Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
12 août 2014 2 12 /08 /août /2014 18:10

Avril 1764. Charles-Augustin Coulomb, jeune Ingénieur de 28 ans arrive à la Martinique pour diriger l’imposant chantier de la construction du Fort Bourbon qui doit défendre l’île contre les incursions anglaises. Chantier exténuant qui mobilise plus de mille hommes et qu’il mène avec la sûreté d’un bâtisseur confirmé. Trente ans plus tard nous le retrouvons, seul, dans son laboratoire parisien devant le délicat mécanisme d’une tige légère portant une boule de sureau et suspendue horizontalement à un fil d’argent plus fin qu’un cheveux. L’ingénieur, le bâtisseur, aurait été oublié si ce fragile montage ne lui avait pas permis d’établir la loi mathématique des attractions et répulsions électriques.

 

 

 

 

 

Coulomb (1736-1806) : le temps de la mesure.

 

Charles-Augustin Coulomb est né le 14 juin 1736 à Angoulême. Son père, inspecteur des Domaines du Roi, est d’abord nommé à Paris où son fils suit les cours du Collège Mazarin et où il se passionne pour les mathématiques. Des revers de fortune obligent la famille à rejoindre Montpellier. Charles-Augustin y poursuit ses études et est admis à l’Académie des Sciences de la ville qui jouit d’une flatteuse réputation. Pendant le même temps il se prépare au concours d’entrée à l’Ecole du Génie de Mézières, une école prestigieuse qui annonce les "grandes écoles" de la période napoléonienne. Il y entre en février 1760 avec le grade de lieutenant peu de temps avant que l’abbé Nollet y soit nommé en 1761 pour y assurer l’enseignement de la physique.

 

Sa carrière est d’abord celle d’un ingénieur du génie militaire. A la sortie de l’école, en 1761, il est nommé à Brest où pendant trois ans il travaille à la réalisation de cartes côtières. Il s’embarque pour la Martinique en 1764 et en revient en 1772 expérimenté mais épuisé.

 


Fort Bourbon à la Martinique.


 

Il occupe ensuite plusieurs postes sans intérêt majeur dans des garnisons militaires avant d’être élu membre de l’Académie des Sciences en 1781 et nommé à Paris. Il peut alors se consacrer totalement aux recherches sur le magnétisme et l’électricité qu’il n’avait pu mener jusqu’à présent que de façon épisodique.

 

Ses premiers travaux datent de 1776. Il est alors à Cherbourg où il refuse de se laisser gagner par la routine. Son ambition a toujours été de mettre à profit la riche culture scientifique, en particulier mathématique, qu’il a cultivée pendant ses études à Mézières. Il ambitionne surtout d’être élu à l’Académie des Sciences qui l’a distingué en lui accordant le titre de correspondant en 1774. Une occasion de se faire à nouveau connaître s’offre à lui quand, en 1775, l’Académie met au concours un prix concernant l’amélioration des boussoles et leur application à l’étude du magnétisme terrestre. L’enjeu est d’importance à un moment où il faut disputer aux anglais la maîtrise des mers. Le sujet n’est pas, à l’évidence, du domaine de compétence de Coulomb plus instruit à maîtriser les tonnes des matériaux de construction que la délicate aiguille marine. Cependant, ce concours, demandant peu de moyens matériels, se prête parfaitement au travail d’un chercheur isolé. Il lui permet surtout d’apporter la preuve de ses capacités à mener un programme rigoureux et de faire valoir ses connaissances mathématiques.

 

D’emblée, Coulomb définit l’objet de sa recherche et la façon dont il entend la mener : l’étude raisonnée des forces magnétiques exercées sur un aimant. Le débat n’est pas encore tranché entre ceux, que nous pourrions qualifier de "cartésiens", qui défendent l’idée de l’action mécanique d’un "fluide" entourant les corps magnétiques sous la forme de "tourbillons" agissant par contact et les "newtoniens" partisans des actions à distance.

 

Coulomb, rompant avec la plupart des électriciens français, se range dans le camp des derniers. Il considère "que ce ne sont point des tourbillons qui produisent les différents phénomènes aimantaires, et que, pour les expliquer, il faut nécessairement recourir à des forces attractives et répulsives de la nature de celles dont on est obligé de se servir pour expliquer la pesanteur des corps et la physique céleste". Il est vrai que depuis les travaux de Franklin, la théorie de Newton a gagné des adeptes parmi les électriciens français.

 

Quant à la méthode, elle est également nouvelle. Coulomb, pour éliminer les frottements sur l’axe de la boussole ou du barreau aimanté, propose de les suspendre à un cheveu ou un fil de soie. Il réalise ainsi un "pendule" de torsion et commence par établir la loi de la "torsion élastique" :

 

"Les forces de torsion qui ramènent un corps à sa situation naturelle sont nécessairement proportionnelles à l’angle de torsion"

 

Ces résultats sont distingués par un premier prix. Ils annoncent des recherches plus méthodiques dont les premières conclusions seront exposées à partir de 1784.

 

La loi de Coulomb.

 

En septembre 1784, Coulomb présente aux membres de l’Académie des Sciences le Mémoire où il traite des "Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal". Cette étude approfondit les résultats déjà obtenus sur la torsion. Surtout elle met en lumière l’intérêt d’une "balance" pour mesurer les forces de faible intensité comme les forces magnétiques et électriques. Il en fera usage dans une série de mesures qui occuperont 7 Mémoires dont le premier suffira à lui assurer la célébrité.

 

Ce Mémoire lu en Juin 1785 porte "sur l’électricité et le magnétisme" et en particulier sur la :

 

"Détermination expérimentale de la loi suivant laquelle les éléments des corps électrisés du même genre d’électricité se repoussent mutuellement".

 

Un dessin de sa balance de torsion illustre ce texte. Une tige légère porte une balle de sureau de 5mm de diamètre à l’une de ses extrémités et un disque de papier à l’autre. La fonction de ce dernier est celle d’un contrepoids et d’un frein opposé aux oscillations de la tige.

 

Celle ci est suspendue à un fil d’argent de 76cm de longueur. Un fil si fin que "1 pied de ce fil" ne pèse que "1/12 de grain" soit 0,16 grammes par mètre. L’ensemble est contenu dans une enceinte de verre constituée de deux cylindres. Une deuxième balle de sureau est introduite dans le cylindre inférieur au contact de la première. Il suffit alors de toucher l’une des balles par une tige chargée d’électricité (ici une tête d’épingle) pour que les balles de sureau se chargent à leur tour et se repoussent. On peut les obliger à se rapprocher par une torsion du fil pratiquée à sa partie supérieure. L’effort nécessaire est alors déterminé par l’angle de torsion mesuré par un micromètre.

 


Balance de Coulomb Mémoires de l’Académie des Sciences, 1785


Quatre chiffres suffisent à Coulomb pour annoncer un résultat :

 

" Premier essai : Ayant électrisé les deux balles avec la tête d’épingle, l’index du micromètre répondant à zéro, la balle a de l’aiguille s’est éloignée de la balle t de 36°.
 

- Deuxième essai : Ayant tordu le fil de suspension au moyen du bouton du micromètre de 126°, les deux balles se sont rapprochées et arrêtées à 18° de distance l’une de l’autre.
 

- Troisième essai : Ayant tordu le fil de suspension de 597°, les deux balles se sont rapprochées à 8°30’. "

 

Les angles totaux de torsion du fil (144° et 595,5°), c’est à dire les forces exercées, sont dans un rapport de 4,13 alors que les distances sont dans un rapport de 2,12, chiffre dont le carré est égal à 4,48. Cette différence de 8% entre les deux chiffres semble suffisamment faible à Coulomb pour qu’il puisse affirmer que :

 

"La force répulsive de deux petits globes électrisés de la même nature d’électricité est en raison inverse du carré de la distance du centre des deux globes"

 

Avec un vocabulaire plus moderne nous dirions que les forces exercées entre les deux charges électriques sont inversement proportionnelles au carré des distances qui les séparent.

 

Deux mesures pour dégager une loi ? Même si des mesures, bien plus nombreuses, furent exploitées dans les mémoires suivants, il ne manqua pas de commentateurs pour estimer que, telle que présentée, cette conclusion ne faisait pas preuve d’une réelle rigueur. Coulomb a-t-il su résister au désir de se présenter comme le Newton de l’électricité ? N’aurait-il pas voulu tout simplement vérifier une intuition forte, à savoir l’existence d’une loi analogue à celle établie et vérifiée dans le domaine de la gravitation ?

 

Jusqu’en 1825 il se trouvera des physiciens pour refuser ses conclusions et proposer, par exemple, une loi en 1/d au lieu de la loi en 1/d2. Quand il meurt en 1806, Coulomb n’est donc pas encore reconnu comme l’auteur véritable de la première loi mathématique de l’électricité. Loi d’où découleront toutes celles de l’électrostatique. Loi qui sera fondamentale pour définir les futures unités électriques. Il faudra l’énergie de ses disciples français, Biot, Haüy et Poisson pour que soit reconnue la valeur de son travail et que lui soit fait l’honneur de donner son nom à la loi d’action électrique à distance ainsi que, plus tard, à l’unité de charge électrique.

 

En même temps que sa loi sera validée, la balance de torsion dont il a été le premier à utiliser le principe, se perfectionnera pour devenir un instrument utile à la mesure des faibles effets mécaniques ou électriques. L’électromètre à quadrant de Thomson ou le galvanomètre à cadre mobile sont des exemples accomplis de l’usage de la balance de torsion et seront l’occasion de problèmes scolaires classiques jusqu’à la fin du 20ème siècle.

 

Coulomb clôt une époque fertile. Aussi habile expérimentateur que savant mathématicien, il donne réellement à l’électricité, sous sa forme "statique", le statut d’une science académique, c’est-à-dire d’une science capable de se voir appliquer, au travers de la loi d’action à distance, tous les concepts et les outils mathématiques de la mécanique "newtonienne".

 

S’ouvre alors une autre période, celle de l’électricité en mouvement, c’est à dire des courants électriques.


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

 

 

JPEG

 

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès les classes de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignants de sciences physiques et de physique appliquée (tant qu’il en reste encore !).

 

L’auteur est un collègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignants en sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de sa discipline qu’à son enseignement et sa didactique, et cela se sent.

Le style est fluide et imagé, bref plaisant au possible...

 

...voici donc un bon ouvrage permettant de se construire une culture scientifique sans l’âpreté des équations de la physique.

 

extrait du commentaire paru dans le Bulletin de l’Union des Physiciens.

 

_______________________________________________________________________

Partager cet article

Repost 0

commentaires

Présentation

  • : Le blog d'histoire des sciences
  • Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens