si fort en pureté et en salubrité (eu égard à l’usage de la respiration) le meilleur air atmosphérique".

 

Cet air (notre oxygène), dit-il, "mérite à juste titre le nom d’air vital". Il lui attribue cependant, comme Priestley, le nom d’air déphlogistiqué, c’est-à-dire d’air "destitué de ce principe inflammable dont le meilleur air de l’atmosphère se trouve plus ou moins mêlé, et par lequel l’air est d’autant plus nuisible, qu’il en contient davantage".

 

Il note, cependant qu’il a su aller plus loin que son célèbre confrère dans sa réflexion :

 

"En enfermant une plante pendant vingt-quatre heures sous une cloche remplie d’air métiphisé, il était facile à découvrir, par différents moyens connus depuis longtemps, si cet air était corrigé ou empiré ; mais il était impossible de distinguer si c’était simplement la lumière du jour ou l’obscurité de la nuit, ou la chaleur, ou la végétation, qui avait produit l’effet. Il fallait absolument examiner, pour décider la question, l’état de cet air après l’avoir enfermé avec une plante dans un endroit obscur, et le comparer avec un air semblable qui aurait été exposé au soleil avec une pareille plante".

 

Même s’il limite ainsi la portée de la découverte de Priestley, il lui reconnait d’avoir montré "que le règne végétal est subordonné au règne animal et que ces deux règnes se prêtent des secours mutuels ; de façon que les plantes contribuent à entretenir le degré de pureté nécessaire dans l’atmosphère, pendant que les exhalaisons des animaux, nuisibles à eux-mêmes, servent de nourriture aux plantes", leçon d’écologie avant l’heure.

 

Pourtant, Jan Ingenhousz va s’employer à détruire cette image de paradis terrestre.

 

La vie nocturne des plantes.

 

Les plantes ont un secret, nous dit-il : comme Pénélope, elles détruisent pendant la nuit ce qu’elles ont construit le jour !

 

Il a su le découvrir par plus de cinq cents expériences "toutes faites en moins de trois mois, depuis le commencement de juin jusqu’au commencement de septembre". C’est dire la frénésie qui avait saisi leur auteur !

 

Pour les réaliser, il s’est "soustrait au bruit de la capitale" en se retirant " dans un village à dix milles de Londres" et affirme ne pas l’avoir regretté en constatant que "ses veilles n’avaient pas été entièrement sans fruit".

 

Ses observations sont effectivement d’une telle richesse et ses conclusions si clairement exprimées qu’il nous semble utile d’en reproduire l’essentiel en nous contentant d’en souligner les points les plus remarquables.

 

Il souligne d’abord le rôle de la lumière solaire

 

"A peine, dit-il, fus-je engagé dans ces recherches, que la scène la plus intéressante s’ouvrit à mes yeux, j’observai :

 

 

- Que les plantes n’avaient pas seulement la faculté de corriger l’air impur dans l’espace de six jours ou plus, comme les expériences de M. Priestley semblent l’indiquer, mais qu’elles s’acquittent de ce devoir important dans peu d’heures, de la manière la plus complète.

 

 

- Que cette opération merveilleuse n’est aucunement due à la végétation, mais à l’influence de la lumière du soleil sur les plantes.

 

 

- Que les plantes possèdent en outre l’étonnante faculté de purifier l’air qu’elles contiennent dans leur substance, et qu’elles ont sans doute absorbé dans l’atmosphère, et de le changer en un air des plus purs, véritablement déphlogistiqué.

 

 

- Qu’elles versent une espèce de pluie abondante (s’il est permis de s’exprimer ainsi) de cet air vital et dépuré, qui, en se répandant dans la masse de l’atmosphère, contribue réellement à en entretenir la salubrité, et à la rendre plus capable d’entretenir la vie des animaux.

 

 

- Qu’il s’en faut beaucoup que cette opération soit continuelle, mais qu’elle commence seulement quelque temps après que le soleil s’est levé sur l’horizon, après qu’il a, par l’influence de sa lumière, éveillé les plantes engourdies pendant la nuit, et après qu’il les a préparées et rendues capables de reprendre leur opération salutaire sur l’air, et ainsi sur le règne animal : opération suspendue entièrement pendant l’obscurité de la nuit.

 

 

- Que cette opération des plantes est plus ou moins vigoureuse, en raison de la clarté du jour, et de la situation de la plante plus ou moins à portée de recevoir l’influence directe du soleil.

 

 

- Que toutes les parties de la plante ne s’occupent pas de cet ouvrage, mais seulement les feuilles, les tiges et les rameaux verts qui les supportent.

 

 

- Que les plantes âcres, puantes et même les vénéneuses s’acquittent de ce devoir comme celles qui répandent l’odeur la plus suave et qui sont les plus salutaires.

 

 

- Que les feuilles nouvelles et celles qui n’ont pas encore acquis tout leur accroissement, ne répandent pas autant d’air déphlogistiqué, ni d’aussi bonne qualité, que celles qui sont parvenues à leur grandeur naturelle, ou déjà vieillies.

 

 

- Que quelques plantes, surtout parmi les aquatiques, excellent dans cette opération."

 

 

Mais là où il rompt avec l’ensemble des observations déjà faites, c’est quand il révèle,

 

 

- "Que toutes en général corrompent l’air environnant pendant la nuit et même au milieu du jour dans l’ombre.

 

 

- Que toutes les fleurs exhalent constamment un air mortel et gâtent l’air environnant pendant le jour et pendant la nuit, à la lumière et à l’ombre et qu’elles répandent un poison réel et des plus terribles dans une masse considérable d’air où elles se trouvent enfermées.

 

 

- Que les fruits en général conservent cette influence pernicieuse en tous temps, surtout dans l’obscurité, et que cette qualité vénéneuse des fruits est si grande que quelques-uns uns, même des plus délicieux, tels que les pêches, peuvent, dans une seule nuit, rendre l’air tellement empoisonné, que nous serions en danger de périr, si nous couchions une seule nuit dans une petite chambre, dont la porte et les fenêtres seraient exactement fermées et où se trouverait une grande quantité de ce fruit".

 

Ingenhousz venait de découvrir une activité encore inconnue des plantes : la respiration.

 

Comme les animaux, jour et nuit, les plantes respirent.

 

En effet, le jour et la nuit, comme les animaux, les plantes respirent. Elles absorbent de l’oxygène et rejettent du dioxyde de carbone. Pendant le jour le phénomène est masqué par l’autre fonction végétale, équivalente à l’alimentation dans le règne animal : la photosynthèse, consommatrice de dioxyde de carbone et source d’oxygène.

 

Pendant la nuit ou dans l’obscurité, seule la respiration agit, consommant de l’oxygène et produisant du dioxyde de carbone. Pour ce qui est des fleurs et des fruits, "même des plus délicieux" il est vrai que, comme l’observe Ingenhousz avec emphase, ne participant pas à la photosynthèse, ils respirent cependant et, jour et nuit, "exhalent constamment un air mortel".

 

On comprendra sans peine que cette idée de plantes transformant l’air en "poison" pendant la nuit ait été considérée comme révolutionnaire, voire provocatrice, quand elle a été proposée et que, comme toute observation nouvelle, elle ait trouvé de sévères détracteurs auxquels Ingenhousz s’emploie à répondre :

 

"Les choses en sont venues au point que, pendant qu’on convient unanimement de l’influence bénigne des végétaux sur notre élément (bénigne utilisé ici au sens ancien de : qui fait du bien), et leur faculté de corriger l’air gâté et d’améliorer l’air bon, sont dues à la seule lumière solaire, et non à la chaleur ou à la végétation (vérité qu’aucun Ecrivain n’avait avant moi enseignée publiquement), quelques-uns croient cependant encore avoir des motifs de passer sous un profond silence, l’autre partie de ma doctrine, l’influence méphitique des plantes sur l’air, comme si elle ne méritait pas leurs regards, tandis que quelques autres la condamnent comme un système des plus absurdes, comme une doctrine injurieuse aux sages et sublimes procédés de la nature.

 

 

Ceux-ci, en faisant profession de défendre le ciel outragé, crient à haute voix qu’une doctrine qui attribue aux plantes l’office de répandre le jour, un vrai pabulum vitae, dans l’atmosphère, et d’exhaler ensuite un vrai poison autour de nous pendant la nuit, est injurieuse au créateur, et répugne à la saine raison".

 

Invoquer le "créateur" ne suffit pas, faites à votre tour mes expériences leur déclare-t-il en forme de défi, car votre refus d’expérimenter pourrait faire soupçonner de votre part " quelque appréhension d’examiner de près le fondement de ma doctrine, de crainte d’y rencontrer des vérités qui ne pouvaient être que désagréables à ceux qui croyaient avoir des raisons particulières de souhaiter que l’influence nocturne des végétaux fût une erreur".

 

Par cette "révolution" dans la description de la respiration des plantes, par cette levée de boucliers qui a suivi son annonce, serait-il exagéré de voir dans Ingenhousz l’équivalent en biologie d’un Lavoisier dans le domaine de la chimie ?


XXXXXXXXXXXXXXXX


Senebier ou comment les plantes s’alimentent.

 


Jean Senebier (1742-1809) est bibliothécaire à Genève et particulièrement intéressé par les sciences, en particulier la biologie. Il connaît les travaux de Priestley, Bonnet et Ingenhousz sur la "respiration" des plantes et s’emploie lui-même à les reprendre et à les développer.

 

Il publie ses résultats dans des "Mémoires physico-chimiques sur l’influence de la lumière solaire pour modifier les êtres des trois règnes de la nature, et surtout ceux du règne végétal (1782)"

 

suivis des "Recherches sur l’influence de la lumière pour métamorphoser l’air fixe en air pur par la végétation (1783)".

 

Il reprend le mode opératoire de son compatriote Charles Bonnet en plaçant les feuilles étudiées dans l’eau. Persuadé que la lumière solaire est, comme l’a proposé Newton, constituée de particules et que celles-ci sont absorbées par les plantes, il imagine une action physique de la lumière du soleil dans la production d’air pur par les feuilles (nous dirions aujourd’hui qu’elles absorbent l’énergie lumineuse sous forme de photons). D’où son conseil de situer les habitations dans "les lieux bien découverts, où le soleil peut porter sur toutes les feuilles des végétaux son heureuse influence, et leur faire répandre à flots cet air salutaire, qui fera circuler la santé et la vie dans nos poumons et dans nos veines" (1783).

 

Il est, par contre, l’un des adversaires les plus féroces de Ingenhousz, qui d’ailleurs, le lui rend bien, en ce qui concerne la vie nocturne des plantes. En effet, il refuse d’accepter deux mécanismes opposés cohabitant dans les feuilles. Impossible, dit-il, qu’elles puissent, à la fois, rejeter de l’air fixe et en absorber. S’il observe bien que des plantes maintenues immergées pendant un long moment dans l’obscurité semblent émettre des gaz nocifs, c’est, pense-t-il, parce qu’elles ont commencé à pourrir.

 

Ses recherches portent donc essentiellement sur le mécanisme diurne : l’absorption d’air fixe et l’émission d’air pur. Il constate, par exemple, que dans une eau saturée d’air fixe (de CO2), le dégagement de bulles d’air est plus abondant et que cet air est de l’air pur.

 

Dans la nature, pense-t-il, l’air fixe, notre dioxyde de carbone, serait produit par "le mélange de l’air pur avec les matières phlogistiquées" qui sont présentes dans l’atmosphère. Etant plus dense que l’air il se concentrerait dans les basses couches de l’atmosphère où il se dissoudrait dans l’humidité atmosphérique. C’est ainsi que l’air fixe passerait dans les feuilles et les racines des plantes qui recueilleraient cette humidité sous forme de pluie ou de rosée.

 

Quant à l’émission d’air pur, elle serait "le résultat de la conversion de l’air fixe, opéré par l’action de la végétation" qui séparerait le phlogistique de l’air fixe pour en alimenter la plante, et qui en chasserait l’air pur "comme un excrément inutile".

 

Même si le phlogistique vient encore obscurcir l’interprétation du mécanisme, Senebier comprend, et exprime de façon claire, le fait important :

le dioxyde de carbone (l’air fixe) est l’aliment de la plante.

 

Notons au passage que le fait de considérer l’air pur comme un excrément est une image à la fois juste et propre à marquer les esprits. L’air fixe s’en trouve réhabilité. Du statut de gaz mortel il acquiert celui d’élément nécessaire à la vie des plantes et par là-même à l’ensemble de la vie animale.

 

Même si Senebier, n’a pas noté la fonction essentielle de l’alternance jour/nuit dans le fonctionnement des feuilles, son apport est cité par Lavoisier au même titre que ceux de Priestley et Ingenhousz. Il est vrai que dans l’introduction à ses "Recherches" datée de 1783, il proposait une nouvelle orientation de la biologie à laquelle un chimiste ne pouvait être indifférent :

 

"Convient-il d’employer la chimie dans l’étude de la physique, de l’histoire naturelle, des secrets de la végétation ? ".

 

Telle est la question qu’il pose et tel est son plaidoyer :

 

"Il est évident que si les lois seules du mouvement pouvaient expliquer tous les phénomènes de la végétation, il serait inutile de chercher de nouveaux moyens pour les pénétrer. Mais si les excellents philosophes qui ont observé avec tant de dextérité et de génie les végétaux ; si les Grew, les Malpighi, les Duhamel, les Bonnet ont à peine fait connaître l’anatomie végétale ; s’ils ont si peu avancé la physiologie des plantes, en scrutant leurs fibres, en suivant leurs vaisseaux ; s’ils ont à peine connu les fluides qui les animent, on désespérera d’aller plus loin qu’eux, en employant leurs moyens, parce qu’ils en ont tiré tout le parti possible. Ce n’est donc qu’avec de nouvelles lunettes qu’on pouvait raisonnablement espérer un nouvel horizon, et peut-être de nouveaux passages à de nouvelles vérités".

 

Si on fait appel à la chimie, écrit-il, "cette science générale et universelle, qui recherche la nature des corps par des moyens qui leur soient appropriés, la question sera résolue, car la chimie de Scheele, de Bergman, de Lavoisier de Priestley est cette science sublime et chaque naturaliste sera charmé de savoir qu’il y a une telle science et de tels savants".


XXXXXXXXXXXXXXX


Lavoisier. De l’air fixe à l’acide crayeux aériforme et au gaz carbonique.

 


Dans un mémoire lu le 3 mai 1777 à l’Académie des Sciences, Lavoisier traite des "expériences sur la respiration des animaux et sur les changements qui arrivent à l’air en passant par leurs poumons".

 

Chacun connaît l’importance de la respiration pour le maintien de la vie humaine et pourtant, nous dit Lavoisier, "nous connaissons peu l’objet de cette fonction singulière". Cet "objet", c’est l’air mais, ajoute-t-il, "toutes sortes d’air, ou plus exactement toutes sortes de fluides élastiques, ne sont pas propres à l’entretenir, et il est un grand nombre d’airs que les animaux ne peuvent respirer sans périr".

 

Lavoisier connaît les travaux de Hales, il est surtout admiratif des expériences de Priestley qui "a reculé beaucoup plus loin les bornes de nos connaissances… par des expériences très ingénieuses, très délicates et d’un genre très neuf". Lavoisier considère que son apport essentiel aura été de prouver que "la respiration des animaux avait la propriété de phlogistiquer l’air, comme la calcination des métaux et plusieurs procédés chimiques". Ou pour être plus bref : que la respiration est une combustion !

 

Lui-même veut le vérifier. Un moineau est placé sous une cloche pleine d’air renversée sur une cuve à mercure. Près d’une heure plus tard il ne bouge plus. L’air qui reste éteint une flamme. Un nouveau moineau qu’on y enferme n’y vit que quelques instants.

 

Cet "air vicié" présente une propriété qu’on ne trouve pas dans la simple "mofette" à laquelle Lavoisier donnera plus tard le nom d’Azote. Il précipite l’eau de chaux. Par ailleurs, une partie de cet air vicié est absorbée par une solution d’alkali fixe caustique (de la potasse). Par ces propriétés Lavoisier reconnaît cet air que les chimistes désignent comme "l’air fixe".

 

Le terme ne lui convient pas. Dans une note il s’en explique.

 

Quand l’air fixe devient acide crayeux aériforme.

 

" Il y a déjà longtemps que les physiciens et les chimistes sentent la nécessité de changer la dénomination très-impropre d’air fixe, air fixé, air fixable ; je lui ai substitué, dans le premier volume de mes Opuscules physiques et chimiques, le nom de fluide élastique ; mais ce nom générique, qui s’applique à une classe de corps très-nombreux, ne pouvait servir qu’en en attendant un autre.

 

 

Aujourd’hui, je crois devoir imiter la conduite des anciens chimistes ; ils désignaient chaque substance par un nom générique qui en exprimait la nature, et ils le spécifiaient par une seconde dénomination qui désignait le corps d’où ils avaient coutume de la tirer ; c’est ainsi qu’ils ont donné le nom d’acide vitriolique à l’acide qu’ils retiraient du vitriol ; le nom d’acide marin à celui qu’ils tiraient du sel marin, etc.

 

 

Par une suite de ces mêmes principes, je nommerai acide de la craie, acide crayeux, la substance qu’on a désignée jusqu’ici sous le nom d’air fixe ou air fixé, par la raison que c’est de la craie et des terres calcaires que nous tirons le plus communément cet acide, et j’appellerai acide crayeux aériforme celui qui se présentera sous forme d’air."

 

"Acide crayeux aériforme", propose donc Lavoisier, à un moment où, pourtant, il ne sait rien encore de la composition chimique de la craie. Plus tard c’est l’acide lui-même qui contribuera à donner son nom à la craie (carbonate de calcium) dans la nomenclature chimique. Nous en reparlerons.

 

Pour le moment le chimiste s’interroge sur le mécanisme de la respiration. Il a constaté une faible diminution du volume de l’air dans la cloche. Deux hypothèses se présentent.

 

-  Il est possible, dit-il, "que l’air éminemment respirable qui est entré dans le poumon en ressorte en acide crayeux aériforme". Ce qui expliquerait la faible diminution du volume de l’air dans la cloche, l’air fixe étant supposé "moins élastique" que l’air ordinaire.

 

-  Il est possible aussi "qu’une portion de l’air éminemment respirable reste dans le poumon et qu’elle se combine avec le sang".

 

Les deux propositions se révèleront partiellement justes. Pour appuyer la seconde Lavoisier rappelle que Priestley lui-même, a exposé du sang à l’air éminemment respirable et à l’acide crayeux aériforme. Dans le premier cas le sang a pris une couleur rouge-vermeil, dans le second cas il est devenu noir. La remarque ne manque pas de pertinence mais il faudra encore de longues années avant qu’elle trouve sa justification.

 

Pour le moment, la nature de l’acide crayeux reste à élucider.

 

De l’acide crayeux aériforme à l’acide charbonneux.

 

Quatre ans se sont passés. Lavoisier a abandonné le phlogistique. Dans les publications de l’Académie des Sciences pour l’année 1781, on peut lire son "Mémoire sur la formation de l’acide nommé air fixe ou acide crayeux et que je désignerai désormais sous le nom d’acide du charbon".

 

Lavoisier rappelle d’abord sa conception de la combustion des métaux, à savoir la combinaison de ceux-ci avec la partie respirable de l’air qu’il désigne à présent comme principe oxygine (générateur d’acide) et qui deviendra gaz oxygène dans la Nomenclature qu’il publiera avec Guyton de Morveau, Fourcroy et Berthollet en 1787.

 

En même temps que de celle des métaux, Lavoisier s’est intéressé aux combustions du phosphore et du soufre. Celles-ci l’ont conduit aux acides phosphorique et sulfurique. Poursuivant avec la même logique, il décide de s’intéresser au plus anciennement connu des combustibles : le charbon.

 

Ce corps pose problème. Si les chimistes savent obtenir du soufre et du phosphore dans un état de quasi-pureté, il n’en va pas de même du charbon. Sa distillation laisse échapper un ensemble de gaz parmi lesquels un air inflammable aqueux qui prendra ensuite le nom d’hydrogène. Dans ses cendres on trouve des terres insolubles et de l’alkali fixe (de la potasse) soluble. D’où la précision de Lavoisier :

 

"Pour éviter toute équivoque, je distinguerai, dans ce mémoire, le charbon d’avec la substance charbonneuse ; j’appellerai charbon ce que l’on a coutume de désigner sous cette dénomination dans les usages de la société, c’est-à-dire un composé de substance charbonneuse, d’air inflammable aqueux, d’une petite portion de terre et d’un peu d’alcali fixe ; j’appellerai, au contraire, substance charbonneuse le charbon dépouillé d’air inflammable aqueux, de terre et d’alcali fixe".

 

C’est donc la "substance charbonneuse" qui se combine au principe oxygine de l’air dans la combustion du charbon. Abandonnant le nom "d’acide crayeux" qu’il lui avait précédemment donné, Lavoisier donne le nom "d’acide charbonneux" au gaz résultant de cette combustion.

 

Afin de déterminer les proportions de substance charbonneuse et de principe oxygine dans cet acide charbonneux, Lavoisier, aidé de Laplace et Meusnier, se livre à une multitude d’expériences qui l’amènent aux proportions :

 

Principe oxygine : 72,125 livres

 

Matière charbonneuse : 27,875 livres

 

Total de l’acide charbonneux : 100,000 livres

 

La lectrice ou le lecteur qui mobiliserait ses souvenirs scolaires pourrait vérifier qu’avec nos données actuelles (valeurs "arrondies" : 12g de carbone pour 32g d’oxygène dans les 44g d’une "mole" de CO2 soit 22,4l gazeux,), les 27,875% de carbone mesurés par Lavoisier sont très proches des 27,3% que nous donnent nos calculs.

 

En cette année 1781, l’air fixe, rebaptisé acide crayeux, est donc devenu acide charbonneux. Pourtant, si on connaît à présent sa composition, il attend encore son nom définitif.

 

Quand l’acide charbonneux devient gaz acide carbonique et quand naît le carbone.

 

Nous devons évoquer ici la Nomenclature Chimique. Notons, pour mieux la situer, qu’elle prend son origine au début des années 1780, moment où la nécessité se fait jour d’une réforme dans la façon de nommer les corps chimiques.

 

C’est d’abord Louis-Bernard Guyton de Morveau (1737-1816), avocat au parlement de Dijon et chimiste reconnu internationalement qui publie dans le Journal de Physique de l’abbé Rozier, en 1782, un mémoire "Sur les dénominations chymiques, la nécessité d’en perfectionner le système et les règles pour y parvenir".

 

Le constat est simple : cette science qui a enfin réussi à s’imposer dans les Académies utilise une langue à peine sortie des grimoires des alchimistes. "Il n’est point de science, regrette-t-il, qui exige plus de clarté, plus de précision, & on est d’accord qu’il n’en est point dont la langue soit aussi barbare, aussi vague, aussi incohérente".

 

En France, d’autres chimistes partagent le même objectif et une autre réforme du vocabulaire est en marche : celle de Lavoisier et de ses collègues académiciens qui s’appuient sur une base théorique, celle du principe oxygine, très différente de celle de Guyton de Morveau partisan du phlogistique.

 

La concurrence est sévère. La théorie de Lavoisier semble même avoir des partisans parmi les collègues Bourguignons de Guyton de Morveau, mais cela n’empêche pas celui-ci de se montrer circonspect :

 

"Nous aurons plus d’une fois occasion de dire, & particulièrement aux articles Acide Vitriolique, Acide Saccharin, Phlogistique, &c. &c. que nous sommes bien éloignés d’adopter en entier l’explication dans laquelle ce savant Chymiste croit pouvoir se passer absolument du Phlogistique" (Encyclopédie méthodique, article chymie, p29).

 

Pourtant, trois ans plus tard, c’est avec Lavoisier qu’il présentera la Méthode de Nomenclature Chimique qui bannira le phlogistique de l’univers de la chimie.

 

Influent à l’Académie des sciences, Lavoisier (1743-1794) a su attirer autour de lui des collaborateurs efficaces et enthousiastes qui soutiennent sa théorie : Antoine-François Fourcroy (1755-1809), Claude Louis Berthollet (1748-1822), Jean Henri Hassenfratz (1755-1827), Pierre Auguste Adet (1763-1834).

 

C’est ce groupe, réuni autour de Lavoisier, qui accueille Guyton de Morveau quand il vient à Paris en février 1787 avec son projet de nomenclature déjà bien avancé. Avec lui, ils rédigent la nouvelle "Méthode de Nomenclature Chimique" présentée à l’assemblée publique de l’Académie des Sciences du 17 avril 1787.

 

Guyton de Morveau est chargé d’en présenter les nouveaux termes. L’oxygène, l’hydrogène et l’azote sont les premiers nommés. Concernant le nom des acides, l’un d’entre eux pose problème.

 

"Aucun n’a reçu autant de noms différents que ce gaz, auquel M. Black donna d’abord le nom d’air fixe, en se réservant expressément de changer dans la suite cette dénomination, dont il ne se dissimulait pas l’impropriété. Le peu d’accord des chimistes de tous les pays sur ce sujet nous laissait, sans doute, une liberté plus entière, puisqu’il nous montrait la nécessité de présenter enfin des motifs capables de décider l’unanimité : nous avons usé de cette liberté suivant nos principes.

 

 

Quand on a vu former l’air fixe par la combinaison directe du charbon et de l’air vital, à l’aide de la combustion, le nom de cet acide gazeux n’est plus arbitraire, il se dérive nécessairement de son radical, qui est la pure matière charbonneuse ; c’est donc l’acide carbonique, ses composés avec les bases sont des carbonates ; et, pour mettre encore plus de précision dans la dénomination de ce radical, en le distinguant du charbon dans l’acceptation vulgaire, en l’isolant par la pensée, de la petite portion de matière étrangère qu’il recèle ordinairement, et qui constitue la cendre, nous lui adaptons l’expression modifiée de carbone, qui indiquera le principe pur, essentiel du charbon, et qui aura l’avantage de le spécifier par un seul mot, de manière à prévenir toute équivoque."

 

De façon paradoxale, c’est donc l’acide carbonique, que nous désignons actuellement comme gaz carbonique dans le langage courant ou dioxyde de carbone dans une langue plus savante, qui a donné son nom au carbone !

 

La remarque n’est pas anodine. C’est le dioxyde de carbone, l’ancien "gas silvestre" ou "air fixe", qui relie la craie la plus blanche à la noirceur du charbon. Le charbon, bois fossilisé, faisant lui-même le lien entre le minéral et le végétal. Comment aurions-nous pu décrire ce "cycle du carbone" qui associe matière inerte et matière animée ; que serait devenue la "chimie organique", si Lavoisier s’en était tenu à son choix initial "d’acide crayeux aériforme" ?

 

Ce choix étant fait, la réaction de combustion du carbone peut désormais s’écrire dans une formulation qui nous est compréhensible.

 

Carbone + oxygène → gaz acide carbonique

 

Le mot carbone est entré dans le langage quotidien et est partout compris dans le monde. Pourtant, nous verrons, à présent, qu’il ne s’est cependant pas imposé sans de fortes réticences.

 

De l’offensive anti-carbone à la victoire de CO2.

 

Le 17 avril 1787, est donc la date à laquelle Lavoisier, Guyton de Morveau, Fourcroy et Berthollet présentent le "Mémoire sur la nécessité de réformer et de perfectionner la nomenclature de la chimie" à la séance publique de l’Académie Royale des Sciences.

 

Une réception "nuancée" de la part des académiciens français.

 

Baumé, Cadet, Darcet, et Sage, sont les quatre académiciens auxquels revient la charge de présenter le "Rapport sur la Nouvelle Nomenclature". Le moins qu’on puisse dire est qu’ils ne sont pas réellement enthousiastes et qu’en ces années qui précèdent une tempête politique, ils sont loin de souhaiter le "matin du grand soir" d’une révolution chimique.

 

"Ce n’est pas encore en un jour qu’on réforme, qu’on anéantit presque une langue déjà entendue, déjà répandue, familière même dans toute l’Europe, & qu’on lui en substitue une nouvelle d’après des étymologies, ou étrangères à son génie, ou prises souvent dans une langue ancienne, déjà presque ignorée des savants, & dans laquelle il ne peut y avoir ni trace, ni notion quelconque des choses, ni des idées qu’on doit leur signifier".

 

Le problème majeur est l’avènement de l’oxygène au détriment du phlogistique. Pourquoi choisir l’aventure, estiment les rapporteurs, quand l’ancien système s’avère encore utile ?

 

"La théorie ancienne qu’on attaque aujourd’hui est incomplète sans doute ; mais celle qu’on lui substitue n’a-t-elle pas ses embarras, ses difficultés ? Dans l’ancienne, nombre de phénomènes s’expliquent comme on peut, à l’aide du phlogistique… Dans la nouvelle c’est l’oxygène réuni aux bases acidifiables, qui forme ces mêmes acides ; mais qui nous dira ce qu’est l’oxygène ? Ce qu’est ce radical acide ? "

 

Qui nous dira ce qu’est l’oxygène ? Manifestement les Académiciens ne semblent pas avoir trouvé la réponse dans les mémoires des nomenclateurs. S’ils trouvent quand même quelques avantages à la nouvelle théorie, c’est ceux qu’elle doit à la précision et au calcul "auxquels la perfection de nos appareils a fourni l’analyse".

 

Ils choisissent donc de ne pas choisir :

 

"Nous dirons seulement que lorsque nous nous sommes permis ces réflexions, nous n’avons pas plus prétendu combattre la théorie nouvelle que défendre l’ancienne…

 

 

Nous pensons donc qu’il faut soumettre cette théorie nouvelle, ainsi que sa nomenclature, à l’épreuve du temps, au choc des expériences, au balancement des opinions qui en est la suite ; enfin au jugement du public, comme au seul tribunal d’où elles doivent & puisse ressortir.

 

 

Alors ce ne sera plus une théorie, cela deviendra un enchaînement de vérités, ou une erreur. Dans le premier cas, elle donnera une base solide de plus aux connaissances humaines ; dans le second elle rentrera dans l’oubli avec toutes les théories & les systèmes de physique qui l’auront précédée".

 

La faire rentrer dans l’oubli, tel est l’objectif des phlogisticiens qui ne ménagent pas leurs critiques.

 

 

La guerre est déclarée.

 

Dans le numéro de décembre 1787 du journal de physique, le premier à intervenir souhaite rester anonyme. "La chimie est maintenant à la mode", dit-il, "Nos belles dames, longtemps avant que le lycée leur en offrît des leçons, avaient paru sur les bancs des diverses écoles". C’est pourquoi la nouvelle Nomenclature "était attendue avec impatience". D’où sa déception et le sentiment d’avoir été victime d’une publicité mensongère : "plus les noms placés à la tête de cet ouvrage sont propres à exciter l’intérêt du lecteur, moins ils sollicitent leur indulgence".

 

Et d’indulgence, il n’en a pas ! Il reproche, en particulier, à ces illustres scientifiques, leur mauvais usage du grec. Comment oser mutiler "les beautés" de cette langue en fabriquant des mots dont la moitié est empruntée au latin, l’autre au grec. Et surtout, observe-t-il, quand on maîtrise si mal la langue. Oxygène et hydrogène, écrit-il, "signifient précisément le contraire de ce qu’ont voulu les Auteurs de la Nomenclature. La traduction du premier mot est engendré par l’acide & non générateur de l’acide ; celle du second engendré par l’eau et non générateur d’eau". Chez les Grecs, ajoute-t-il, "Diogène voulait dire fils de Jupiter" et, dans le vocabulaire usuel, homogène signifie "généré de façon identique" et non pas "générateur des mêmes choses".

 

Quant à quelques mots "un peu ridicules", ajoute-t-il, tels que "carbone, carbonique, carbonate, &c. je n’en parlerai point ; c’est les premiers, c’est peut-être les seuls dont le public fera justice".

 

Notre auteur anonyme n’avait manifestement rien d’un Nostradamus. Qui peut imaginer qu’il fut un temps où "carbone" ne faisait pas partie du langage commun et qu’il n’a été imposé, il y a seulement un peu plus de deux siècles, que par un quarteron de chimistes français.

 

Pourtant "Carbone" a été une des cibles principales des adversaires de la nomenclature.

 

Oubliez ces carbonates, ces carbures…

 

Étienne-Claude de Marivetz, qui signe en faisant état de son titre de baron, vient tresser des couronnes au directeur du Journal de Physique, le "véritable journal des Savants", pour son combat contre la Nomenclature. Il fallait, dit-il, "que les Étrangers apprissent que cette innovation n’avait été reçue que dans peu de laboratoires ; il fallait que les générations futures, en lisant avec étonnement ce dictionnaire, apprissent comment furent accueillis ces muriates, ces carbonates, ces carbures, ces sulfates, ces sulfites, ces sulfures, ces phosphates, ces phosphures, ces oxydes, &c. &c. &c. Il fallait que l’on sût que ces mots bizarres ne furent reçus que dans le jargon des adeptes qui les avaient imaginés".

 

Bien vite, conclut-il, "les carbonates et les carbures auront été oubliés" et on ne lira plus cette nomenclature "que comme on lit encore l’Histoire de Pantalon-Phoebus".

 

L’éloge historique de Pantalon-Phoebus est un texte extrait du "Dictionnaire néologique à l’usage des beaux-esprits du siècle" publié en 1726 par l’abbé Desfontaines sous couvert d’un "avocat de Province". Il s’agit d’un dictionnaire destiné à répandre dans la Province le beau parlé parisien et dans lequel un cabaretier devenait un "marchand d’ivresse" et une soupe un "phénomène potager". Le dictionnaire en question ne pouvait évidemment que provoquer l’ironie des lecteurs de la fin du siècle.

 

Oublié, est donc Pantalon-Phoebus, mais le baron de Marivetz lui-même n’attirerait plus l’attention s’il n’avait été l’un des pourfendeurs des carbonates et carbures.

 

Christophe Opoix, Maître en Pharmacie à Provins, a été, en cette année 1787, reçu à l’Académie d’Arras, alors sous la présidence de Maximilien de Robespierre. Il constate d’abord que les chimistes des générations antérieures ont su trouver les mots aptes à attirer un public nombreux. La chimie "a fait partie de la bonne éducation, & les femmes mêmes ont fréquenté assidument les amphithéâtres sans s’y trouver étrangères ou déplacées".

 

Il s’en prend, ensuite, ouvertement à Lavoisier, le "brillant orateur de la nouvelle doctrine" :

 

"Je le sais, un nombreux auditoire applaudit encore à ces Messieurs, et semblent leur répondre d’un grand succès ; mais quand la mode, la nouveauté & l’enthousiasme seront passées, quand on ne frappera plus les yeux à grands frais par des appareils nouveaux et imposants ; quand le brillant orateur de la nouvelle doctrine cessera de la soutenir de son éloquence facile et séduisante, quand la science dépouillée de ces secours étrangers, n’offrira plus qu’un squelette hideux, qu’un travestissement bizarre, qu’un extérieur repoussant, comptera-t-on le même nombre d’auditeurs ? "

 

Et naturellement, il ne donne pas, lui non plus, beaucoup de chances de survie à la nomenclature :

 

"Voulez vous savoir ce que je prévois avec regret ? Dans peu d’années les amphithéâtres seront déserts, & la science entièrement négligée. Les gens du monde pourront-ils accommoder leurs oreilles à l’étrange dissonance & à la barbarie des termes ? Auront-ils le courage de surmonter cette barrière qui va séparer la science de la Chimie de toutes les autres ? Les personnes studieuses qui, par goût, se destinent aux sciences, mais qui ne sont encore déterminées par aucune, préfèreront-elles une science qui n’aurait plus de rapport avec aucune autre, & que quelques personnes réunies peuvent au premier instant changer à ne la rendre plus reconnaissable ? "

 

A son tour, un professeur de Chimie de Madrid témoigne : "La nouvelle Nomenclature choque trop les oreilles espagnoles pour qu’elles puissent s’y accommoder. La langue espagnole ne se prête pas à de pareilles innovations. Aussi un apothicaire de Madrid qui voulut employer le mot carbonate, a été surnommé docteur Carbonato…"

 

Après de telles charges, qui oserait encore défendre la réforme proposée et qui parierait sur l’avenir des mots carbone, carbonate, carbonique ?

 

Et pourtant carbone, carbonique et carbonates se sont imposés.


XXXXXXXXXXXX


De l’eau et du dioxyde de carbone : enfin Lavoisier sait de quoi se nourrissent les plantes.

 

Dans un mémoire, daté de 1786 sur "la décomposition de l’eau par les substances végétales et animales", Lavoisier interprète à son tour les expériences de Ingenhousz et de Senebier sur la respiration diurne des plantes. Son vocabulaire nous est plus familier. Le phlogistique est oublié. L’air déphlogistiqué est devenu l’oxygène, l’air fixe a pris le nom d’acide carbonique (notre dioxyde de carbone).

 

Les différentes analyses qu’il a réalisées lui ont montré que trois corps essentiels composent les plantes : le carbone, l’oxygène et l’hydrogène. Si le carbone et l’oxygène peuvent provenir du dioxyde de carbone, l’hydrogène ne peut provenir que de l’eau.

 

"il ne peut y avoir de végétation sans eau et sans acide carbonique, affirme-t-il, ces deux substances se décomposent mutuellement dans l’acte de la végétation".

 

Ainsi se trouvent rassemblées les découvertes de Van Helmont sur le rôle de l’eau et celles des chasseurs d’air depuis Hales. Quant au mécanisme du phénomène, il devient limpide :

 

"l’hydrogène quitte l’oxygène pour s’unir au charbon, pour former les huiles, les résines, et pour constituer le végétal ; en même temps, l’oxygène de l’eau et de l’acide carbonique se dégage en abondance, comme l’ont observé MM. Priestley, Ingenhousz et Senebier, et il se combine avec la lumière pour former du gaz oxygène".


XXXXXXXXXXXXX


Aujourd’hui.

 

La chlorophylle, récepteur de la lumière solaire et première étape du processus de la photosynthèse, a été isolée en 1816 par Joseph Bienaimé Caventou et Joseph Pelletier tous deux pharmaciens et chimistes. Nous ne donnerons pas ici la description détaillée de la réaction, extrêmement complexe, de photosynthèse. Son bilan peut s’écrire :

 

6CO2 + 12H2O + lumière → C6H12O6 + 6O2+ 6H2O.

 

La formule C6H12O6 est celle des molécules de glucose dont les polymères sont, en autres, l’amidon et la cellulose composants des organismes végétaux. L’intuition de Lavoisier s’est donc vérifiée à ceci près que les chimistes qui lui ont succédé ont montré que les molécules de dioxygène dégagées dans l’air provenaient uniquement de l’eau.

 

N’oublions pas cependant le phénomène que Lavoisier a omis d’étudier : la plante ne fait pas que se nourrir. Elle "respire" également par un mécanisme qui s’apparente à la respiration animale et dont le bilan de la réaction est inverse. Le glucose accumulé et l’oxygène de l’air absorbé réagissent en fournissant à la plante l’énergie et les matériaux nécessaires à son fonctionnement et à sa croissance tout en libérant du dioxyde de carbone.

 

Le bilan de l’absorption de CO2 par la photosynthèse et d’émission de O2 reste cependant positif. Globalement les plantes sont donc des "pièges" à dioxyde de carbone et des sources d’oxygène.

 

Et avant hier ?

 

Avant de quitter le chapitre de la photosynthèse peut-être peut-on rappeler qu’il fut un temps où l’oxygène ne constituait pas 21% de l’atmosphère.

 

La vie a débuté dans un mélange gazeux de vapeur d’eau, d’hydrogène, de méthane, d’ammoniac, de dioxyde de carbone. Ceci jusqu’au moment où des organismes dotés de chlorophylle ont commencé à proliférer : les cyanobactéries (ou algues bleues). C’est à elles qu’on attribue l’enrichissement de l’atmosphère en oxygène, cet "excrément" libéré par les plantes. L’oxygène est alors devenu vital pour les organismes, dont nous sommes, qui s’y sont adaptés et développés, pendant que pour d’autres il se révélait être un poison mortel.

 

Discrètes, les cyanobactéries se rappellent de plus en plus souvent à notre souvenir. Dans les milieux enrichis en nitrates et phosphates par l’activité humaine, elles prolifèrent, la toxicité de certaines d’entre elles posant alors un sérieux problème de santé humaine et environnementale.


pour aller plus loin voir :

 

Un livre chez Vuibert.

 

 

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…


Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

 

 

_______________________________________________________

 

 

 

Partager cet article
Repost0
21 octobre 2021 4 21 /10 /octobre /2021 20:41

Gérard Borvon. première mise en ligne mai 2015.

 

La vie affiche sa singularité : sur la centaine de corps inscrits dans le tableau périodique des éléments chimiques, quatre seulement lui servent de support et un seul est indispensable : le carbone ! Qui aurait pu imaginer, au temps des alchimistes, que le résidu noir qui restait au fond de leur cornue quand toutes les matières utiles en avaient été dégagées, était, en réalité, le principe organisateur du vivant, le "mercure" de la véritable "pierre philosophale" capable de transformer la matière inerte en organisme vivant.

 

Le programme du chimiste, après Lavoisier, semblait tout tracé : étudier les corps en séparant les éléments qui les constituent, c'est-à-dire les analyser.

 

Une nouvelle question se posait alors. Le chimiste allait-il pouvoir reproduire l'œuvre de la nature et faire renaître, à partir du carbone, de l'oxygène, de l'azote et de l'hydrogène les corps organiques dont ils étaient issus ?

 

La chimie devient "organique".

 

Dans "la chimie organique fondée sur le synthèse" (1860) Marcellin Berthelot (1827-1907) consacre un chapitre à "la synthèse des matières organiques". Il y pose clairement le problème : "A partir du jour où Lavoisier fonda la chimie sur la base définitive des corps simples, le domaine minéral de cette science ne tarda pas à être parcouru dans tous les sens, ses limites furent tracées, ses lois générales découvertes. Bientôt on put à volonté décomposer toute substance minérale, la résoudre par l'analyse des éléments qui la constituent ; puis, à l'inverse, on réussit presque toujours à reconstituer le composé primitif par l'union des corps simples que l'analyse avait mis en évidence ; il devint en général facile d'expliquer et de reproduire les conditions naturelles dans lesquelles ce composé pouvait avoir pris naissance.

Lorsqu'on essaya d'aborder par les mêmes méthodes l'étude des matières organiques, on reconnut aussitôt une différence radicale. A la vérité, on parvint aisément à décomposer ces matières et à les ramener à leurs éléments. Ceux-ci se trouvèrent même bien moins nombreux que les éléments des minéraux ; car ils se réduisent presque exclusivement à quatre corps, savoir : le carbone, l'hydrogène, l'oxygène et l'azote. Mais, dès qu'il s'agit de recomposer les matières organiques à l'aide des éléments mis en évidence par l'analyse, dès que l'on tenta de reproduire, par l'art, la variété infinie de leurs états et de leurs métamorphoses naturelles, tous les efforts demeurèrent infructueux. Une barrière, en apparence insurmontable s'éleva dès lors entre la chimie organique et la chimie minérale".

 

Pour la plupart des contemporains de Berthelot la cause était, en effet, entendue : la Nature agissait par un moyen qui échappait au chimiste : une "force vitale" dirigeait la matière vivante.

 

"Il n'y a que les tissus végétaux vivants, il n'y a que leurs organes végétants, qui puissent former les matières qu'on en extrait, et aucun instrument de l'art ne peut imiter les compositions qui se font dans les machines organisées des plantes", déclarait Fourcroy, collaborateur de Lavoisier. L'opinion du très respecté Berzelius n'était pas différente. Plus radical encore le chimiste Charles Gerhardt déclarait : "le chimiste fait tout le contraire de la nature vivante ; il brûle, détruit, opère par analyse ; la force vitale opère par synthèse, elle reconstitue l'édifice abattu par les forces chimiques" (Précis de chimie organique, 1844). Le terme "d'organique" utilisé pour décrire cette nouvelle chimie illustrait d'ailleurs le fait qu'elle était supposée n'être mise en œuvre que par les seuls "organismes" vivants.

 

De la synthèse organique à la génétique.

 

Berthelot est de ceux qui refusent cette distinction. "La synthèse, dit-il, nous conduit à la démonstration de cette vérité capitale, que les forces chimiques qui régissent la matière organique sont réellement et sans réserve les mêmes que celles qui régissent la matière minérale" (La Chimie organique fondée sur la synthèse, 1860).

 

Preuve à l'appui, son expérience de "l'œuf électrique", présentée en 1862 devant l'Académie des sciences, est restée célèbre. Un ballon équipé de deux électrodes de carbone est rempli d'hydrogène. Des décharges électriques y étant répétées, le carbone et l'hydrogène se combinent pour former de l'acétylène C2H2. L'addition d'hydrogène puis d'eau sur la triple liaison liant les deux atomes de carbone de l'acétylène conduira ensuite à l'éthylène, C2H4, puis à l'alcool éthylique, C2H5OH, corps "organique" produit naturellement par la fermentation du glucose contenu, entre autre, dans le jus du raisin ou le malt des brasseries.

 

De la petite molécule d'alcool éthylique à la complexité de l'ensemble des corps organiques il y aura bien des étapes à franchir mais, devant une assemblée d'industriels de la chimie, Berthelot osait quand même une prophétie pour l'an 2000, date symbolique qui alimentait déjà nombre de fictions de l'époque.

 

"Un jour viendra où chacun emportera pour se nourrir sa petite tablette azotée, sa petite motte de matière grasse, son petit morceau de fécule ou de sucre, son petit flacon d'épices aromatiques, accommodés à son goût personnel ; tout cela fabriqué économiquement et en quantités inépuisables par nos usines ; tout cela indépendant des saisons irrégulières, de la pluie ou de la sécheresse, de la chaleur qui dessèche les plantes, ou de la gelée qui détruit l'espoir de fructification ; tout cela exempt de ces microbes pathogènes origine des épidémies et ennemis de la vie humaine". Rêve d'hier pour une "malbouffe" d'aujourd'hui, ainsi vivent les prophéties.

 

Plus conférencier que chercheur, Berthelot laissera à d'autres le soin de franchir les étapes de cette voie royale qu'il annonçait. Son obstination à refuser les atomes, et à imposer ce refus dans l'enseignement de la chimie en France, laissera le champ libre à la chimie allemande qui deviendra la première en Europe, en particulier sous l'impulsion de Friedrich August Kekulé (1829-1896). C'est ce dernier qui établira les différents modes de liaison des atomes de carbone, en particulier dans la molécule de benzène. La légende, véhiculée par le savant lui-même, est trop belle pour ne pas être rapportée : ce serait en rêvant une nuit à l'Ouroboros, le serpent se mordant la queue, symbole des alchimistes, qu'il aurait eu la vision de la structure cyclique du benzène.

 

 

L'Ouroboros

(voir aussi : Berthelot, Les origines de l'Alchimie, 1885)

 

Les élèves et successeurs de Kekulé, les Körner, Van't Hoff, Fischer, Baeyer, Friedel, Crafts… engagent alors la chimie dans l'extraordinaire aventure de la synthèse organique "acte de création qui mobilise toutes les facultés – raisonnement, intuition, goût esthétique" (Bernadette Bensaude-Vincent, Isabelle Stengers, Histoire de la chimie, La découverte, 1993).

 

La synthèse organique, nous l'avons déjà évoquée avec la houille et le pétrole. Elle a alimenté une industrie productrice de plastiques, de biocides et autres produits dont on peut discuter de l'intérêt et de la nocivité. Mais qui peut refuser de voir que, dans le même temps, la chimie organique, associée à la biologie, a fait faire un bond extraordinaire à la connaissance des mécanismes de la vie.

 

Depuis Lamarck et Darwin l'évolution du monde vivant alimente les débats des scientifiques et agite "l'opinion publique". En 1970, Jacques Monod (1910-1976) publie "Le hasard et la nécessité, essai sur la philosophie naturelle de la biologie moderne". L'ouvrage était, pour beaucoup de lectrices et lecteurs, l'occasion d'une prise de conscience des avancées de la connaissance dans le domaine de la biologie depuis près d'un siècle.

 

Jacques Monod devait alors sa notoriété au Prix Nobel de physiologie ou médecine qu'il avait partagé en 1965 avec François Jacob et André Lwoff pour leurs découvertes concernant le "contrôle génétique des synthèses enzymatiques et virales".

 

Faut-il décrypter ? Il y était question d'ADN, acide désoxyribonucléïque et de son messager l'ARN, acide ribo nucléique. Difficile de résumer en quelques lignes une histoire qui nous mène jusqu'au gène, ce groupe de molécules dont on sait aujourd'hui qu'il commande la mécanique du vivant. Elle commence en l'année 1869, quand le biologiste suisse, Friedrich Miescher, isole une substance riche en phosphore dans le noyau des cellules à laquelle il donne le nom de nucléine. Plus tard, l'allemand Richard Altmann montre que ce corps est la combinaison d'un acide, qu'il nomme acide nucléique et de protéines, un acide aminé.

 

Les trois lettres, ADN, devenues aussi banales dans le langage courant que peut l'être la formule CO2, représentent cet acide : l'acide désoxyribonucléïque. En 1896, Albrecht Kossel montre que l'acide se compose de quatre éléments, adénine, cytosine, thymine, guanine, désignées par les lettres A, C, T et G. Nous retiendrons seulement que ces quatre lettres, et les quatre molécules qu'elles désignent, constituent, associées sous formes de gènes, l'alphabet du code qui régit les mécanismes de la vie.

 

La génétique, associant les outils et les concepts de la biologie, de la chimie, de la physique, est certainement la plus grande aventure scientifique du 20ème siècle. De l'archéologue à qui elles apprennent le nom des parents de Toutânkhamon jusqu'au médecin qui cherche le remède à une maladie génétique, ses applications sont trop popularisées pour que nous en fassions ici la liste.

 

Posant la question "que sommes-nous", la génétique amène l'autre question : "d'où venons-nous".

 

Le carbone, du Big-bang à l'homo-sapiens.

 

Fred Hoyles (1915-2001), cosmologiste Britannique, n'imaginait pas le succès de son "big-bang" quand il utilisait cette expression ironique en 1950 pour désigner la théorie qui supposait une expansion de l'univers dont l'origine se situerait à 13,7 milliards d'années de notre ère.

 

Tout aurait donc commencé par un "Big-bang". C'est-à-dire une évolution de l'univers qui débute par un état dans lequel l'espace, le temps, l'énergie seraient une seule et même chose. Même si notre imagination est incapable de nous en donner une représentation, c'est du moins ce que décrivent les équations issues des théories actuelles.

 

A partir de cet indicible, l'univers se dilate à une vitesse prodigieuse. Arrive l'instant où se forment les premières particules : des quarks, des électrons, des neutrinos. Elles se combinent bientôt en protons et neutrons cohabitant avec leurs jumeaux d'antimatière qui peu à peu disparaîtront dans un scénario que les chercheurs modernes n'ont pas encore fini d'écrire.

 

Nous sommes alors à quelques milliers d'années de l'origine, la température est "descendue" jusqu'à 10.000 degrés. Apparaît l'atome le plus simple dont le noyau ne comporte qu'un seul proton : l'hydrogène. Vient ensuite l'hélium dont le noyau contient deux protons et deux neutrons. Chaque noyau étant associé à son cortège d'électrons. Les nuages d’hydrogène et d’hélium se refroidissent et se contractent sous l'effet de la gravité en une multitude de grumeaux : les galaxies.

 

Deux milliards d'années se sont passées. Les galaxies elles-mêmes se sont fractionnées en nuages d'hydrogène et d'hélium qui se concentrent à leur tour sous l'action de la gravitation. Leur densité augmente, leur température atteint des millions de degrés. Bientôt les chocs disloquent les atomes d'hydrogène dont les protons se regroupent quatre par quatre pour donner des noyaux d'hélium, libérant au passage d'énormes quantités d'énergie sous la forme d'un flux de particules de lumière : les photons. Ainsi naissent et brillent les premières étoiles.

 

La réserve d'hydrogène s'épuise. Faute de réactifs, le rayonnement de l'étoile fléchit et la gravitation reprend le dessus. Le cœur d'hélium atteint la centaine de millions de degrés. Dans ce formidable "Athanor" commence le rêve des alchimistes. Les noyaux d'hélium se combinent trois par trois pour former du carbone et quatre par quatre pour donner de l'oxygène. Puis se forme l'azote et ainsi naissent les quatre éléments primordiaux, ceux qui seront à l'origine de la vie : H, C, O, N.

 

Nous ne décrirons pas ici la vie mouvementée des étoiles. L'extinction des plus petites sous forme de "naine noire", l'explosion des plus grosses dans l'éclair d'une "supernova" visible même en plein jour. De ces vies naissent tous les éléments qui s'affichent dans les cases du tableau périodique et qui, expulsés lors des feux d'artifice des explosions finales, constituent la poussière interstellaire qui engendrera les planètes.

 

Naissance de la Planète bleue.

 

Un nuage d'hydrogène et d'hélium a pris la forme d'une élégante galaxie spirale, notre voie lactée. Parmi les étoiles qui y naissent l'une, de taille raisonnable, est située aux 2/3 de son centre, notre Soleil. Un anneau de poussières stellaires l'entoure. Celles-ci s'agrègent autour des plus gros grains. Ainsi se forment les planètes solaires elles-mêmes entourées d'anneaux et de satellites.

 

Une ségrégation s'établit. Plus proches du soleil sont les planètes telluriques : Mercure, Vénus, Terre, mars. Peu massives, elles ont un sol solide dont les roches sont composées des éléments les plus lourds. Plus loin se trouvent Jupiter, Saturne, Uranus, Neptune, les géantes gazeuses, essentiellement formées d'hydrogène et d'hélium.

 

La Terre, nous dit Stephen Hawking, est une suite de hasards heureux.

 

- Sa distance au soleil lui donne une température compatible avec la présence d'eau liquide.

 

- Son orbite est un cercle presque parfait, ce qui lui procure une température sensiblement constante et uniquement modulée par les saisons résultant de l'inclinaison de son axe de rotation par rapport à son plan orbital. Une orbite plus aplatie provoquerait l'ébullition des océans au moment où la Terre serait la plus proche du soleil et les ferait geler quand la Terre en serait la plus éloignée. Difficile de s'adapter !

 

- Sa masse est juste suffisante pour que la force de gravité lui conserve une atmosphère. Trop faible, elle perdrait ses gaz et aurait un ciel aussi noir que celui de la lune.

 

On sait aujourd'hui que ce hasard n'est pas unique. La traque des planètes orbitant autour de soleils étrangers a été lancée et la liste de celles tout aussi miraculeusement situées devrait s'allonger rapidement. L'hypothèse d'une vie qui pourrait s'y développer, peut-être même suivant le mode terrestre, prend corps. Et pourquoi ne pas rêver : des êtres intelligents, peut-être un jour, capteront les signaux que nous avons commencé à leur adresser.

 

Quand s'assemblent les molécules du vivant.

 

Revenons à la Terre. Vers les années 1950 on estimait son atmosphère initiale, constituée quatre milliards d'années plus tôt, comme étant composée de vapeur d'eau, d'hydrogène, de méthane et d'ammoniac. L'eau apporte l'oxygène. Le méthane apporte le carbone, l'ammoniac l'azote. L'hydrogène se présente aussi bien à l'état de simple molécule qu'associé à chacun des trois autres. Les quatre éléments constitutifs des acides aminés sont donc présents dans cette atmosphère. Est-ce suffisant pour produire ces molécules support du vivant?

 

En 1953, Le jeune chimiste Stanley Miller, encore étudiant en thèse, imaginait une expérience rappelant l'œuf de Berthelot. Dans un simple ballon de verre, un dispositif simulant le système "eau-atmosphère primitive" était soumis à l'action d'étincelles électriques reproduisant les éclairs qu'une atmosphère si chargée ne pouvait manquer de provoquer.

 

Après plusieurs jours d'exposition, les parois du ballon présentaient des traces huileuses et l'eau qu'il contenait était devenue brune. Dans cette "soupe primitive" l'étudiant trouvait trois acides aminés. La découverte faisait l'effet d'un coup de tonnerre et l'idée s'imposait : l'origine de la vie est terrestre !

 

Mais bientôt la terre quitte son statut privilégié. Les astronomes ont détecté dans le gaz interstellaire une multitude de molécules composées des quatre éléments du vivant, C, H, O, N. On y trouve essentiellement des molécules de dihydrogène H2, d'eau H2O. On y trouve aussi des molécules construites sur un squelette de carbone : du monoxyde de carbone CO, du méthane CH4, de l'ammoniac NH3, toutes molécules que l'on retrouve dans l'atmosphère initiale de la terre. On y détecte surtout une bonne centaine de molécules particulièrement complexes dont des acides aminés qui se concentrent sur les météorites. Une nouvelle proposition rencontre la faveur des scientifiques : la vie est née de l'espace, la Terre n'ayant été qu'un support fertile !

 

Mais faut-il exclure totalement une origine terrestre ? La Terre, avec ses volcans ou ses sources hydrothermales enfouies dans les fonds océaniques est riche en milieux où pressions et températures peuvent provoquer des synthèses proches de celles naissant dans l'univers stellaire. Il est admis que les acides aminés, produits aussi bien sur terre que dans l'espace, ont trouvé sur notre planète, et en particulier dans ses océans, les conditions des réactions chimiques propices à la naissance de la vie. L'eau est en effet essentielle. Elle concentre les molécules qu'elle reçoit et favorise les occasions de rencontres. Elle protège les nouvelles combinaisons des rayons ultraviolets issus d'un soleil encore particulièrement actif.

 

En quelques centaines de millions d'années les molécules se complexifient, les acides aminés s'assemblent en protéines de plus en plus longues jusqu'à atteindre les millions d'atomes de l'ADN. La vie s'installe dans une atmosphère sans oxygène jusqu'à ce qu'apparaissent les premiers organismes utilisant le rayonnement solaire pour puiser leur carbone dans le gaz carbonique de l'atmosphère en y rejetant un déchet, l'oxygène, qui rend l'atmosphère toxique pour la plupart des organismes vivant alors sur terre.

 

Une autre forme de vie va naître et une longue évolution mènera à l'être humain. Un être humain qui s'interroge encore sur la nature de cette vie qui anime la matière carbonée et sur la suite de hasards qui a fait s'allumer, chez lui, cette conscience qui lui a permis d'imaginer toute cette histoire. Ailleurs, peut-être, sur d'autres planètes tournant autour d'autres soleils, d'autres êtres vivent.

 

Des êtres qui pourraient nous être proches ? Comme Jacques Monod il est difficile de l'imaginer. "L'homme sait enfin qu'il est seul dans l'immensité indifférente de l'Univers d'où il a émergé par hasard", écrivait-il en conclusion de son essai sur le "hasard et la nécessité".

 

Chacune des espèces vivant sur terre est elle-même seule dans "l'immensité indifférente de l'Univers" mais on sait, à présent, que toutes sont interdépendantes. Le hasard les a fait naître mais le hasard n'est plus nécessairement la première cause de leur disparition. Un espèce, l'espèce humaine, est devenue, en moins de deux siècles, le premier des animaux terrestres capable de modifier, profondément, les conditions de la vie sur la planète. Au point d'y menacer l'existence des autres espèces, y compris de la sienne.

 

_____________________________________________________________

 

voir aussi : Carbone et CO2. De l'origine de la vie au dérèglement climatique. Toute une histoire.

 

 

Partager cet article
Repost0
8 septembre 2021 3 08 /09 /septembre /2021 17:00

 

Les récentes analyses scientifiques d’une œuvre du peintre David (1748-1825) bouleversent notre compréhension de ce portrait emblématique en révélant des modifications artistiques majeures.

 

 

L'analyse du tableau de Jacques-Louis David, "Antoine Laurent Lavoisier (1743-1794) et Marie-Anne Lavoisier  (1758-1836)" a révélé de nombreuses modifications et une première version de l'oeuvre, différente.

Crédits: Metropolitan of Art, MET, New York

 

"Rien ne se crée, rien ne se perd, tout se transforme"… Lavoisier, le père de la chimie moderne n’aurait pu mieux dire ! Dans l’étude d’une des plus célèbres réalisations du peintre Jacques-Louis David (1748-1825), le double Portrait d’Antoine-Laurent Lavoisier et Marie-Anne Lavoisier, exposé depuis 1977 au Metropolitan Museum of Art (MET) de New York (Etats-Unis), l’utilisation des nouvelles technologies a révélé un secret au coeur de l'oeuvre, attribuant soudain un regain d’intérêt pour cette toile représentant le couple de savants six ans avant qu'Antoine-Laurent Lavoisier ne soit guillotiné sous la Terreur en 1794.

 

Un article publié dans la revue Heritage science sous la direction du conservateur David Pullins affirme en effet que trois années d'analyses ont révélé des modifications importantes apportées par le chef de file du mouvement néoclassique français à la composition originale de son tableau monumental (259,7 x 194,6cm). Cette "première étude technique approfondie jamais réalisée sur un tableau de David", laisse en effet apparaitre le couple dans une toute autre posture et un décor beaucoup plus aristocratique. 

 

 

Les transformations de l'oeuvre originale "Portrait d’Antoine-Laurent Lavoisier (1743-1794) et Marie-Anne Lavoisier (1758-1836)", par le peintre David (1748-1825), révélées par de récents examens.  ©Metropolitan Musem of Art, New york.

Un riche couple aristocratique "consommateur de grand luxe"

 

Les analyses effectuées par les équipes de conservation et de recherche scientifique du MET ont été réalisées grâce notamment à la microscopie optique, utilisée initialement dans le cadre de l’élimination d’un vernis synthétique détérioré. Une approche analytique combinant de la spectrométrie de fluorescence des rayons X (MA-XRF), de la spectroscopie Raman associés à de la microscopie électronique à balayage et de la réflectographie infrarouge (IRR) ont ensuite permis de faire apparaitre certaines irrégularités et des couleurs sous-jacentes inattendues. Aux yeux des spécialistes, celles-ci révèlent qu’à l’origine, le peintre David, artiste alors à la mode au sein de la haute société parisienne, avait opté pour une tout autre représentation du couple. Pas celle du savant et de son épouse et collaboratrice "Ils travaillaient ensemble à la publication d’un Traité élémentaire de chimie", explique Stephane Blond, Maître de conférences en histoire moderne à l’Université d’Evry (Essonne).

 

Mais plutôt celle d’un riche couple aristocratique "consommateur de grand luxe". Ainsi, madame Lavoisier arborait initialement un grand chapeau à plumes orné de rubans bleus, de noeuds et de fleurs artificielles -dit "chapeau à la Tarare"- très en vogue en ces années. De même, la nappe rouge a drapé ce qui était originellement un bureau décoré de bronze doré. Ce n'est qu'ultérieurement que David a choisi d'y rajouter les instruments scientifiques qui marquent la place du couple à la naissance de la chimie moderne, changeant ainsi radicalement le sens de son tableau. David montre ainsi Lavoisier dans ce qui est sans doute l'hôtel du Grand Arsenal où le savant des Lumières possédait un laboratoire que matérialisent baromètre, gazomètre et autre ballon de verre sur la toile. En procédant à ces modifications, le peintre a-t-il choisi d'atténuer l'impression de richesse émanant de sa première version et de privilégier le savant par rapport à sa charge de Fermier général, riche collecteur des impôts royaux?

 

Le tableau de Jacques-Louis David tel qu'il est aujourd'hui exposé. © Metropolitan Musem of Art, New york.

Des modifications apportées par David juste avant la Révolution Française de 1789

 

"Il a finalement mis en avant le statut de scientifiques progressistes du couple, présentant Lavoisier et son épouse comme des penseurs rationnels réunis dans une pose affectueuse", écrivent les auteurs de la publication. Une pose dirait-on plus populaire. Les analyses ont également permis de comprendre de quelle manière magistrale David est parvenu à modifier son œuvre en dissimulant la première version par l’utilisation de mélanges de peinture qui permettaient une couverture maximale de la toile, en laissant peu d’indices de ses transformations en surface.  

 

Probable version originale du portrait du couple Lavoisier par David. ©Metropolitan Musem of Art, New york.

 

La toile ayant été datée et signée en 1788, ces modifications ont été apportées par David juste avant la Révolution Française de 1789. Des circonstances historiques qui expliquent sans doute ces changements, l'évolution rapide des évènements ayant peut-être conduit l'artiste (et ses modèles?) a faire preuve d'une sobre prudence. L'hostilité envers Lavoisier avait en effet grandi depuis sa commande en 1784 d'un mur autour de Paris destiné à faire respecter la perception des impôts, peut-on lire dans le magazine Burlington, qui publie également ces résultats. Ce ressentiment n'a d'ailleurs fait que croître, atteignant son paroxysme à  l'été 1789, lorsque le savant, trois semaines après la chute de la Bastille, avait en tant que Régisseur des poudres, ordonné qu'une grande quantité de barils de poudre à canon soient retirés de l'Arsenal de Paris: une façon de rendre les munitions inaccessibles, selon la population, ce qui avait déclenché des émeutes. Une chose est certaine, le renom "et le génie de Lavoisier ne l'ont pas sauvé de la guillotine", a commenté David Pullins. Et ce sont ses fonctions de collecteur des impôts qui l'y ont plus sûrement envoyées!

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 20:23

L'observation du dégagement "d'esprits" lors de la distillation de bois a été signalée, dès la fin du 17ème siècle par plusieurs scientifiques. Nous citerons à nouveau Stephen Hales et sa Statique de Végétaux (1735). Considérant que l'air fournissait l'essentiel de la matière des plantes, il avait entrepris d'en distiller une multitude. Exemple : un morceau de chêne.

 

"Un demi pouce cubique ou 135 grains d'un cœur de chêne fraichement coupé d'un arbre vigoureux et croissant, produisit 128 pouces cubiques d'air ; c'est-à-dire, une quantité égale à 216 fois le volume du morceau de chêne".

 

Comme il le souhaitait, de nombreux chimistes poursuivirent ses recherches sur les "airs" dégagés dans ces distillations.

 

Philippe Lebon invente le gazogène.

 

On rapporte qu'en l'année 1791, un jeune ingénieur issu de l'école des Ponts et Chaussées, Philippe Lebon (1767-1804), ayant placé une fiole de verre contenant de la sciure de bois sur un feu vif, observa que la "fumée" qui sortait de l'orifice du flacon s'enflammait quand on en approchait une bougie.

 

L'observation n'était pas nouvelle mais l'idée d'en faire une application industrielle mit le jeune homme dans un véritable état d'exaltation. Dans la cour de la maison de son père, à Brachay en Haute-Marne, il réalisa l'équivalent d'une cornue, construite de briques et fortement chauffée par un fourneau placé au-dessous. Les vapeurs qui se dégageaient étaient conduites dans une première cuve pleine d'eau, qui y recueillait les produits solubles et les goudrons, avant de sortir à l'air libre. Les gaz, enflammés donnaient une flamme très vive. Encouragé par ce premier résultat il perfectionna sa méthode et, en 1799, obtenait un brevet "pour exploiter un système d'éclairage désigné par le terme de thermolampe". Faute d'obtenir des pouvoirs publics un soutien suffisant il décidait d'en équiper son domicile et d'inviter les Parisiens à venir le visiter.

 

Après le succès de cette publicité, une première installation industrielle était réalisée dans la forêt de Rouvray, prés du Havre. La méthode commençait à faire ses preuves quand le jeune inventeur perdait la vie dans des conditions dramatiques. Ayant été invité, en tant qu'ingénieur en chef des Ponts et Chaussées, au sacre de Napoléon 1er le 2 décembre 1804, il était assassiné en traversant ce qui est aujourd'hui les Champs Elysées mais qui était alors un espace malfamé.

 

Ainsi se terminait en France une première expérience d'éclairage au "gaz hydrogène carboné", ainsi que l'avait nommé Lebon. Elle devait nous revenir d'Angleterre quelques années plus tard mais à partir de la houille. Nous en reparlerons.

 

Gazogène à bois, le retour.

 

Le gazogène à bois, tel qu'inventé par Philippe Lebon, avait l'avantage, sur celui utilisant la houille, de ne faire appel qu'à une énergie disponible, bon marché, renouvelable et utilisable en période de pénurie.

 

Des moteurs à explosion, des véhicules, ont été équipés de gazogènes. Ils pouvaient avoir une chance de succès à un moment où "l'essence de pétrole" était encore une denrée rare.

 

Cette rareté s'est particulièrement fait sentir pendant et après les guerres du début du 20ème siècle. On retrouve alors la vertu du bois, transformé en charbon de bois, pour l'alimentation de moteurs en "gaz pauvre". En réalisant une combustion du charbon dans une atmosphère sous-oxygénée on obtient du monoxyde de carbone CO qui peut donner un mélange explosif avec l'oxygène de l'air dans le cylindre d'un moteur en se transformant en dioxyde de carbone CO2.

 

La revue La Nature de mars 1922 consacre un article au gazogène Cazes, l'un des plus célèbres de l'époque.

 

Principaux atouts avancés : sa faible consommation. Un camion de quatre tonnes de charge utile consomme "seulement" entre 80 et 100 kg de charbon de bois aux 100 kilomètres et de 75 à 100 litres d'eau pour la vaporisation et le lavage des gaz.

 

Il semble surtout intéressant pour les gros porteurs. Il équipe par exemple les tracteurs Latil. Utilisés pendant la guerre de 1914-1918 pour tracter les canons, ils ont été reconvertis dans le civil. Un tracteur Latil de 20 tonnes utilisé pour transporter du bois et équipé d'un gazogène aurait fait économiser 40 000 francs de l'époque à son propriétaire.

 

 

Tracteur Latil équipé d'un gazogène.

Collection Christian Latil

 

Les produits pétroliers, dont la France est particulièrement dépourvue, restent coûteux. Le gazogène continuera donc à apparaître comme une solution.

 

La Direction Générale des Eaux et Forêts est particulièrement intéressée à la promotion de ce système. Tous les ans, de 1921 à 1939, elle organise, avec l'Automobile Club de France, des concours et des raids de véhicules à Gazogène. En 1925, la Compagnie des Chemins de Fer de Paris à Orléans et le Comité de la Forêt du Loir-et-Cher, organisaient un "Congrès du bois et du charbon utilisés comme carburants". En 1929 c'est la Compagnie de Chemin de fer de Paris à Lyon et à la Méditerranée (PLM) qui organise à son tour à Lyon un "Congrès du carbone végétal". L'un des intervenants y expose que la production française de charbon de bois est de 300 000 tonnes dont plus de 100 000 sont exportées et affirme qu'une meilleure utilisation des bois de petit diamètre permettrait de multiplier la production par cinq. En 1936, la société Panhard fait la publicité d'une "automotrice à gazogène à charbon de bois".

 

 

 

 

On ne compte plus les initiatives pour populariser ce type de carburant. En 1937, vingt véhicules dont sept camions lourds s'affrontent sur un circuit de 1700 kilomètres à l'occasion du Rallye des Eaux et Forêts. En 1938 on dénombre 6000 véhicules à gazogène, 19 autorails, plusieurs dizaines de péniches, plus de 3000 moteurs fixes.

 

Le système fait le bonheur des colonies françaises. Jusqu'en 1950 des gazogènes fournissent la vapeur qui fait tourner les génératrices électriques qui alimentent les villes de Conakry et Abidjan.

 

La guerre de 1939-45 donne un nouvel essor aux gazogènes. A la fin du conflit, sur les 100 000 véhicules utilitaires qui fonctionnent encore en France, 89 000 sont équipés de gazogènes. On estime que pendant la période de guerre, l'utilisation du bois a permis l'économie de 1 500 000 tonnes de produits pétroliers.

 

 

Véhicule à gazogène pendant la guerre 39-45.

 

Retour aux sources ?

 

Le retour du bois-énergie se fait également sous forme de gaz mais, plutôt que d'utiliser du charbon de bois pour fabriquer du "gaz pauvre", on préfèrera la méthanisation qui, en utilisant des déchets organiques sans valeur marchande, fait travailler gratuitement des bactéries et permet une cogénération chaleur/électricité. On commence même à voir, dans certaines villes, des bus dont les moteurs utilisent le méthane issu des déchets urbains.

 

 

 

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 20:07

De quand date l'usage du charbon ? Le nom est réputé être issu du latin carbo signifiant braise. Le charbon serait donc une "braise éteinte", à moins qu'une braise ne soit elle-même qu'un "charbon ardent".

 

Une chose est certaine, le charbon qui a accompagné les sociétés humaines dans leur développement matériel était ce que nous distinguons aujourd'hui comme "charbon de bois" pour le différencier de notre "charbon" contemporain qui n'était à l'origine qu'un "charbon de terre" peu valorisé.

 

L'antiquité du charbon de bois.

 

En découvrant le feu, les humains ont nécessairement découvert les braises et le charbon de bois. Le charbon des restes des foyers est d'ailleurs la meilleure façon de les dater en utilisant la propriété radioactive du carbone 14.

 

Si la cuisine ou même la poterie pouvaient se contenter de la chaleur d'un feu de bois, les débuts de la métallurgie, ou la fusion du verre, nécessitaient des températures élevées qui pouvaient plus facilement s'obtenir par un feu de charbon de bois alimenté par l'air d'un soufflet.

 

Premier "métal" utilisé par l'homme pour ses outils, ses armes, ses bijoux, le bronze, alliage de cuivre et d'étain est attesté en Egypte dès –2550. Dans la chronologie admise en Europe, les "âges du bronze" européen s'étalent des environs de –2000 jusqu'à –750, date à laquelle commence "l'âge du fer". La fonte du bronze a besoin du charbon de bois pour atteindre les températures, supérieures à 900°C, nécessaires à l'opération.

 

Quand le fer remplace le bronze, les besoins en charbon de bois s'accroissent au même rythme que celui de la diffusion de ce métal.

 

L'industrie métallurgique et la grande époque des charbonniers.

 

Nous ne détaillerons pas ici les techniques de la métallurgie, nous les avons déjà largement évoquées quand nous avons parlé de Stahl, de Lavoisier et de la querelle du Phlogistique. Notons simplement que la métallurgie est d'abord un "art du feu" qui commence par la fabrication du charbon de bois. A l'époque médiévale et jusqu'au 18ème siècle, la proximité d'une forêt était tout aussi nécessaire que celle des minerais pour que s'installent des forges.

 

La construction des meules de charbon de bois

Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers (1751)

 

Dans les clairières fumaient les meules, pyramides recouvertes de terre, dont il fallait mener la combustion de main de maître, pendant plusieurs journées, pour que le bois se transforme en charbon sans se consumer totalement.

 

A la fin du 18ème siècle le développement de la métallurgie crée la pénurie. Pierre-Clément de Grignon est "Maître de Forge" à Bayard sur Marne et Inspecteur Général des usines à feu sous Louis XVI. On lui attribue l'invention du mot sidérurgie. En 1775, regrettant la "perte irréparable" des forêts par des sidérurgistes incompétents, il publie des "Mémoires de Physique sur l'art de fabriquer le fer" dans le but d'y remédier.

 

"Les forêts s'appauvrissent et se détruisent par l'excès d'une consommation abusive. Quel intérêt la société n'a-t-elle pas de découvrir des moyens de conserver un bien si précieux, si nécessaire et si indispensable à nos Manufactures ? L'on y peut parvenir par une sage administration ; mais plus efficacement en économisant le charbon dans les travaux qui ont pour objet la réduction des mines (minerais) et leur métallisation, par la juste application des lois de la pyrotechnie dans la construction des fourneaux qui en consomment immensément ; puisqu'un seul fourneau consomme ordinairement en une année le produit de deux cents arpents de bois de l'âge de vingt-cinq ans : il y a en France près de six cents fourneaux de fonderie, c'est cent vingt mille arpents par an". Un arpent valant sensiblement ½ hectare, ce sont donc soixante mille hectares de bois qui disparaissent chaque année.

 

Il propose donc le plan d'un fourneau permettant d'économiser un cinquième du charbon habituellement utilisé.

 

Plan d'un fourneau économe en charbon de bois.

Grignon, Mémoires de Physique sur l'art de fabriquer le fer, 1775

 

Grignon est aussi un spécialiste en fabrication de charbon de bois. "Il en est de durs, de doux, de violents" écrit-il. Ils n'ont pas le même comportement selon qu'ils sont issus du chêne ou d'autres essences, qu'ils ont poussé sur des coteaux calcaires ou des montagnes granitiques. Le métallurgiste devra en tenir compte.

 

Mais qu'est-ce que le charbon ? Le chimiste viendra bientôt au secours du manufacturier.

 

Les chimistes et le charbon.

 

Avec Stephen Hales (1677-1761) nous avons rencontré le chimiste qui, le premier, a "distillé" du bois, des huiles et une multitude de matières organiques pour en extraire les "airs" qui, pensait-il, y étaient fixés et en constituaient la part essentielle. A la fin de cette opération, un résidu noir solide restait dans la cornue. Ce produit avait la propriété de pouvoir se consumer dans l'air sans flamme et en produisant une forte chaleur. C'est à ce corps que Hales donnait le nom de charbon.

 

Pour Macquer (1718-1784) le charbon est du "phlogistique fixé" : "une partie du Phlogistique contenu dans les matières animales et végétales, lorsqu'on fait brûler ces matières en les empêchant de s'enflammer, se joint intimement avec leur partie terreuse les plus fixes, et forme un composé qui ne peut se consumer qu'en rougissant et scintillant à l'air libre, sans jeter de flamme : on a donné à ce composé le nom de charbon".

 

Propriété essentielle de ce charbon pour l'adepte de Stahl qu'est Macquer : "il est très-propre à transmettre à d'autres substances le Phlogistique qu'il contient".

 

Lavoisier, adversaire du Phlogistique, y voit, quant à lui, un nouvel élément chimique. Contrairement à Hales et Macquer, il conservera le nom de charbon pour la matière brute ainsi nommée dans le commerce. Il désignera, dans un premier temps, par "substance charbonneuse" "le charbon dépouillé d’air inflammable aqueux, de terre et d’alcali fixe". Nous avons vu qu'il donnera ensuite à cette "substance charbonneuse" le nom de carbone.

 

Nous avons cité Stahl comme le premier à avoir noté le rôle "chimique" du charbon dans la réduction des minerais en métaux. Une observation ancienne aurait pu amener aux mêmes conclusions : celle du caractère explosif de la poudre noire et du rôle du charbon dans ce phénomène. Car, avec la métallurgie, la fabrication de poudre a été l'une des principales opérations industrielles liées au charbon de bois.

 

Lavoisier, le charbon et la poudre noire.

 

La poudre noire a été inventée en Chine et est connue pour avoir été utilisée comme arme aux alentours du 7ème siècle. Elle est réputée avoir été importée en occident par Marco Polo au 13ème siècle. C'est un mélange explosif de salpêtre, de soufre et de charbon de bois.

 

La poudre noire intéresse directement Lavoisier qui occupait la fonction de régisseur des poudres à une époque où, déjà, la science acceptait de se mettre au service de la guerre.

 

Dans un texte daté de 1793, et destiné à être publié dans l'Encyclopédie Méthodique, Lavoisier traite donc "Du charbon considéré chimiquement". Ce texte est une bonne synthèse des connaissances auxquelles il est parvenu sur le carbone et sur sa combinaison avec l'oxygène.

 

Dans cet article, qui s'adresse en priorité aux artilleurs et aux ingénieurs des manufactures de poudre, le mot "charbon" est encore utilisé, à la place de carbone. Il précise donc qu'on donne le nom de charbon "à une substance combustible noire qui reste de la distillation du bois, et en général des végétaux, ou bien qu'on en retire en les brûlant à l'air libre, et en arrêtant la combustion par suffocation".

 

La suite du mémoire traitera de la qualité des différents charbons de bois. En l'occurrence il doit combattre un préjugé. Le seul charbon autorisé pour la préparation de la poudre royale était celui réalisé avec le bois de "Bourdaine" :

"On a longtemps employé le saule, écrit-il, et on y avait été déterminé sans doute par sa légèreté et par la facilité de s'en procurer ; mais une ordonnance du Roi du 4 avril 1686 prescrit de n'employer à l'avenir que la bourdaine. La rareté de ce bois dans quelques provinces a obligé le conseil à prendre des précautions particulières pour assurer à l'administration des poudres les quantités de ce bois qui lui sont nécessaires ; mais il y a quelque lieu de craindre que le choix prescrit par l'ordonnance de 1686 n'ait pas été déterminé par des expériences assez décisives".

 

Ces expériences qui manquaient, il les réalise et après avoir testé la qualité calorifique de différents charbons, il aborde la question suivante : quel est le rôle du charbon dans la poudre noire ? La réponse nous ramène à la propriété expansive des gaz. Dans la réaction violente du carbone avec l'oxygène du salpêtre, Lavoisier explique que la rapide expansion des gaz qui en résulte, et en particulier celle du dioxyde de carbone, est responsable du phénomène d'explosion.

 

"Rien n'est plus facile d'après ce qu'on vient d'exposer que d'expliquer ce qui a lieu dans la détonation du nitre et, en général, dans toute détonation. Ce phénomène consiste dans la conversion subite et instantanée d'un corps solide en un fluide élastique aériforme"

 

Des évaluations faites des volumes gazeux obtenus, "on peut conclure, dit-il, sans rien exagérer, que le fluide élastique qui se dégage de la détonation tend à occuper à l'instant de l'inflammation un espace au moins 2000 fois plus grand que n'occupait le salpêtre".

 

La poudre n'a pas nécessairement une application militaire. Elle est utile à l'exploitation de mines et des carrières. On tentera aussi de l'utiliser dans le cylindre des premiers moteurs à "explosion".

 

Au moment où Lavoisier rédige ce mémoire ce sont d'abord les armées qui en réclament.

 

Un "rapport du comité de salut public sur la nécessité d’augmenter la fabrication d’armes, de salpêtre et de poudre, pour accroître tout à coup, dans une grande proportion, les moyens de défense de la République et d’exterminer ses ennemis", daté du 1er février 1794, se félicite d'avoir " rassemblé les hommes les plus éclairés de Paris dans la chimie et dans les arts chimiques". Un "nouvel art" de fabriquer la poudre "est sorti, disent-ils, tout entier et presque porté à sa perfection de la réunion fraternelle et patriotique ainsi que des veilles des artistes et des savants."

 

Pourtant, le savant de Paris, le plus éclairé "dans la chimie et les arts chimiques", le régisseur des poudres qui avait fait de sa fabrication un "art" industriel, mourait sur l'échafaud trois mois plus tard, le 8 mai, emporté par le tourbillon révolutionnaire.

 

L'explosion de la poudrerie de Grenelle le 31 août 1794, quelques mois après la mort de Lavoisier, fera 1000 morts. (document ministère de l'écologie)

 

Coup d'œil sur le charbon de bois aujourd'hui.

 

Pour en revenir au charbon de bois, essentiellement utilisé aujourd'hui, dans les sociétés industrialisées, pour alimenter le barbecue des jours d'été, il y a retrouvé une image plutôt sympathique. Mais serait-il menacé ? Le Journal Officiel de la République française du 20 janvier 2011 publie une question écrite d'un sénateur des Côtes-d'Or adressée à la "Ministre de l'Ecologie et du Développement Durable" au sujet de l'industrie française du charbon de bois. Son intervention, dont le but est, entre autres, de faire la promotion d'une entreprise de son département, débute par un éloge appuyé :

 

"Excellent réducteur, le charbon de bois "haut de gamme" carboépuré, conforme à la norme AFNOR, à destination de la restauration et des barbecues, est à nouveau très demandé, de même que pour la production "d'aciers écologiques ". En effet, le charbon de bois est une ressource renouvelable qui, en brûlant, libère moins de dioxyde de carbone que le charbon fossile. Le secteur du charbon de bois à usage industriel est donc en plein essor".

 

Mais alors où est le problème ?

 

Les producteurs de charbon de bois utilisent essentiellement les "dosses" des scieries. Ce sont les premières et dernières planches couvertes d'écorce et inutilisables en menuiserie. Mais voilà : avec le développement du bois-énergie, les scieurs installent des broyeurs et commercialisent ces dosses sous forme de copeaux ou de granulés. La matière première manque donc aux charbonniers.

 

Réponse prudente de la ministre, c'est "l'Europe" qui impose cette politique : "L'importance croissante du bois comme source d'énergie s'inscrit dans le plan national en faveur des énergies renouvelables établi en application de l'article 4 de la directive 2009/28/CE de l'Union européenne. Dans ce contexte qui s'impose à la France, celle-ci a fait le choix d'un développement raisonné et encadré des énergies renouvelables". Noter les prudents "raisonné" et "encadré".

 

Pour "articuler le développement des énergies renouvelables avec la pérennité des filières existantes, notamment de production de matériaux, de chimie du végétal (c'est nous qui soulignons) ou de carbonisation" la ministre annonce donc "la mobilisation de la ressource sylvicole de 21 millions de mètres cubes de bois supplémentaires à l'horizon 2020".

 

La Forêt, nouveau pétrole de la France ? "Trois tonnes de bois d'élagage équivalent à une tonne de fioul ; une tonne de bois consommée en substitution du fioul correspond à une tonne de CO2 évitée" indique une publication de l'Agence Régionale de l'Environnement de Haute-Normandie. La "mobilisation de la ressource sylvicole" équivalente, en moyenne, à une production de 12 millions de tonnes de bois ferait donc économiser 4 millions de tonnes de fioul, à comparer aux quinze millions de tonnes de fioul domestique actuellement consommés annuellement en France. Rendez-vous est pris en 2020 !

 

A noter aussi, dans la question du sénateur, la référence à la production "d'aciers écologiques" par du charbon de bois.

 

Ecologique ? On se souvient de l'Angleterre déboisée par sa sidérurgie au 18ème siècle et de Grignon, Maître de Forge, en France, déclarant en 1775 que "les forêts s'appauvrissent et se détruisent par l'excès d'une consommation abusive". On sait aussi qu'il existe, encore, des installations sidérurgiques importantes fonctionnant au charbon de bois. C'est le cas du Brésil, 9ème producteur mondial d'acier, qui reste le seul pays au monde à produire 35% de la fonte et de l'acier qui sort de ses fours, à partir de ce charbon issu, pour l'essentiel, des forêts amazoniennes ou de plantations d'eucalyptus. On estime, cependant, que 60% de ce charbon est produit par des structures "clandestines" dans des conditions sociales dégradées et dans une forêt déjà menacée par un déboisement en faveur des productions agricoles à vocation industrielle. Ce "verdissement" industriel serait-il vraiment "écologique" ?

 

N'oublions pas, cependant, que le charbon de bois est encore, avec le bois, une des sources essentielles de combustible domestique dans une large partie de la Planète. La FAO (Organisation des Etats-Unis pour l'Alimentation et l'Agriculture) nous indique que la production mondiale de bois de chauffage s’est élevée à 1 891 millions de m³ en 2011 et que près de 49 millions de tonnes de charbon de bois ont été produits la même année.

 

Deux milliards de personnes dépendent du bois comme source de chauffage. En Afrique, le bois, brut ou sous forme de charbon, représente de l'ordre de 70% de l'énergie utilisée. La consommation de charbon de bois de cette région représente 59% de la production mondiale et supplante peu à peu le bois. Cette énergie renouvelable est donc indispensable. On constate pourtant déjà qu'elle devra être exploitée avec mesure. On imagine aisément les effets, là aussi, d'une déforestation accélérée sur l'économie et l'écologie de ces pays et la nécessité d'y développer des sources d'énergies renouvelables complémentaires ou alternatives comme le recours à l'énergie solaire.

 

Quoi qu'il en soit, le bois et le charbon de bois, énergies des temps anciens, ont encore un bel avenir dans une société plus sobre et plus soucieuse de la qualité de son environnement naturel.

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 19:30

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

Histoire du carbone et du CO2.

 

Un livre chez Vuibert.

 

feuilleter

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?


contact : gerard.borvon@wanadoo.fr

02 98 85 12 30


L’introduction :

 

CO2, fatal ou vital ?

 

« CO2 - Élixir de vie et tueur du climat » est le titre d’une exposition présentée au musée Naturama de Aarau en Suisse à la charnière des années 2012 et 2013.

 

Élixir… le mot est fort. Il a été emprunté à l’arabe médiéval « al iksīr » désignant la liqueur d’immortalité des alchimistes ou la pierre philosophale supposée transformer le plomb en or.

 

Dans une première partie nous choisirons ce côté lumineux de l’histoire.
 

Nous découvrirons la suite de tâtonnements, de réussites et aussi parfois d’échecs, qui a fait prendre conscience de l’existence et du rôle de cet « élixir », le dioxyde de carbone et de ce joyau minéral, le carbone.

 

Tueur de climat. Qui peut encore le nier ? Et qui peut refuser de voir que la dangereuse augmentation du CO2 dans l’atmosphère, loin d’être une malédiction portée par ce gaz, est le résultat de l’emballement d’un monde industriel développé qui gaspille les ressources fossiles accumulées sur la planète au cours de millions d’années et les disperse sous forme d’objets inutiles et de polluants multiples.

 

Élixir ou poison, amour ou désamour… Le carbone et le dioxyde de carbone sont symboliques de cette chimie aux deux visages qui sont aussi ceux de la science en général.

 

D’une part, une science « pour comprendre », qui enthousiasme les scientifiques comme les esprits curieux par ses extraordinaires avancées dans la connaissance des phénomènes naturels. Une science qui donne la liberté de penser le monde en dehors des dogmes et qui, en même temps, peut apporter du confort à la vie quotidienne de chacune et chacun.

 

De l’autre côté, une science au service d’une « croissance infinie », décrétée par un système économique qui impose ses choix techniques et politiques. Une science et une technique dont les bénéfices pour la société sont de plus en plus occultés par les nuisances sociales et environnementales qu’elles provoquent.

 

Qui s’intéresse à l’histoire des sciences et des techniques ne peut échapper à ce double sentiment :

 

- L’émerveillement devant l’ingéniosité de l’esprit humain et les constructions intellectuelles et matérielles qu’il met en oeuvre pour comprendre son environnement et améliorer son cadre de vie.

 

- La lucidité devant le redoutable pouvoir des sciences et des techniques entre les mains de ceux pour qui elles représentent d’abord un outil pour posséder ou dominer.

 

À travers cette histoire du carbone et du CO2, nous n’échapperons pas à ces allers et retours.

 

Depuis l’Antiquité grecque jusqu’à Lavoisier nous suivrons une science dans laquelle nous serons tentés de ne reconnaître que la curiosité de l’enfance et l’enthousiasme de l’adolescence. Cette première partie nous apprendra ce que sont le carbone et le CO2 et comment ils contribuent à la vie sur cette planète.

 

Nous verrons ensuite une accélération extraordinaire des connaissances scientifiques et une multiplication de leurs applications techniques, au cours d’un xixe siècle qui s’achève avec les ondes électromagnétiques, les rayons X, la radioactivité, les premières automobiles, etc. Viendra ensuite le xxe siècle qui exploitera ces découvertes, pour le confort des sociétés développées, en même temps que se développeront leurs usages les plus redoutables.

 

Un développement qui amène à s’interroger sur la fonction des sciences dans nos sociétés. Car les scientifiques en font eux-mêmes le constat : alors qu’elle est depuis longtemps un indiscutable synonyme de progrès, à la fois pour les connaissances et pour la vie quotidienne, un désamour s’installe entre la science et la société.

 

C’est dans ces moments de doute qu’un retour aux sources peut faire revivre, à travers les écrits des auteurs des époques antérieures, les élans et les joies des premiers succès. Peut-être trouverons-nous également, dans ces expériences passées, des aides pour imaginer un nouvel avenir des sciences dans une société qui fonctionnerait sur d’autres bases que celles d’une croissance matérielle effrénée.

 

Note : nous avons choisi de scinder ce texte en cinq parties qui s’enchaînent mais qui pourraient également se lire de façon séparée.


 


Table des matières

 

CO2, fatal ou vital ?.

Première partie. D’Empédocle à Lavoisier, des quatre éléments à la naissance du carbone.

 

Au début étaient les quatre éléments. (voir)

Un modèle d’une grande puissance évocatrice.

Des quatre éléments aux quatre humeurs.

L’intermédiaire alchimique.

 

Jean-Baptiste Van Helmont, l’eau, la croissance des végétaux
et le « gas silvestre ». (voir)

L’alchimiste blasphémateur.

Les Anciens se sont trompés : il n’existe qu’un seul élément !.

Lavoisier et la contestation de la transmutation de l’eau en terre.

Au sujet du « gas silvestre » et de la naissance du mot « gaz ».

Hommage rendu à Van Helmont : l’adoption du mot « gaz ».

 

Georg Ernst Stahl, de l’élément feu jusqu’au phlogistique. (voir)

De l’alchimie à la chimie.

Du « principe sulfureux » au « principe inflammable » : le phlogistique.

Le charbon et les métallurgistes.

Un modèle diffusé par les chimistes français.

Quand Lavoisier était encore phlogisticien.

 

La course aux airs.

Stephen Hales (1677-1761). Quand l’air se transforme en pierre !. (voir)

Joseph Black (1728-1799) et l’air fixe.(voir)

Henry Cavendish (1731-1810), de l’air fixe à l’air inflammable
et autres airs factices.(voir)

Joseph Priestley (1733-1804), air fixe, air nitreux, air déphlogistiqué
et autres airs.(voir)

Les plantes ne fonctionnent pas comme prévu !.(voir)

Priestley mesure l’importance de l’observation..

Priestley et l’air fixe : poison ou remède ?.

Vraiment bizarre ?.

 

Priestley, Scheele, Lavoisier. De l’air déphlogistiqué à l’air du feu
et à l’oxygène. . . (voir)

Priestley (1733-1804), le phlogistique et l’air déphlogistiqué.

Carl Wilhelm Scheele (1742-1786) et l’air du feu.

Lavoisier (1743-1794), de l’air vital au principe oxygine et à l’oxygène.

1774-1777 : l’air est un mélange de deux fluides.

1777 : le phlogistique n’existe pas.

Quand l’air vital devient « air acidifiant » : le principe oxygine.

Quand naît l’oxygène.

 

Lavoisier. De l’air fixe à l’acide crayeux aériforme
et au gaz carbonique. . . (Voir)

Quand l’air fixe devient acide crayeux aériforme..

De l’acide crayeux aériforme à l’acide charbonneux.

Quand l’acide charbonneux devient gaz acide carbonique
et quand naît le carbone.

 

De l’offensive anticarbone à la victoire de CO2. (voir)

Une réception « nuancée » de la part des académiciens français.

Des mots durs, barbares, qui choquent l’oreille. . . . . . . . . . . . . . . . . . .

La guerre est déclarée.

Oubliez ces carbonates, ces carbures….

Et pourtant carbone, carbonique et carbonates se sont imposés.

Symboles et équations chimiques.

 

O2 et CO2 : le jour et la nuit des plantes. . . (voir)

Charles Bonnet et l’alimentation des plantes par leurs feuilles. . . . . . . .

Jan Ingenhousz : le soleil rythme la vie des végétaux.

La vie nocturne des plantes.

Comme les animaux, jour et nuit, les plantes respirent.

Senebier, ou comment les plantes s’alimentent.

Lavoisier et l’apport de la chimie.

Aujourd’hui.

Et avant-hier ?.

 

O2, CO2 et la respiration des animaux. . . (voir)

Lavoisier et la respiration animale.

Savoir mesurer la chaleur.

Après l’unité, l’appareil de mesure. .

Les cochons d’Inde et la respiration.

Lavoisier, Seguin et la respiration humaine.

Deuxième partie. Quand la chimie était verte. . .

 

Quand la chimie naissait des plantes. . . (voir)

Distiller les bois, les feuilles, les graines, les racines.

Les produits précieux des résines.

Une résine élastique : le caoutchouc.

Retour aux sources.

 

Au sujet des charbonniers et du charbon de bois. . . (voir)

L’antiquité du charbon de bois.

L’industrie métallurgique et la grande époque des charbonniers.

Les chimistes et le charbon.

Lavoisier, le charbon et la poudre noire.

Coup d’oeil sur le charbon de bois aujourd’hui.

Mais alors, où est le problème ?.

 

Du bois pour les gazogènes. . .(voir)

Philippe Lebon invente le gazogène.

Gazogène à bois, le retour.

Retour aux sources ?.

 

Des plastiques sans houille et sans pétrole. . . (voir)

Du coton-poudre au collodion.

Du collodion au Celluloïd.

Le succès de la soie artificielle.

Et aujourd’hui ?.

Troisième partie. Quand le charbon sort de terre. . .


Le charbon et la vapeur au siècle de l’industrie. . . (voir)

Avec Denis Papin, le siècle de la vapeur commence en Angleterre.

Newcomen, Watt : de la « pompe à feu » à la machine à vapeur.

En France, de la révolution sociale à la révolution industrielle.

Le versant noir du progrès.

De la mine aux tranchées.

La colonisation, l’autre guerre.

 

Quand le gaz de houille éclairait la ville. . . (voir)

Les pionniers britanniques.

L’éclairage au gaz en France.

Quand les « becs de gaz » investissent le paysage urbain.

Le gaz menacé par l’électricité.

La lumière électrique à Châteaulin quand Paris l’attend encore :
beau symbole !.

 

Le goudron de houille et le grand oeuvre des chimistes du 19ème siècle. (voir)

Le merveilleux goudron.

L’affaire de la garance.

La conquête de l’indigo.

La suprématie allemande.

Une industrie « précieuse pendant la guerre ».

Quatrième partie. Asphalte, bitume et pétrole.

 

Asphalte, bitume et pétrole avant l’automobile. (voir)

Asphalte et bitume sous Louis XV.

L’asphalte dans les villes de la Belle Époque.

Le pétrole, huile de la pierre.

Quand le pétrole était un médicament.

Quel usage pour ce pétrole ?.

Le pétrole du Caucase.

Le pétrole d’Amérique.

Et en Europe ?.

Le pétrole dans le monde en 1889.

La querelle des plutoniens et des neptuniens.

Premiers pipe-lines, premiers pétroliers, premières raffineries,
premiers accidents.

Le pétrole, un produit d’avenir ?.

 

Et l’automobile fut. (voir)

L’automobile et la vapeur.

Quand la fée électricité animait les tramways, les fiacres et les
automobiles.

L’autre moteur.

La victoire du pétrole.

1900 : le big-bang automobile.

 

Le pétrole d’après.

Pour conclure.

 

Le carbone et la vie. (voir)

La chimie devient « organique ».

De la synthèse organique à la génétique.

Le carbone, du big-bang à l’Homo sapiens.

Naissance de la Planète bleue.

Quand s’assemblent les molécules du vivant.

 

La science face au désamour. (voir)

Un débat à la Sorbonne.

Débattre de la science et de la vie il y a cent ans ?.

Débattre il y a cinquante ans ?.

Lanceurs d’alerte.

Retour à la Sorbonne.

Un problème de démocratie.

Cultiver les sciences.

Rapide plaidoyer pour l’histoire des sciences.

Les sciences, remède à la technocratie ?.


Bibliographie.

 

Index des noms propres.

 

_______________________________________________________________________

 

 

 

 

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 19:29

 

Lu sur La Recherche

 

Qu'il soit sous forme de charbon, de pétrole ou de gaz, le carbone a révolutionné notre quotidien depuis plus de deux siècles. Émis en fortes quantités sous forme de CO2 dans l'atmosphère, il a aussi perturbé le climat de la Terre. L'auteur retrace l'histoire de cet élément et de ses utilisations depuis la Grèce antique jusqu'à nos jours.

__________________________________________________________________________

Espace Sciences Rennes.

Le carbone et le dioxyde de carbone sont indispensables à la vie sur Terre. L’auteur raconte leur quête par les scientifiques. Leurs usages : d’abord pour la chimie des essences végétales puis comme source d’énergie avec le charbon et le pétrole à partir des 19e et 20e siècles. Mais interviennent aujourd’hui les conséquences sur l’environnement : pollution et réchauffement climatique.

__________________________________________________________________________

Hérault Tribune.

 

Histoire du carbone et CO2 - Gérard Borvon

 

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…, coupable : le dioxyde de carbone. Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

L'auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu'aux chimistes et biologistes du XVIIIe siècle, nous a appris l'importance du carbone et celle du CO2. L'ouvrage décrit ensuite la naissance d'une chimie des essences végétales qui était déjà bien élaborée avant qu'elle ne s'applique au charbon et au pétrole. Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd'hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique. Seront-ils entendus ?

Auteur:

Gérard Borvon a été enseignant de physique-chimie en lycée et formateur en histoire des sciences à l'IUFM de Bretagne. Auteur de nombreux travaux visant à diffuser la culture scientifique, il a déjà publié chez Vuibert une Histoire de l'électricité, de l'ambre à l'électron (2009) et une Histoire de l'oxygène, de l'alchimie à la chimie (2012).

__________________________________________________________________________

 

Lu sur Babelio.

 

L'auteur présente d'abord les étapes de la découverte du carbone par les scientifiques, depuis Empédocle (grec présocratique - de moins 490 à moins 430 av. JC environ), pour qui l'univers matériel était constitué de 4 éléments : l'eau, la terre, le feu et l'éther ou l'air. 
Ce n'est que relativement récemment que l'élément carbone fut isolé et identifié, et que les scientifiques comprirent son rôle vital (cycles végétatifs, constitution de l'ADN…).
Outre les théories des chercheurs à propos de la matière, leurs expériences et raisonnements sont exposés dans cet ouvrage, ceci de manière très compréhensible, y compris pour les non scientifiques.

Le bois, d'origine carbonée, fut l'une des premières sources d'énergie exploitée par l'homme, pour se chauffer, cuire ses aliments, travailler des métaux… Il céda en partie la place à son dérivé, le charbon de bois, qui permet d'atteindre de plus hautes températures. Puis le charbon sortit de terre… avant que le pétrole ne coule à flots ! Nous nous enfumons donc depuis des décennies, et la planète avec, d'autant plus que la population humaine croît et adopte des modes de vie de plus en plus énergivores. 
N'en déplaise aux climato-sceptiques, des gaz à effet de serre se sont accumulés dans l'atmosphère et continuent à y être rejetés massivement du fait des activités humaines, ce qui impacte le climat de manière dangereuse. 
Les matières premières carbonées ne sont pas seulement source d'énergie, elles servent aussi de matériaux pour les chimistes. J'ai été surpris de (re)découvrir que la chimie du bois et des végétaux - qui reviennent au goût du jour pour des raisons environnementales - a précédé la carbochimie et l'omniprésente pétrochimie. Les liens entre sciences fondamentales et sciences appliquées sont mis en évidence par des exemples de techniques utilisées quotidiennement. le carbone est indéniablement utile mais l'abus est néfaste pour tous.
A partir de l'exemple de cet élément, l'auteur élargit la réflexion à la place des sciences dans nos sociétés, aux bienfaits et méfaits auxquels elles donnent naissance. Cette dernière partie m'a moins intéressé que le coeur du sujet annoncé en titre.

Je recommande cet ouvrage à tous, qui présente l'histoire du carbone et du CO2, de manière documentée et vulgarisée... Que la réflexion sur nos sociétés et modes de vie se poursuive, sinon tant pis pour nos descendants, s'il en reste… 😥

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 12:13

Revenons à ce gaz caractérisé comme "air fixe". Dans un mémoire lu le 3 mai 1777 à l'Académie des Sciences, Lavoisier traite des "expériences sur la respiration des animaux et sur les changements qui arrivent à l'air en passant par leurs poumons".

 

Chacun connaît l'importance de la respiration pour le maintien de la vie humaine et pourtant, nous dit Lavoisier, "nous connaissons peu l'objet de cette fonction singulière". Cet "objet", c'est l'air mais, ajoute-t-il, "toutes sortes d'air, ou plus exactement toutes sortes de fluides élastiques, ne sont pas propres à l'entretenir, et il est un grand nombre d'airs que les animaux ne peuvent respirer sans périr".

 

Lavoisier connaît les travaux de Hales, il est surtout admiratif des expériences de Priestley qui "a reculé beaucoup plus loin les bornes de nos connaissances… par des expériences très ingénieuses, très délicates et d'un genre très neuf". Lavoisier considère que son apport essentiel aura été de prouver que "la respiration des animaux avait la propriété de phlogistiquer l'air, comme la calcination des métaux et plusieurs procédés chimiques". Ou pour être plus bref : que la respiration est une combustion !

 

Lui-même veut le vérifier. Un moineau est placé sous une cloche pleine d'air renversée sur une cuve à mercure. Près d'une heure plus tard il ne bouge plus. L'air qui reste éteint une flamme. Un nouveau moineau qu'on y enferme n'y vit que quelques instants.

 

Cet "air vicié" présente une propriété qu'on ne trouve pas dans la simple "mofette" à laquelle Lavoisier donnera plus tard le nom d'Azote. Il précipite l'eau de chaux. Par ailleurs, une partie de cet air vicié est absorbée par une solution d'alkali fixe caustique (de la potasse). Par ces propriétés Lavoisier reconnaît cet air que les chimistes désignent comme "l'air fixe".

 

Le terme ne lui convient pas. Dans une note il s'en explique.

 

Quand l'air fixe devient acide crayeux aériforme.

 

" Il y a déjà longtemps que les physiciens et les chimistes sentent la nécessité de changer la dénomination très-impropre d’air fixe, air fixé, air fixable ; je lui ai substitué, dans le premier volume de mes Opuscules physiques et chimiques, le nom de fluide élastique ; mais ce nom générique, qui s’applique à une classe de corps très-nombreux, ne pouvait servir qu’en en attendant un autre.

 

Aujourd’hui, je crois devoir imiter la conduite des anciens chimistes ; ils désignaient chaque substance par un nom générique qui en exprimait la nature, et ils le spécifiaient par une seconde dénomination qui désignait le corps d’où ils avaient coutume de la tirer ; c’est ainsi qu’ils ont donné le nom d’acide vitriolique à l’acide qu’ils retiraient du vitriol ; le nom d’acide marin à celui qu’ils tiraient du sel marin, etc.

 

Par une suite de ces mêmes principes, je nommerai acide de la craie, acide crayeux, la substance qu’on a désignée jusqu’ici sous le nom d’air fixe ou air fixé, par la raison que c’est de la craie et des terres calcaires que nous tirons le plus communément cet acide, et j’appellerai acide crayeux aériforme celui qui se présentera sous forme d’air."

 

"Acide crayeux aériforme", propose donc Lavoisier, à un moment où, pourtant, il ne sait rien encore de la composition chimique de la craie. Plus tard c'est l'acide lui-même qui contribuera à donner son nom à la craie (carbonate de calcium) dans la nomenclature chimique. Nous en reparlerons. Pour le moment le chimiste s'interroge sur le mécanisme de la respiration. Il a constaté une faible diminution du volume de l'air dans la cloche. Deux hypothèses se présentent.

 

  • Il est possible, dit-il, "que l'air éminemment respirable qui est entré dans le poumon en ressorte en acide crayeux aériforme". Ce qui expliquerait la faible diminution du volume de l'air dans la cloche, l'air fixe étant supposé "moins élastique" que l'air ordinaire.

  • Il est possible aussi "qu'une portion de l'air éminemment respirable reste dans le poumon et qu'elle se combine avec le sang".

 

Les deux propositions se révèleront partiellement justes. Pour appuyer la seconde Lavoisier rappelle que Priestley lui-même, a exposé du sang à l'air éminemment respirable et à l'acide crayeux aériforme. Dans le premier cas le sang a pris une couleur rouge-vermeil, dans le second cas il est devenu noir. La remarque ne manque pas de pertinence mais il faudra encore de longues années avant qu'elle trouve sa justification.

 

Pour le moment, la nature de l'acide crayeux reste à élucider.

 

De l'acide crayeux aériforme à l'acide charbonneux.

 

Quatre ans se sont passés. Lavoisier a abandonné le phlogistique. Dans les publications de l'Académie des Sciences pour l'année 1781, on peut lire son "Mémoire sur la formation de l'acide nommé air fixe ou acide crayeux et que je désignerai désormais sous le nom d'acide du charbon".

 

Lavoisier rappelle d'abord sa conception de la combustion des métaux, à savoir la combinaison de ceux-ci avec la partie respirable de l'air qu'il désigne à présent comme principe oxygine (générateur d'acide) et qui deviendra gaz oxygène dans la Nomenclature qu'il publiera avec Guyton de Morveau, Fourcroy et Berthollet en 1787. Nous avons déjà évoqué la longue et difficile genèse de l'oxygène, celle du dioxyde de carbone, notre actuel CO2 est tout aussi mouvementée.

 

En même temps que de celle des métaux, Lavoisier s'est intéressé aux combustions du phosphore et du soufre. Celles-ci l'ont conduit aux acides phosphorique et sulfurique. Poursuivant avec la même logique, il décide de s'intéresser au plus anciennement connu des combustibles : le charbon.

 

Ce corps pose problème. Si les chimistes savent obtenir du soufre et du phosphore dans un état de quasi-pureté, il n'en va pas de même du charbon. Sa distillation laisse échapper un ensemble de gaz parmi lesquels un air inflammable aqueux qui prendra ensuite le nom d'hydrogène. Dans ses cendres on trouve des terres insolubles et de l'alkali fixe (de la potasse) soluble. D'où la précision de Lavoisier :

 

"Pour éviter toute équivoque, je distinguerai, dans ce mémoire, le charbon d’avec la substance charbonneuse ; j’appellerai charbon ce que l’on a coutume de désigner sous cette dénomination dans les usages de la société, c’est-à-dire un composé de substance charbonneuse, d’air inflammable aqueux, d’une petite portion de terre et d’un peu d’alcali fixe ; j’appellerai, au contraire, substance charbonneuse le charbon dépouillé d’air inflammable aqueux, de terre et d’alcali fixe".

 

C'est donc la "substance charbonneuse" qui se combine au principe oxygine de l'air dans la combustion du charbon. Abandonnant le nom "d'acide crayeux" qu'il lui avait précédemment donné, Lavoisier donne le nom d'acide charbonneux au gaz résultant de cette combustion.

 

Afin de déterminer les proportions de substance charbonneuse et de principe oxygine dans cet acide charbonneux, Lavoisier, aidé de Laplace et Meusnier, se livre à une multitude d'expériences qui l'amènent aux proportions :

 

Principe oxygine : 72,125 livres

Matière charbonneuse : 27,875 livres

Total de l’acide charbonneux : 100,000 livres

 

La lectrice ou le lecteur qui mobiliserait ses souvenirs scolaires pourrait vérifier qu'avec nos données actuelles (valeurs "arrondies" : 12g de carbone pour 32g d'oxygène dans les 44g d'une "mole" de CO2 soit 22,4l gazeux,), les 27,875% de carbone mesurés par Lavoisier sont très proches des 27,3% que nous donnent nos calculs.

 

En cette année 1781, l'air fixe, rebaptisé acide crayeux, est donc devenu acide charbonneux. Pourtant, si on connaît à présent sa composition, il attend encore son nom définitif.

 

Quand l'acide charbonneux devient gaz acide carbonique et quand naît le carbone.

 

Nous avons déjà évoqué la Nomenclature Chimique. Notons, pour mieux la situer, qu'elle prend son origine au début des années 1780, moment où la nécessité se fait jour d'une réforme dans la façon de nommer les corps chimiques.

 

C'est d'abord Louis-Bernard Guyton de Morveau (1737-1816), avocat au parlement de Dijon et chimiste reconnu internationalement qui publie dans le Journal de Physique de l'abbé Rozier, en 1782, un mémoire "Sur les dénominations chymiques, la nécessité d'en perfectionner le système et les règles pour y parvenir".

 

Le constat est simple : cette science qui a enfin réussi à s'imposer dans les Académies utilise une langue à peine sortie des grimoires des alchimistes. "Il n'est point de science, regrette-t-il, qui exige plus de clarté, plus de précision, & on est d'accord qu'il n'en est point dont la langue soit aussi barbare, aussi vague, aussi incohérente".

 

En France, d'autres chimistes partagent le même objectif et une autre réforme du vocabulaire est en marche : celle de Lavoisier et de ses collègues académiciens qui s'appuient sur une base théorique, celle du principe oxygine, très différente de celle de Guyton de Morveau partisan du phlogistique.

 

La concurrence est sévère. La théorie de Lavoisier semble même avoir des partisans parmi les collègues Bourguignons de Guyton de Morveau, mais cela n'empêche pas celui-ci de se montrer circonspect :

 

"Nous aurons plus d'une fois occasion de dire, & particulièrement aux articles Acide Vitriolique, Acide Saccharin, Phlogistique, &c. &c. que nous sommes bien éloignés d'adopter en entier l'explication dans laquelle ce savant Chymiste croit pouvoir se passer absolument du Phlogistique" (Encyclopédie méthodique, article chymie, p29).

 

Pourtant, trois ans plus tard, c'est avec Lavoisier qu'il présentera la Méthode de Nomenclature Chimique qui bannira le phlogistique de l'univers de la chimie.

 

Influent à l'Académie des sciences, Lavoisier (1743-1794) a su attirer autour de lui des collaborateurs efficaces et enthousiastes qui soutiennent sa théorie : Antoine-François Fourcroy (1755-1809), Claude Louis Berthollet (1748-1822), Jean Henri Hassenfratz (1755-1827), Pierre Auguste Adet (1763-1834).

 

C'est ce groupe, réuni autour de Lavoisier, qui accueille Guyton de Morveau quand il vient à Paris en février 1787 avec son projet de nomenclature déjà bien avancé. Avec lui, ils rédigent la nouvelle "Méthode de Nomenclature Chimique" présentée à l'assemblée publique de l'Académie des Sciences du 17 avril 1787.

 

Guyton de Morveau est chargé d'en présenter les nouveaux termes. L'oxygène, l'hydrogène et l'azote sont les premiers nommés. Concernant le nom des acides, l'un d'entre eux pose problème.

 

"Aucun n'a reçu autant de noms différents que ce gaz, auquel M. Black donna d'abord le nom d'air fixe, en se réservant expressément de changer dans la suite cette dénomination, dont il ne se dissimulait pas l'impropriété. Le peu d'accord des chimistes de tous les pays sur ce sujet nous laissait, sans doute, une liberté plus entière, puisqu'il nous montrait la nécessité de présenter enfin des motifs capables de décider l'unanimité : nous avons usé de cette liberté suivant nos principes.

 

Quand on a vu former l'air fixe par la combinaison directe du charbon et de l'air vital, à l'aide de la combustion, le nom de cet acide gazeux n'est plus arbitraire, il se dérive nécessairement de son radical, qui est la pure matière charbonneuse ; c'est donc l'acide carbonique, ses composés avec les bases sont des carbonates ; et, pour mettre encore plus de précision dans la dénomination de ce radical, en le distinguant du charbon dans l'acceptation vulgaire, en l'isolant par la pensée, de la petite portion de matière étrangère qu'il recèle ordinairement, et qui constitue la cendre, nous lui adaptons l'expression modifiée de carbone, qui indiquera le principe pur, essentiel du charbon, et qui aura l'avantage de le spécifier par un seul mot, de manière à prévenir toute équivoque."

 

De façon paradoxale, c'est donc l'acide carbonique, que nous désignons actuellement comme gaz carbonique dans le langage courant ou dioxyde de carbone dans une langue plus savante, qui a donné son nom au carbone !

 

La remarque n'est pas anodine. C'est le dioxyde de carbone, l'ancien "gas silvestre" ou "air fixe", qui relie la craie la plus blanche à la noirceur du charbon. Le charbon, bois fossilisé, faisant lui-même le lien entre le minéral et le végétal. Comment aurions-nous pu décrire ce "cycle du carbone" qui associe matière inerte et matière animée ; que serait devenue la "chimie organique", si Lavoisier s'en était tenu à son choix initial "d'acide crayeux aériforme" ?

 

Ce choix étant fait, la réaction de combustion du carbone peut désormais s'écrire dans une formulation qui nous est compréhensible.

 

Carbone + oxygène → gaz acide carbonique 

 

Le mot carbone est entré dans le langage quotidien et est partout compris dans le monde. Pourtant, nous verrons, à présent, qu'il ne s'est cependant pas imposé sans de fortes réticences.

 

 

 

 

 

XXXXXXXXXXXX



pour aller plus loin voir :

 

Un livre chez Vuibert.

 

JPEG - 77.7 ko

Dérèglement climatique, fonte des glaces, cyclones, sécheresses…


Coupable : le dioxyde de carbone.

 

Pourtant sans ce gaz il n’y aurait aucune trace de vie sur Terre.

 

L’auteur nous fait suivre la longue quête qui, depuis les philosophes de la Grèce antique jusqu’aux chimistes et biologistes du XVIIIe siècle, nous a appris l’importance du carbone et celle du CO2.

 

L’ouvrage décrit ensuite la naissance d’une chimie des essences végétales qui était déjà bien élaborée avant qu’elle ne s’applique au charbon et au pétrole.

 

Vient le temps de la « révolution industrielle ». La chimie en partage les succès mais aussi les excès.

 

Entre pénurie et pollutions, le « carbone fossile » se retrouve aujourd’hui au centre de nos préoccupations. De nombreux scientifiques tentent maintenant d’alerter l’opinion publique.
 

Seront-ils entendus ?

Partager cet article
Repost0
15 février 2018 4 15 /02 /février /2018 08:54

Avec les travaux de Hales, Black, Cavendish, Priestley, les propriétés de l'air fixe, notre actuel CO2, commencent à être entrevues. D'autres "airs" également révèlent leur existence.

 

Parmi ceux-ci il nous faut suivre la découverte de l'air qui est d'abord apparu comme le principe inverse de cet air "méphitique" qu'est l'air fixe : un "air" nécessaire à la vie, l'oxygène.

 

Par ailleurs, comment parler de dioxyde de carbone, CO2, sans parler de l'oxygène qui en représente 73% de la masse ? C'est au récit de cette naissance que nous invite ce chapitre.

 

Priestley (1733-1804), le phlogistique et l'air déphlogistiqué.

 

Nous avons noté la découverte par Priestley de l'air nitreux (monoxyde d'azote, NO) obtenu par action de l'eau forte (l'acide nitrique, HNO3) sur le cuivre.

 

Cet air, incolore, a la propriété de se colorer en rouge-orange quand il se mélange à l'air "ordinaire". Il a, de plus, celle de provoquer une diminution du volume de celui-ci. Priestley constate que la partie qui disparaît est celle qui est le plus utile aux organismes vivants, c'est notre oxygène.

 

Il fait de cette observation un moyen de contrôler la salubrité de l'air : pour un air dans lequel une bougie a brulé ou un animal a respiré, la diminution du volume est plus faible. Cette méthode deviendra classique. Elle sera utilisée avec succès par Jan Ingenhousz dans son étude sur la respiration des plantes afin de mesurer les quantités d'oxygène dégagées. Nous reparlerons de cette expérience.

 

Lavoisier, lui-même, s'appliquera à lui donner un support mathématique dans un mémoire présenté à l'Académie des sciences en décembre 1783. Il s'emploiera surtout à déterminer la nature de cette partie de l'air qui disparaît. On sait aujourd'hui que le gaz nitreux, monoxyde d'azote de formule NO, incolore, se combine à l'oxygène O2 pour donner le dioxyde d'azote rouge-orange NO2, sa découverte est donc une étape importante sur la voie qui mène à l'oxygène.

 

La détermination de la composition de l'air sera l'un des moments forts de l'œuvre de Lavoisier. Pourtant, parmi toutes les observations faites par Priestley, plusieurs auraient pu le mettre, le premier, sur la bonne piste. Ne serait-ce qu'en tirant le meilleur parti d'une expérience ancienne.

Voir le texte complet (pages 394).

 

Ou encore d'une élégante expérience sur la combustion des métaux.

 

voir page 406

" J'ai suspendu des morceaux de plomb et d'étain dans un volume donné d'air… En dirigeant sur eux le foyer d'un miroir ardent ou d'une lentille, de façon à les faire se consumer copieusement, j'observai une diminution de l'air. Dans le premier essai que j'ai réalisé, j'ai réduit quatre onces d'air jusqu'à trois, ce qui est la plus forte diminution de l'air commun que j'aie jamais observé auparavant".

 

Le mode opératoire est astucieux et sera imité. Le résultat, cependant, étonne l'observateur. Celui-ci est un partisan résolu de la théorie du phlogistique. Il faut donc que du phlogistique se soit dégagé du métal pendant sa combustion. Alors pourquoi cette diminution importante du volume d'air ?

 

Il imagine que le phlogistique a pour effet de rendre l'air moins élastique et donc de le faire se contracter. Ainsi le modèle sera sauf. Sa fidélité à la théorie de Stahl l'empêche de voir qu'une partie de l'air s'est combinée au métal. Le mérite en reviendra à d'autres. Obstacle "épistémologique", dressé dans l'esprit du chercheur, dirait Bachelard.

 

Il ne saura pas, non plus, exploiter une autre expérience pourtant bien plus révélatrice. Pour celle-ci, il utilise l'oxyde rouge du mercure, désigné comme précipité per se, dont on sait, depuis les alchimistes, que, fortement chauffé, il retourne au mercure initial. Il place cet oxyde rouge sous une cloche renversée sur une cuve à eau et le porte à une haute température au moyen d'une lentille concentrant les rayons du soleil. Comme prévu, le mercure métallique réapparaît mais, de plus, le volume d'air s'accroit.

 

Remarquable ! Dans ce nouvel air une chandelle ne s'éteint pas. Bien au contraire son éclat est plus vif. Un charbon dont un point est porté au rouge y brûle avec force étincelles. Priestley nomme "air très pur", cet air plus actif que l'air ordinaire avant de l'appeler air déphlogistiqué.

 

Son explication : Pour que la "chaux" rouge du mercure (mercure déphlogistiqué) redevienne métal, elle doit capter du phlogistique. C'est donc une fraction de l'air qui le lui procure. Cet air est alors devenu "négatif" en phlogistique : c'est de l'air déphlogistiqué.

Chaux de mercure + air -> mercure + air déphlogistiqué

 

Cet "air déphlogistiqué", comment favorise-t-il les combustions ? Ayant perdu son phlogistique il tend donc à en extraire, avec plus de vivacité que l'air ordinaire, des corps qui en sont riches, comme le charbon ou le suif d'une chandelle. Le résultat de ceci est de rendre leurs combustions plus vives.

 

Le volume de l'air augmente ? Il n'est pas interdit de penser que l'air "déphlogistiqué" est plus "élastique" que l'air ordinaire et occupe un plus grand volume à la pression ambiante.

 

Les explications ne manquent pas d'une certaine logique. Pourtant si, par cette expérience et cette observation, il peut prétendre partager le titre de "découvreur" de l'oxygène, la vraie nature de ce gaz lui échappe.

 

Ces mêmes expériences sur la combustion des métaux et sur la décomposition de l'oxyde de mercure, réinterprétées, mèneront Lavoisier sur la voie de la composition de l'air et de la compréhension du mécanisme des combustions et, en particulier, sur celle du carbone.

 

 

Lavoisier utilisera un montage analogue à celui de Priestley

Traité élémentaire de chimie. 1789.

 

Mais avant d'y arriver et afin de poursuivre le récit de cette "chasse aux airs", il nous faut quitter l'Angleterre pour la Suède où officie Karl-Wilhem Scheele.

Karl-Wilhelm Scheele ( 1742-1786) et l'air du feu.

 

Après avoir été apprenti apothicaire, Karl-Wilhelm Scheele se forme en autodidacte et devient pharmacien à Stockholm avant de rejoindre Uppsala où il suit un parcours universitaire sous la direction du chimiste Torben Olof Bergman avant d'être admis à l'Académie Royale des Sciences de Suède.

 

On lui attribue la découverte de nombreux acides, dont certains toxiques comme l'acide cyanhydrique, ou encore celle du chlore qu'il considère comme de l'acide marin (acide chlorhydrique) déphlogistiqué. La fréquentation de ces produits ayant probablement contribué à sa mort prématurée.

 

En 1777, il publie son "Traité chimique de l'air et du feu" dans lequel il fait part de sa découverte du nouvel "air" qui, décrit au même moment par Priestley, sera ensuite interprété par Lavoisier comme étant l'oxygène :

 

"L'examen de l'air a toujours été un des objets principaux de la Chimie : aussi ce fluide élastique est-il doué de tant de propriétés particulières, qu'il met ceux qui s'en occupent à portée de faire souvent des découvertes. Nous voyons que le Feu, ce produit si admirable de la chimie, ne saurait exister sans l'air. Pourrais-je m'être trompé en entreprenant de démontrer dans ce Traité, qui n'est qu'un Essai Chimique sur la doctrine du Feu, qu'il existe dans notre atmosphère un air que l'on doit regarder comme une partie constituante du Feu, en ce qu'il contribue matériellement à la flamme, & que, par rapport à cette propriété, j'ai nommé "Air de Feu" (Le terme allemand de Feuerluft sera généralement conservé par les chimistes européens). (Traité chimique de l'air et du feu, traduction, Paris 1781).

 

Plus précisément, explique-t-il, l'air serait composé de "deux espèces différentes l'une de l'autre : l'une s'appelle Air vicié, parce qu'il est absolument dangereux et mortel, soit pour les animaux, soit pour les végétaux et qu'il altère, en partie, toute la masse de l'air ; l'autre au contraire s'appelle Air pur ou Air de feu, parce qu'il est tout à fait salutaire, & qu'il entretient la respiration, conséquemment la circulation du sang."(Mémoires de l'Académie des Sciences de Stockholm - 1779).

 

Pour mesurer les proportions de ces deux airs, Scheele imagine un montage ingénieux :

 

 

Scheele, Mémoire de l'Académie des sciences de Stockholm, 1779.

 

"Je mis au fond du vase A un support formé d'un tuyau de verre fixé sur un petit piédestal de plomb ; l'extrémité supérieure du tuyau portait un petit plateau horizontal, sur lequel je plaçai le petit vaisseau C, rempli du mélange de limaille de fer et de soufre". (ce mélange, quand on l'humecte d'eau, était classiquement considéré comme capable de libérer une quantité importante de phlogistique. On sait, aujourd'hui qu'il est oxydé par l'oxygène de l'air)

"Je reversais sur le tout le verre cylindrique D, & je remplis d'eau le vaisseau A."

 

Progressivement l'eau monte dans le tube et se stabilise au bout de quelques heures. Le mélange de fer et de soufre prenant alors l'aspect d'une "chaux".

 

Comment expliquer la diminution du volume d'air enfermé dans les enceintes où se fait la réaction de combustion ? Priestley imaginait une contraction de l'air sous l'effet du phlogistique, Scheele propose une autre hypothèse : "la combinaison de l'air avec le phlogistique est un composé si subtil qu'il est susceptible de pénétrer les pores imperceptibles du verre et de se disperser en tous sens dans l'air" (Traité du Feu - 1777). Ou plus précisément " lorsque l'air pur rencontre une matière inflammable mise en liberté, il s'en approche, se sépare de l'air vicié, & disparaît, pour ainsi dire, à vue d'œil"(Mémoire de Chimie - 1779)

 

Le phlogistique échappé du métal aurait donc pour propriété de faire "disparaître" l'air pur ? A l'évidence, cette diminution de volume de l'air pose un sérieux problème !

 

L'expérience plusieurs fois répétée semble indiquer à Scheele que la proportion d'air de feu dans l'atmosphère est de 27%, légèrement supérieure, donc, à la valeur estimée actuellement pour l'oxygène (21%).

 

Après Priestley, Scheele peut donc prétendre au titre de découvreur de l'oxygène mais Lavoisier sera celui qui, après avoir osé combattre la théorie du phlogistique, saura donner une explication claire du phénomène de la combustion et nommer le gaz qui en est l'acteur principal.

Lavoisier (1743-1794). De l'air vital au principe oxygine et à l'oxygène.

 

Antoine Laurent de Lavoisier naît à Paris en 1743 dans une famille fortunée mais endeuillée par le décès de sa mère quand il a cinq ans. Entre 1754 et 1761 il fréquente le collège des Quatre Nations fondé par Mazarin où il reçoit une formation mathématique de l'abbé Lacaille, astronome, membre de l'Académie dont les "Leçons élémentaires de Mathématiques", plusieurs fois rééditées, formeront de nombreuses générations d'ingénieurs et de scientifiques. Il complète sa formation scientifique par de la physique, aux cours que l'abbé Nollet donne à l'école Royale du Génie de Mézières, par de la botanique au Jardin du Roy avec Bernard de Jussieu, de la chimie avec les conférences de Rouelle, de la minéralogie avec l'académicien Jean-Etienne Guettard qu'il accompagne pour une campagne d'étude de quatre mois dans les Vosges et qui est l'occasion de ses premiers pas en analyse chimique.

 

Formé à toutes les branches de la physique, il ne fera pas cependant profession de science. Diplômé en droit de l'Université de Paris, il achète, en 1768, année où il est élu à l'Académie des Sciences, une charge de "fermier général". Cette fonction consiste à percevoir des impôts indirects sur le commerce d'un certain nombre de marchandises ( sel, tabac, boissons… ) mais aussi les droits d'octroi à l'entrée des villes. Cette charge, fortement rémunératrice, lui permettra de créer le plus riche laboratoire de l'Europe scientifique et d'y recevoir tout ce qu'elle compte de savants. Elle sera aussi la cause de sa condamnation à mort par un tribunal révolutionnaire en 1794.

 

En 1775, il devient régisseur des poudres et salpêtres et s'installe à l'Arsenal, à Paris, où son laboratoire, équipé des appareils issus des meilleurs artisans du moment, devient le lieu où se forme une nouvelle génération de chimistes.

 

1774-1777 : L'air est un mélange de deux fluides.

 

Lavoisier qui se place dans la continuité des "chasseurs d'air" européens constate le peu d'intérêt pour le sujet en France.

 

"Un grand nombre de physiciens et de chimistes étrangers s'occupent dans ce moment de recherches sur la fixation de l'air dans les corps et sur les émanations élastiques qui s'en dégagent, soit pendant les combinaisons, soit par la décomposition et la résolution de leurs principes : des mémoires, des thèses, des dissertations de toute espèce, paraissent, en Angleterre, en Allemagne, en Hollande ; les chimistes français seuls semblent ne prendre aucune part à cette importante question, et, tandis que les découvertes étrangères se multiplient chaque année, nos ouvrages modernes, les plus complets, à beaucoup d'égards, qui existent en chimie, gardent un silence presque absolu sur ce point."( Opuscules physiques et chimiques, 1774).

 

Souhaitant être le premier à rompre avec ce désintérêt, il reprend d'abord les expériences de Black sur l'air fixe et vérifie qu'il existe bien "dans les pierres et les terres calcaires un fluide élastique, une espèce d'air sous forme fixe".

 

C'est surtout dans la suite de son travail qu'il annonce son originalité avec des expériences sur "l'existence d'un fluide élastique fixé dans les chaux métalliques".

 

Je commençai, annonce-t-il "à soupçonner que l'air de l'atmosphère, ou un fluide élastique quelconque contenu dans l'air, était susceptible, dans un grand nombre de circonstances, de se fixer, de se combiner avec les métaux ; que c'était à l'addition de cette substance qu’étaient dus les phénomènes de la calcination, l'augmentation de poids des métaux convertis en chaux, et peut-être beaucoup d'autres phénomènes dont les physiciens n'avaient encore donné aucune explication satisfaisante."

 

En effet, parmi les questions restées sans réponse, "l'augmentation de poids des métaux convertis en chaux" est le principal problème que pose la théorie du phlogistique.

 

Rappelons le schéma décrivant la calcination des métaux dans la théorie de Stahl :

 

Calcination :

Métal -> chaux métallique (Métal déphlogistiqué) + phlogistique

 

Dans la logique de ce modèle, la transformation du métal en "'chaux" devrait donc s'accompagner d'une perte de masse, celle du phlogistique. Or, c'est l'inverse qui se passe et les alchimistes le savaient déjà !

 

De même la "réduction" d'une chaux en métal devrait s'accompagner de l'augmentation du poids du métal obtenu:

 

 

Réduction :

Chaux métallique (Métal déphlogistiqué)  + Charbon (Phlogistique) -> Métal

 

Pourtant le métal est plus léger que la chaux.

 

Pour trancher la question, Lavoisier opère d'abord la réduction du minium (oxyde de plomb, rouge, Pb3O4) par le charbon sous une cloche renversée sur une cuve à mercure. Le mélange de poudre de minium et de charbon est "allumé" par les rayons solaires concentrés "au foyer du grand verre ardent de Tschirnhausen", lentille de grand diamètre, qui se trouve dans les jardins du Louvre.

 

Il observe à la fois le dégagement d'un "air" (le mot gaz ne fait pas encore partie de son vocabulaire) et l'apparition de gouttelettes de plomb fondu dont la masse est plus faible que celle de la chaux initiale !

 

 

 

Grande lentille du jardin du Louvre

 

Explication ? De cette expérience et d'autres qui l'accompagnent Lavoisier tire une conclusion qui rompt avec l'interprétation classique. La chaux serait la combinaison d'un métal avec "la partie fixe d'un fluide élastique qui a été dépouillé de son principe inflammable". Ce serait donc une partie de l'air et non le métal qui perdrait du phlogistique avant de se fixer sur celui-ci pour former une chaux.

 

Lors de la réduction de cette chaux métallique, le charbon aurait alors pour rôle de restituer du phlogistique, non pas au métal, mais "au fluide élastique fixé" qui l'avait perdu

"et de lui restituer en même temps l'élasticité qui en dépend" et donc de lui rendre l'état "aériforme".

 

Chaux métallique + Charbon -> Métal + fluide élastique

      (Métal+fluide élastique) + Phlogistique -> Métal 

 

Nous noterons que, dans cette interprétation, Lavoisier ne rejette pas l'idée de phlogistique et qu'il est encore loin d'engager le fer avec les "phlogisticiens". Bien au contraire, à ce stade de sa réflexion, non seulement il ne combat pas le modèle du phlogistique, mais il l'enrichit !

 

Relevons cependant sa principale, et surtout nouvelle, contribution à l'explication du phénomène : une partie de l'air se fixe sur le métal pendant la combustion. Seule cette hypothèse peut expliquer l'augmentation du poids du métal devenu chaux métallique en même temps que la diminution du volume de l'air.

 

Et pour aller encore plus loin, cette partie de l'air, responsable des combustions, serait un fluide particulier :

 

"plusieurs circonstances sembleraient porter à croire que tout l'air que nous respirons n'est pas propre à se fixer pour entrer dans la combinaison des chaux métalliques, mais qu'il existe dans l'atmosphère un fluide élastique particulier qui se trouve mêlé avec l'air, et que c'est au moment où la quantité de ce fluide contenue sous la cloche est épuisée, que la calcination ne peut plus avoir lieu."

 

Nous arrivons en 1777. Les idées de Lavoisier sur la combustion se précisent. Le 21 mars, il présente à l'Académie des sciences un "Mémoire sur la combustion du phosphore de Kunckel" dans lequel il énonce clairement la proposition que l'air est composé de deux fluides aux propriétés bien différentes.

 

Toujours en utilisant une cloche retournée sur une cuve à mercure et un "verre ardent" il fait brûler un fragment de phosphore. Il observe :

 

- Que, au moment où la combustion s'achève, l'air "n’occupe plus que les quatre cinquièmes ou les cinq sixièmes, tout au plus, de l’espace qu’il occupait avant la combustion."

 

- Que l'air qui reste "n’est plus susceptible de servir à la respiration des animaux, d’entretenir la combustion ni l’inflammation des corps ; en un mot, il est absolument dans l’état de moufette, et, en conséquence, pour éviter de le confondre avec aucune autre espèce d’air, je le désignerai, dans ce mémoire et dans quelques autres que je publierai à la suite, sous le nom de moufette atmosphérique".

 

Cette fois, il est acquis pour Lavoisier, que l'air atmosphérique est le mélange de deux "fluides élastiques" : un "air éminemment respirable" et une "moufette" (ou mofette, de l'italien mofetta issu du latin mephitis, exhalaison nauséabonde) incapable d'entretenir la vie.

 

Lavoisier utilise encore le terme "d'air déphlogistiqué" employé par Priestley pour désigner l'air très pur ou éminemment respirable. Cette nouvelle proposition ne pouvait que convenir aux chasseurs d'air britanniques.

 

Mais ce n'était que partie remise.

 

 

 

1777. Le Phlogistique n'existe pas.

 

Dans un mémoire de la même année 1777 "Sur la combustion en général", le ton n'est plus à la conciliation. Les hostilités sont ouvertes par un texte sans concessions pour le phlogistique :

 

"Si l’on demande aux partisans de la doctrine de Stahl de prouver l’existence de la matière du feu dans les corps combustibles, ils tombent nécessairement dans un cercle vicieux, et sont obligés de répondre que les corps combustibles contiennent de la matière du feu parce qu’ils brûlent, et qu’ils brûlent parce qu’ils contiennent de la matière du feu ; or il est aisé de voir qu’en dernière analyse c’est expliquer la combustion par la combustion.

 

L’existence de la matière du feu, du phlogistique, dans les métaux, dans le soufre, etc. n’est donc réellement qu’une hypothèse, une supposition, qui, une fois admise, explique, il est vrai, quelques-uns des phénomènes de la calcination et de la combustion ; mais, si je fais voir que ces mêmes phénomènes peuvent s’expliquer d’une manière tout aussi naturelle dans l’hypothèse opposée, c’est-à-dire sans supposer qu’il existe de matière du feu ni de phlogistique dans les matières appelées combustibles, le système de Stahl se trouvera ébranlé jusque dans ses fondements."

 

Ce premier mémoire est développé dans un second présenté le 5 septembre 1777 sous le titre "Considérations générales sur la nature des acides et sur les principes dont ils sont composés".

 

Ce nouveau mémoire recèle une surprenante rupture. Alors que la "chasse aux airs" s'est, jusqu'à présent, focalisée sur les réactions de combustion et de réduction des métaux, Lavoisier concentre sa nouvelle offensive sur la formation des acides, qui deviennent, de façon subite et inattendue, le centre de sa nouvelle théorie.

 

Quand l'air vital devient "air acidifiant" : le principe oxygine.

 

"J’ai déjà fait part à l’Académie de mes premiers essais sur ce sujet : je lui ai démontré, dans de précédents mémoires, autant toutefois qu’il est possible de démontrer en physique et en chimie, que l’air le plus pur, celui auquel M. Priestley a donné le nom d’air déphlogistiqué, entrait, comme partie constituante, dans la composition de plusieurs acides, et notamment de l’acide phosphorique, de l’acide vitriolique et de l’acide nitreux.

 

Des expériences plus multipliées me mettent aujourd’hui dans le cas de généraliser ces conséquences, et d’avancer que l’air le plus pur, l’air éminemment respirable, est le principe constitutif de l’acidité : que ce principe est commun à tous les acides, et qu’il entre ensuite dans la composition de chacun d’eux un ou plusieurs autres principes qui les différencient et qui les constituent plutôt tel acide que tel autre.

 

D’après ces vérités, que je regarde déjà comme très-solidement établies, je désignerai dorénavant l’air déphlogistiqué ou air éminemment respirable dans l’état de combinaison et de fixité, par le nom de principe acidifiant, ou, si l’on aime mieux la même signification sous un mot grec, par celui de principe oxygine, cette dénomination sauvera les périphrases, mettra plus de rigueur dans ma manière de m’exprimer, et évitera les équivoques dans lesquelles on serait exposé à tomber sans cesse, si je me servais du mot d’air."

 

Un mot grec, oxygine, "principe des acides", vient donc chasser un autre mot grec, phlogistique, "matière du feu". Il faudra encore quelques étapes avant que ce "principe oxygine" devienne "gaz oxygène".

 

C'est donc à une nouvelle chimie que Lavoisier invite les chimistes, ses contemporains. Il leur reste, dit-il "le champ le plus vaste à parcourir" car "il existe une partie de la chimie toute nouvelle et entièrement inconnue jusqu’à ce jour, et qui ne sera complète que lorsqu’on sera parvenu à déterminer le degré d’affinité de ce principe (l'oxygine) avec toutes les substances avec lesquelles il est susceptible de se combiner, et à connaître les différentes espèces de composés qui en résultent."

 

Quand naît l'oxygène.

 

En l'année 1787 est présentée à l'Académie des Sciences la Méthode de Nomenclature chimique présentée par Guyton de Morveau, Lavoisier, Berthollet et Fourcroy. Leur choix : construire cette nomenclature autour du gaz jusqu'à présent qualifié d'air vital ou principe oxygine. Et d'abord lui donner son nom définitif.

 

"nous avons satisfait à ces conditions, déclarait Guyton de Morveau dans sa présentation, en adoptant l'expression oxygène, en la tirant, comme M. Lavoisier l'a dès longtemps proposé, du grec οξνς, acide & γείυομαι, j'engendre, à cause de la propriété bien constante de ce principe, base de l'air vital, de porter un grand nombre de substances avec lesquelles il s'unit à l'état d'acide, ou plutôt parce qu'il paraît être un principe nécessaire à l'acidité. Nous dirons donc que l'air vital est le gaz oxygène, que l'oxygène s'unit au soufre, au phosphore pendant la combustion, aux métaux pendant la calcination, etc. Ce langage sera tout à la fois clair et exact. "

Notons cette date : 2 mai 1787. Pour la première fois le mot oxygène vient d'être prononcé dans l'enceinte prestigieuse de l'Académie Royale des Sciences et avec lui, le même jour, les mots oxyde, carbone, carbonique, carbonate…

Partager cet article
Repost0
12 février 2018 1 12 /02 /février /2018 09:11

Les alchimistes ont été violemment dénigrés par les chimistes, leurs successeurs. On cite couramment le chimiste Pierre Joseph Macquer (1718-1784) comme l’un des "pères" de la chimie moderne. Attaché à défendre le statut académique de cette science, il choisit de mettre en évidence la façon dont elle a rompu avec les anciennes méthodes. Sa cible est la vieille "chymie" que ses contemporains, ont pris l’habitude de désigner par le nom "d’alchimie", pour bien différencier leur propre science de la pratique médiévale dont ils refusent l’héritage.

 

Macquer va même jusqu’à regretter le reste de filiation qui s’exprime dans ce nom de chimie ou "chymie" partagé par les deux disciplines. C’est un mal, écrit-il " pour une fille pleine d’esprit et de raison, mais fort peu connue, de porter le nom d’une mère fameuse pour ses inepties et ses extravagances".

 

N’y a-t-il cependant pas une certaine ingratitude à renier ces prédécesseurs qui leur ont transmis, entre autres héritages, la doctrine des quatre éléments en donnant à ceux-ci une représentation symbolique simplifiée à base de triangles :

 

 

Ceux-ci seront conservés par les chimistes jusqu’à la fin du 18ème siècle. On les trouve même encore représentés dans la "Méthode de Nomenclature Chimique", nouvelle bible de la chimie moderne, publiée en 1787 par Guyton de Morveau, Lavoisier, Berthollet et Fourcroy.

 

Les symboles alchimiques.

 

L’alchimie est le domaine des symboles. Elle les a reçus d’antiques traditions issues de la Mésopotamie, de l’Assyrie, de la Perse, de l’Egypte et même la Chine ou l’Inde.

 

Nous avons retenu sa représentation des quatre éléments par une série de triangles.

 

Nous pouvons y ajouter les trois principes métalliques :

 

- le soufre 

 

- le mercure

 

- le sel 

 

Ces principes sont un apport de l'alchimie arabe (notamment par Geber. Ils sont sont d'abord au nombre de deux : le Mercure (passif, froid, malléable, volatil), qui est un principe féminin, et le Soufre (actif, chaud, dur), qui est un principe masculin. Un troisième principe est ajouté par Paracelse (1493-1541) : le Sel qui permet d'unir le soufre et le mercure.

 

Les métaux sont représentés par les signes représentant les Planètes :

 

 

 

Quant aux différentes opérations de l’alchimie, elles sont souvent illustrées par les signes du zodiaque.

 

 

 

Il est certain que l’un des objectifs de ce symbolisme est de rebuter le profane. Glauber, proposant de donner la recette de "La teinture de l’or ou véritable or potable" l’annonce d’emblée :

 

"La connaissance et la préparation de cette médecine m’étant donnée du très-haut, je prétends, à cause que l’homme n’est pas né pour lui seul, de donner brièvement sa préparation et son usage, mais je ne veux pas jeter les perles devant les pourceaux, j’en veux seulement montrer le chemin aux étudieux, et qui cherchent le travail de Dieu et Nature ; et sans doute ils entendront mes écrits, mais non point un ignorant et qui n’est point expert" (Glauber Jean-Rudolphe, La teinture de l’or ou véritable or potable, Paris 1659)

Cependant il est certain que ce ne sont pas les symboles qui sont les plus hermétiques dans les textes alchimiques mais l’usage qui en est fait. Ils peuvent même donner une allure de rationalité à un texte qui devient de plus en plus ténébreux au fil des pages. Rien d’étonnant donc à ce qu’ils survivent à l’alchimie et qu’on les retrouve même chez Macquer, son pourfendeur.

 


Pierre-Joseph Macquer, Eléments de Chimie théorique, Paris 1749.


 

 

Ils figureront également sur une planche de l’Encyclopédie de Diderot et d’Alembert.

 


Encyclopédie de Diderot de D’Alembert (Planche chymie)


 

En complément de la "Méthode de Nomenclature Chimique" (1787), Jean-Henry Hassenfratz (1755-1827) et Pierre Auguste Adet (1763-1834) proposent eux-mêmes un nouveau symbolisme adapté à la nouvelle façon de nommer et de penser.

 

Ce faisant ils réinterprètent le symbolisme alchimique à la lumière d’une rationalité qui n’était probablement pas celle des premiers chymistes :

 

"Il paraît qu’on ignore dans quels temps les chimistes ont commencé à se servir de caractères. Les recherches que nous avons entreprises sur cet objet se sont réduites à nous faire connaître d’après quelles vues les anciens avaient ordonné les signes des substances métalliques, dans la persuasion où ils étaient que les corps célestes avaient une influence sensible sur tous les corps animés et inanimés du globe terrestre ; ils avaient distingué les métaux, en métaux solaires ou colorés, en métaux lunaires ou blancs.
 

Les métaux de ces deux classes se subdivisaient ensuite en métaux parfaits, demi-parfaits et imparfaits ; la perfection étant exprimée par un cercle ; la demi-perfection, si nous pouvons nous servir de ce terme, par un demi-cercle ; et l’imperfection par une croix ou un dard.
 

Ainsi l’or, qui était le métal solaire par excellence, était représenté par un cercle seul, cette figure était commune aux métaux de la même classe tels que le cuivre, le fer, l’antimoine : mais elle se trouvait combinée avec le signe de l’imperfection.
 

L’argent qu’ils regardaient comme un métal lunaire demi-parfait était indiqué par un demi-cercle, l’étain, le plomb avaient aussi le demi-cercle pour signe, comme appartenant à la même classe, mais ils étaient distingués de l’argent par la croix ou par le dard.
 

Enfin le mercure qui était un métal imparfait, tout à la fois solaire et lunaire, portait les marques distinctives de ces deux classes, et était désigné par un cercle surmonté d’un demi-cercle auxquels on ajoutait une croix."

 


Extrait du tableau des nouveaux caractères chimiques, très inspiré des signes alchimiques, de Hassenfratz et Adet. Méthode de Nomenclature Chimique" (1787)


 

Quoi qu’il en soit, cette rationalité imaginée leur servira de guide pour proposer un symbolisme "moderne". Ils conserveront le cercle pour les substances "métalliques" comme le mercure, le demi-cercle pour représenter les substances ’inflammables" comme le soufre, le triangle dont la pointe est en haut pour représenter les substances "alcalines" et le triangle dont la pointe est en bas pour les substances "terreuses".

 

Ce symbolisme n’aura pas le même succès que la nomenclature qu’il était supposé illustrer.

 

Nous ne retracerons pas ici le combat de Lavoisier et des "chimistes français", ses collaborateurs, contre la théorie du Phlogistique qui les amène, en caractérisant et nommant l’oxygène, à proposer une nouvelle nomenclature chimique construite autour des propriétés de cet élément.

 

Reprise et perfectionnée par Jöns Jacob Berzelius (1779-1848) elle prendra la forme que nous connaissons aujourd’hui. Nous en reparlerons mais auparavant une nouveau regard sur les corps chimiques mérite d'être évoqué : l'atomisme.

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens