Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
13 août 2014 3 13 /08 /août /2014 08:43

Gérard Borvon.

_______________________________________________________________

 

Thalès, nous disent Aristote et Hippias, communiquait la vie aux choses inanimées au moyen de l’ambre jaune mais, également, de la "pierre de magnésie" (μαγνήτις λίθος), l’aimant naturel.


Contrairement à l’ambre, venu des contrées lointaines, l’aimant, oxyde de fer naturellement "magnétique" est largement réparti à la surface du globe. Ses propriétés n’en sont pas moins mystérieuses. L’un de ses noms en grec ancien : "pierre d’Hercule", témoigne de la force des pouvoirs qui lui étaient attribués.

 

Même si l’observation commune ne permettait pas de constater, de sa part, d’autres prodiges que l’attraction de quelques râpures de fer, la légende se nourrissait de récits d’îles attirant les vaisseaux munis de clous de fer et d’hommes cloués au sol par leurs souliers ferrés. Des auteurs aussi sérieux que Plutarque ou Ptolémée n’hésitaient pas à rapporter d’étranges pratiques. "Frottez un aimant avec une gousse d’ail ou du jus d’oignons, disaient-ils, et il cessera d’attirer le fer". "Trempez le dans du sang de bouc, disaient d’autres auteurs, et il reprendra toute sa force" (cité par Henri Martin, doyen de la Faculté des lettres de Rennes dans La foudre, l’électricité et le magnétisme chez les anciens. Paris 1866). A l’évidence une observation de type "scientifique" n’était pas encore à l’ordre du jour !

 

Le terme de "magnétisme" sera donc, comme celui "d’électricité", le principal héritage légué par les grecs.

 

Les hellénistes du 19ème siècle qui, comme Henri Martin, se sont penchés sur l’origine de cette dénomination, ont constaté que l’expression "pierre de magnésie", a pu être interprétée de façon variable suivant les époques. Le sens qui s’est finalement figé est celui d’une pierre issue de la ville Magnésie, cité grecque d’Asie mineure. La ville étant supposée abriter des mines de cet oxyde de fer auquel nous donnons, aujourd’hui, le nom "d’oxyde magnétique" ou "magnétite", et que nous désignons par la formule Fe3O4.

 


cristaux de magnétite.


Ce nom de "Pierre de Magnésie", sera également donné à d’autres minéraux. La "magnésie" est aussi une terre blanchâtre utilisée dans les pharmacopées anciennes comme laxatif. Elle donnera son nom au magnésium dont elle est l’hydroxyde. "Pierre de magnésie" sera aussi le nom ancien du Manganèse, corps dont l’oxyde naturel était utilisé comme fondant par les premiers verriers ou les métallurgistes et qui est indispensable, actuellement, à la fabrication de nombreux alliages.

 

Retenons surtout que Magnésie a donné "magnétisme" et le mot anglais ou allemand "magnet" qui désigne ce que, en France, nous appelons "aimant".

 

Le terme d’aimant est, quant à lui, issu du latin adamas : le diamant. Par une voie obscure le mot "adamas" a également désigné une pierre de magnésie particulièrement active. Ce double sens se retrouve dans le latin médiéval mais bientôt le mot "diamas" désigne le diamant pendant que le terme adamas, conservé pour la magnétite, est interprété comme issu du verbe "adamare" (aimer avec passion) et traduit en langue romane par le mot "aymant" puis aimant (voir Henri Martin : : La foudre, l’électricité et le magnétisme chez les anciens. Paris 1866).

 

Le mystère et la poésie antiques renaissent ainsi dans une pierre capable d’amour. Le domaine des sciences n’échappe pas à la règle, les mots y sont chargés de l’histoire humaine.

 

L’héritage chinois.

 

Magnet, aimant… Les grecs et les latins ont légué le vocabulaire au monde européen. Pourtant la propriété la plus fabuleuse de la pierre de magnésie leur avait échappé. C’est de Chine que viendront les premières lumières à travers l’instrument qui fera le bonheur des marchands et des navigateurs : la boussole.

 

A une période que certains auteurs fixent comme antérieure au troisième siècle avant notre ère y est attesté l’usage d’un "indicateur de sud". C’est une statuette montée sur un pivot vertical et dont le bras étendu montre en permanence le sud. C’est naturellement une tige aimantée qui guide ce bras.

 

On évoque aussi la trouvaille archéologique d’une cuiller divinatoire très particulière. La cuiller utilisée dans ce but a une queue courte et tient en équilibre sur sa base arrondie. On la place au centre d’une plaque polie où sont gravés divers signes propres à lire l’avenir. Un coup vif sur la queue et la cuiller tourne. Quand elle s’arrête, il reste à interpréter les inscriptions indiquées par la direction de son manche. Une cuiller en magnétite et sa plaque de bronze ont ainsi été retrouvées laissant imaginer la façon dont les prêtres chinois aidaient le sort.

 

Plus sérieux. Des boussoles à aiguille suspendue, placées sur pivot ou sur un flotteur sont signalées, en Chine, entre le neuvième et douzième siècle de notre ère. Elles étaient utilisées pour des relevés terrestres. Peut-être étaient-elles déjà connues des ingénieurs qui ont dirigé la construction de la grande muraille.

 

Il est vraisemblable que la boussole a d’abord été adoptée par les arabes avant d’arriver en Europe au début du treizième siècle. Les navigateurs européens seront dès lors capables de s’éloigner des côtes et d’ouvrir les routes maritimes de l’Inde, de la Chine et des Amériques.

 

Pierre de Maricourt ( XIIIe siècle)

 

C’est un "ingénieur militaire" au service du Duc d’Anjou, Pierre de Maricourt dit "Le Pèlerin", qui élucide une partie du mystère de la boussole (son nom est issu de l’italien "bussola" et évoque la "petite boîte" dans laquelle les navigateurs la tiennent enfermée). Pierre de Maricourt est d’ailleurs en Italie, occupé au siège de la ville de Lucera, quand, en 1269, il rédige, sous le titre "Epistola de magnete" (lettre sur l’aimant), le traité qui l’a rendu célèbre.

 

L’unanimité se fait pour considérer ce texte comme l’un des actes fondateurs de la science expérimentale. Suivons, un moment, sa démarche.

 

D’abord quand il définit les "pôles" de l’aimant. "Cette pierre, dit-il, porte en elle la ressemblance du ciel… car dans le ciel il y a deux points remarquables parce que la sphère céleste se meut autour d’eux comme autour d’un axe. L’un est appelé le pôle Nord, l’autre le pôle Sud. Ainsi dans cette pierre tu trouves tout à fait de même deux points dont l’un est appelé pôle Nord et l’autre pôle Sud".

 

Le terme de "pôles" sera conservé dans le vocabulaire du magnétisme mais, notons-le : les pôles dont il est ici question ne sont pas ceux de la terre mais ceux du ciel. La boussole indique le Nord céleste. C’est à l’univers entier qu’est liée la Pierre.

 

L’image du ciel implique une sphère et deux pôles sur celle-ci. Il faut donc que l’aimant soit taillé en forme de sphère :

 

"Pour la découverte de ces deux points tu peux employer divers moyens. L’un consiste à donner à la pierre une forme ronde avec l’instrument employé pour cela pour les cristaux et autres pierres."

 

Reste à y placer les pôles :

 

"Ensuite on pose sur la pierre une aiguille ou un morceau de fer en longueur équilibré comme une aiguille et suivant la direction du fer on marque une ligne divisant la pierre en deux. Ensuite on pose l’aiguille ou le morceau de fer en un autre endroit de la pierre et pour cet endroit, de la même manière, on marque de nouveau une ligne. Et, si tu veux, tu feras cela en plusieurs endroits et sans nul doute toutes ces lignes concourront en deux points comme tous les cercles du monde qu’on appelle azimuths concourent en deux pôles du monde opposés"

 

Ensuite :

 

"Casse un petit morceau d’une aiguille qui soit long de deux ongles et pose le à l’endroit où le point a été trouvé comme on vient de le dire, et s’il se tient perpendiculairement à la pierre, tu as sans nul doute le point cherché… et de même tu trouveras le point opposé. Si tu l’as bien fait et si la pierre est homogène et bien choisie, les deux points seront diamétralement opposés comme les pôles de la sphère céleste"

 

Pour savoir lequel est le pôle Nord, lequel est le pôle Sud, il reste à placer la sphère dans un bol de bois posé sur l’eau et à la laisser s’orienter comme une boussole. On marquera alors comme "pôle Nord" celui qui se dirigera vers le Nord céleste.

 

Maintenant, expérimentons. Une deuxième pierre a été préparée, on l’approche de la première, et voilà que la Nature dévoile l’une des lois cachée jusqu’à présent à la connaissance des hommes !

 

"Sache donc cette règle", écrit Maricourt " que le pôle Nord d’une pierre peut attirer le pôle Sud de l’autre et le pôle Sud son pôle Nord. Si au contraire tu approches le pôle Nord du pôle Nord, tu verras la pierre que tu portes fuir sur l’eau la pierre que tu tiens et de même si tu approches le pôle Sud du pôle Sud"

 

Le moyen âge, dit-on, est période d’obscurantisme. Pierre de Maricourt semble vouloir prouver le contraire. Il faudra attendre plus de trois siècles pour que William Gilbert apporte de nouveaux éclairages sur le même sujet et plus de quatre siècles pour que Dufay décrive, avec la même précision, les lois de l’attraction et de la répulsion électrique.

 

Louis Néel, en recevant le prix Nobel de physique en 1970 pour ses travaux sur le ferromagnétisme, saura rendre, à Pierre de Maricourt, un hommage mérité. Après avoir salué les travaux de ses prédécesseurs, Pierre Curie, Paul Langevin, Pierre Weiss, il situe ses propres travaux dans l’héritage de son confrère médiéval :

 

" Seules restaient incomprises les propriétés de la plus ancienne des substances magnétiques connues : la magnétite ou pierre d’aimant qui a attiré l’attention des curieux depuis quatre mille ans. J’ai eu la chance de combler cette lacune et d’expliquer ces propriétés, avec la notion de ferromagnétisme.
 

Mais j’avais été précédé dans cette voie, au XIIIème siècle, par Pierre de Maricourt, auteur en 1269 du premier traité sérieux sur les aimants."

 

Pour ajouter à son mérite, notons que Pierre de Maricourt observe également l’aimantation du fer par le contact d’un aimant et qu’il inaugure l’expérience classique de "l’aimant brisé" : quand on brise un aimant, un pôle sud apparaît au niveau de la cassure sur le morceau qui porte le pôle Nord et un pôle Nord sur la partie qui porte le pôle Sud. Deux nouveaux aimants naissent donc de cette rupture.

 


aimant brisé de Pierre de Maricourt

 


William Gilbert

 

Plus de trois siècles se sont écoulés. Nous retrouvons William Gilbert. C’est, rappelons le, dans le cadre d’un ouvrage sur le magnétisme qu’il avait été amené à différencier les actions de l’ambre et de l’aimant et à faire connaître la multiplicité des corps susceptibles d’être "électrisés" par le frottement. C’est lui faire justice que de reconnaître son apport tout aussi fondamental dans le domaine du magnétisme.

 

Quand, en l’année 1600, il publie "De Magnete" l’Univers n’est plus celui de Pierre de Maricourt. Depuis déjà plus d’un demi-siècle, Copernic a mis le soleil au centre du monde et rabaissé la Terre au rang d’une simple Planète. La sphère céleste s’est effacée, le Nord et le Sud ne sont plus les pôles du ciel mais les extrémités de l’axe autour duquel tourne la Terre. La boussole, quant à elle, est devenue l’objet de toutes les attentions. Il y a déjà plus d’un siècle qu’elle a guidé Christophe Colomb vers un nouveau monde. Mais, si ce n’est plus le ciel qui la dirige, comment fonctionne-t-elle ?

 

C’est la Terre, nous dit Gilbert, qui attire la boussole car elle est elle-même un gigantesque aimant.

 


Pour Gilbert la terre est un aimant.


 

Les aimants sphériques de Pierre de Maricourt pouvaient, de façon naturelle, amener à ce modèle. Gilbert en fera des "terellae", des petites Terres sur lesquelles il pourra promener une boussole. Il étudiera ainsi le phénomène d’inclinaison magnétique. Une boussole suspendue n’est horizontale qu’au niveau de l’Equateur. Elle s’incline ensuite quand on se dirige vers les pôles pour se présenter perpendiculaire à ceux-ci quand elle les atteint.

 

Il sait aussi que le Nord magnétique ne coïncide pas exactement avec le Nord géographique. Il n’ignore pas que Christophe Colomb, le premier, a observé la déclinaison, cet écart variable suivant les lieux entre le Nord et la direction de la boussole. Ces variations n’enlèvent rien au modèle qu’il propose. Il les attribue aux imperfections de la Terre qui, avec ses océans, ses montagnes, ses mines métalliques, est loin de l’homogénéité d’un aimant parfait.

 

Mais la nouvelle théorie pose un problème de vocabulaire. Si la Terre est un aimant, son pôle Nord géographique qui attire le pôle Nord de la boussole est donc, en réalité, le pôle Sud de l’aimant terrestre !

 

Pour éviter la confusion, des physiciens des siècles suivants, proposeront d’appeler "pôle magnétique positif" le pôle Nord de l’aimant et "pôle magnétique négatif" son pôle Sud. Le pôle Nord de la terre serait ainsi, tout simplement, un pôle "moins" magnétique. Hélas le succès de cette nomenclature ne fut pas au rendez-vous.

 

Les physiciens du 19ème siècle pensaient pouvoir échapper à la confusion en utilisant le terme de "magnétisme boréal" pour l’aimantation du pôle Nord terrestre et de "magnétisme austral" pour celle du pôle opposé. Ainsi le pôle Nord d’une boussole présentait-il un magnétisme "austral". Cet usage artificiel de synonymes ne réglait cependant, en rien, le problème.

 

Combat perdu : les scientifiques ont jusqu’à présent renoncé à réformer un vocabulaire imposé par des siècles de pratique. Nouvelle cicatrice de la science : nous devons nous accommoder d’un "Nord magnétique" des géographes qui est en réalité un "Sud magnétique" des physiciens.

 

L’ouvrage de Gilbert, qui, lui aussi, se reconnaît comme le continuateur de Pierre de Maricourt, restera la référence pendant près de deux siècles et c’est seulement à la fin du 18éme siècle que Coulomb viendra enrichir la connaissance du magnétisme par l’étude quantitative qu’il en fera au moyen de sa "balance".

 

Coulomb et la mesure

 

C’est d’abord le magnétisme qui fait connaître Coulomb. En 1777, son mémoire, intitulé "Recherches sur la meilleure manière de fabriquer les aiguilles aimantées", est primé par l’Académie des sciences.

 

Coulomb est de cette nouvelle génération de scientifiques qui mettent leur connaissance approfondie des mathématiques au service de la science expérimentale. Ses mémoires pourraient, encore aujourd’hui, donner lieu à d’intelligents exercices scolaires ou universitaires.

 

Quand il quitte le chantier du magnétisme, il nous a appris que, comme le fluide électrique, "le fluide magnétique agit suivant la raison inverse du carré des distances de ses molécules". Il a répertorié et amélioré les méthodes pour aimanter un barreau aimanté et pour en déterminer le degré d’aimantation.

 


montage de coulomb pour l’étude du magnétisme.

voir


Le domaine du magnétisme semble avoir été entièrement exploré. Du moins a-t-on pu le penser pendant les trente années qui ont suivi.


 

De l’aimant à l’électro-aimant.

 

Souvenons nous que, depuis l’année 1600, Gilbert a dressé une frontière entre l’ambre et l’électricité d’une part, l’aimant et le magnétisme d’autre part.

 

La frontière était-elle hermétique ? Pas totalement. D’abord parce qu’il est difficile de ne pas imaginer la même cause à des actions aussi visiblement proches que les attractions électriques, magnétiques et même de gravitation. Encore aujourd’hui, la grande "unification" est le rêve des physiciens.

 

Seconde raison : l’observation commune. Avant même que soit connue la nature électrique de la foudre, on savait qu’un éclair pouvait faire bouger l’aiguille d’une boussole et même, parfois, supprimer ou inverser son aimantation. La bouteille de Leyde permettait d’ailleurs de vérifier aisément le phénomène. "Je ne me souviens pas si je vous ai mandé" écrivait Franklin à son ami Cadwallader Colden, en 1751, "que j’ai changé les pôles d’une aiguille aimantée et donné le magnétisme et la polarité à des aiguilles qui n’en avaient point" et ceci en utilisant de volumineuses bouteilles de Leyde de 8 à 9 gallons (environ trente litres).

 

Quand, en 1800, Volta fait connaître sa pile, des espoirs renaissent. Comment ne pas voir dans cette colonne présentant deux pôles l’équivalent d’un barreau aimanté.

 

L’analogie entre les fluides électriques et magnétiques redevient un sujet d’actualité dans les laboratoires européens. Si des phénomènes encourageants ont pu être observés, ils ne laissent pourtant aucune trace avant la fameuse expérience réalisée par le physicien Danois Hans Christian Œrsted.

 

Hans Christian Œrsted (1777-1851).

 

Œrsted, professeur de sciences physiques à l’université de Copenhague, est du nombre de ceux qui aspirent à trouver la cause commune de l’électricité et du magnétisme.

 

Hans Christian Œrsted est né le 14 août 1777 dans l’île danoise de Langeland. Son père est pharmacien et lui fait suivre des études de médecine à Copenhague où il obtient le titre d’agrégé de la faculté de médecine en 1800, l’année même ou Volta fait connaître sa pile. Il tient un moment la pharmacie familiale mais a la chance de se voir attribuer, par son gouvernement, une bourse qui lui permet de voyager pendant cinq ans en Europe pour compléter son instruction. De retour au Danemark, il est nommé professeur de physique dans l’université de Copenhague.

 

Au début de l’année scolaire 1819-1820, il est occupé à un cours sur la pile Volta. Il en montre, en particulier, les effets thermiques, en portant à l’incandescence un fil de platine tendu entre ses deux pôles. Etait-ce un hasard ? Une aiguille aimantée se trouve sur la table, à proximité de la pile. Un assistant remarque, alors, une oscillation de l’aiguille quand les deux pôles de la pile sont réunis. C'est du moins ainsi que la légende de la découverte a été relatée.

 

Le phénomène est surprenant. On recherchait une analogie entre les pôles d’un aimant et ceux d’une pile en circuit ouvert. Il fallait, en réalité, fermer le circuit, et en quelque sorte neutraliser ces pôles, pour qu’une observation soit faite.

 


Œrsted découvre l’action magnétique des courants
(Louis Figuier, Les Merveilles de la Science)


Reprenant l’expérience dans le secret de son laboratoire, Œrsted constate que c’est bien le fil reliant les pôles qui est le siège d’un phénomène magnétique et non les pôles eux-mêmes. Il remarque, en particulier que les effets sont les plus spectaculaires quand le fil est parallèle à la direction de l’aiguille. Tous ces résultats sont publiés en juillet 1820 dans un mémoire intitulé : "Expériences relatives à l’effet du conflit électrique sur l’aiguille aimantée".

 

Nous avons déjà indiqué que Œrsted, partisan de la théorie des deux électricités, positive et négative, imagine deux "tourbillons" de fluides électriques opposés agissant le long du fil. La "matière électrique négative décrit une spirale à droite et agit sur le pôle nord" dit-il, tandis que "la matière électrique positive possède un mouvement en sens contraire et a la propriété d’agir sur le pôle Sud ".

 

L’interprétation est archaïque et bien éloignée des théories d’action à distance héritées de Newton qui dominent à cette époque. L’observation, par contre, mobilisera, dans l’instant, l’ensemble des physiciens européens. Parmi eux, Ampère.

 

Ampère (1775-1836)

 

André-Marie Ampère fait partie de cette génération de jeunes physiciens talentueux armés des outils mathématiques les plus récents. A 33 ans il est déjà inspecteur général de l’Instruction Publique. La relation de l’expérience de Œrsted lui parvient au moment où il est devenu un professeur chevronné à l’école polytechnique. Il a alors l’idée de tester l’action de deux courants l’un sur l’autre.

 

Que feront deux fils parallèles parcourus par des courants de même sens. Vont-ils se repousser comme le font deux charges électriques de même signe ?

 

Vérification faite : ils s’attirent !

 

Par contre deux fils parcourus de courants en sens inverse se repoussent.

 

Le résultat peut alors s’énoncer sous la forme d’une loi inverse de celle de Dufay pour les charges électriques statiques :

 

Deux éléments de courants parallèles et de même sens s’attirent. Deux éléments de courants parallèles et de sens contraire se repoussent.

 

Un montage ingénieux.

 

Le montage réalisé pour cette étude est particulièrement ingénieux. Il s’agit d’un cadre rectangulaire mobile autour d’un axe. Cet axe est parallèle à un fil rectiligne vertical fixe. Le courant descend dans l’une des tiges verticales du cadre et monte donc dans l’autre.

 

Ce dispositif permet d’approcher du fil fixe, parcouru par un courant, un fil parallèle à celui-ci et parcouru d’un courant que l’on peut choisir de même sens ou de sens contraire.

 

Ce choix d’un cadre aura, nous le verrons, de fructueux effets sur la suite des travaux d’Ampère.

 


Le montage imaginé par Ampère pour étudier attraction et répulsion entre deux courants rectilignes. Le fil IL attire le fil DF et repousse le fil MG.

"Exposé des nouvelles découvertes sur l’électricité et le magnétisme, par MM.  Ampère et Babinet, Méquignon-Marvis, Paris, 1822"


 

L’annonce de ces résultats sera faite le 18 septembre 1820 c’est-à-dire une semaine après que les observations de Œrsted aient été connues de l’Académie des Sciences.

 

Plus tard, Ampère soulignera avec force la portée novatrice de son intuition :

 

« Lorsque M. Œrsted eut découvert l’action que le fil conducteur exerce sur un aimant, on devait, à la vérité, être porté à soupçonner qu’il pouvait y avoir une action mutuelle entre deux fils conducteurs ; mais ce n’était point une conséquence nécessaire de la découverte de ce célèbre physicien, puisqu’un barreau de fer doux agit sur une aiguille aimantée, et qu’il n’y a cependant aucune action mutuelle entre deux barreaux de fer doux. » (Ampère, Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l’expérience, A. Hermann. Paris 1826).

 

Il se pouvait en effet, expose Ampère, que le passage d’un courant électrique dans un fil conducteur ne lui donne, simplement, que la propriété du fer doux et donc n’implique aucune action entre les deux fils : deux barreaux de fer doux ne se repoussent pas !

 

« L’expérience pouvait seule décider la question : je la fis au mois de septembre 1820, et l’action mutuelle des conducteurs voltaïques fut démontrée. » .

 

La vraie découverte résiderait bien plus dans la mise en évidence de cette action mutuelle de deux courants que dans celle de l’action d’un courant sur un aimant faite par Œrsted. Telle semble être, du moins, l’opinion de Ampère au moment où il rédige ces lignes. C’est d’ailleurs pour cette raison qu’il refuse la dénomination d’électro-magnétisme pour désigner cette nouvelle branche du savoir et qu’il essaie d’imposer, sans succès, le terme d’électro-dynamisme.

 

Poursuivant l’étude du phénomène, il en établira la loi mathématique et montrera, en particulier, que les forces exercées entre deux éléments conducteurs sont inversement proportionnelles au carré de leur distance. Une loi qui retrouve la forme des celles énoncées par Newton pour la gravitation et par Coulomb pour l’électrostatique et le magnétisme. C’est d’ailleurs de Newton dont il revendique la filiation :

 

« Observer d’abord les faits, en varier les circonstances autant qu’il est possible, accompagner ce premier travail de mesures précises pour en déduire des lois générales, uniquement fondées sur l’expérience, et déduire de ces lois, indépendamment de toute hypothèse sur la nature des forces qui produisent les phénomènes, la valeur mathématique de ces forces, c’est à dire la formule qui les représente, telle est la marche qu’a suivie Newton. Elle a été, en général, adoptée en France par les savants auxquels la physique doit les immenses progrès qu’elle a faits dans ces derniers temps, et c’est elle qui m’a servi de guide dans toutes mes recherches sur les phénomènes électro-dynamiques. »

 

La terre est un électro-aimant.

 

Le cadre mobile utilisé pour établir la loi d’attraction et de répulsion des courants devait être utilisé avec précaution.

 

En effet, en y faisant passer un courant, alors que le fil fixe n’était pas encore alimenté, on observait une rotation du cadre qu’Ampère pouvait immédiatement attribuer à l’action de l’aimant terrestre sur ce dispositif particulièrement sensible. Pour éviter toute perturbation provenant de l’action de la terre, il fallait donc placer le plan du cadre perpendiculaire à la direction Nord/Sud.

 

L’étude du magnétisme terrestre devenait alors un nouveau champ d’investigation avec pour détecteur, non plus une aiguille aimantée, mais un cadre mobile parcouru par un courant. Le cadre pouvait même être incliné comme une boussole des tangentes, cette aiguille aimantée suspendue de telle sorte qu’elle puisse s’incliner dans la direction réelle des lignes du champ magnétique terrestre. Il apparaissait alors que : « quelle que soit la position qu’on donne au conducteur, » il ne s’immobilisait « que dans la situation où son plan est perpendiculaire à la direction connue de l’aiguille d’inclinaison. »

 

Guidé par ses premières observations, Ampère ne voit qu’une seule explication :

 

« cet effet se trouve expliqué par la même supposition des courants électriques dirigés de l’est à l’ouest dans le globe de la terre... ».

 

Gilbert avait su voir que la Terre était un gigantesque aimant. Ampère précisait qu’il s’agissait d’un électro-aimant résultant de courants électriques circulant en boucles à l’intérieur du Globe. Cette hypothèse est toujours d’actualité.

 

Du cadre mobile au solénoïde

 

Le cadre rectangulaire peut être remplacé par une spire. La bonne idée est d’enrouler le fil, non plus dans un plan, mais en hélice. sur un tube de verre isolant constituant ainsi ce que Ampère appellera plus tard un "solénoïde" (du grec sôlên, canal, et eidos, forme).

 


Solénoïde.
(Louis Figuier, Les Merveilles de la Science)


 

Ce montage deviendra particulièrement efficace quand le physicien Johann Schweigger aura eu l’idée d’isoler les fils conducteurs en les entourant de soie, permettant ainsi la réalisation de spires jointives et même d’en superposer plusieurs couches.

 

Ce solénoïde, parcouru par un courant, a toutes les caractéristiques d’un barreau aimanté. Il présente à ses extrémités des pôles Nord et Sud (Austral et Boréal, dirait Ampère). Il peut s’orienter dans le champ magnétique terrestre. Il peut agir sur une aiguille aimantée.

 

Du solénoïde à l’aimant droit.

 

Une hypothèse alors largement admise, pour interpréter l’action des aimants, est l’existence de "fluides", de "charges" ou de "masses" magnétiques dans ceux-ci. Un fluide magnétique "austral" agirait au pôle nord de l’aimant, un fluide magnétique "boréal" au pôle sud.

 

Après avoir expliqué le magnétisme terrestre par l’existence de courants électriques parcourant le globe, Ampère étend tout naturellement cette hypothèse aux barreaux aimantés :

 

« ...puisque nous avons vu que nous pouvions assimiler l’effet produit par le globe, soit sur un conducteur mobile, soit sur un aimant, à celui d’un courant électrique dirigé de l’est à l’ouest, nous devons pouvoir rendre raison de tous les phénomènes que présentent les aimants, en imaginant dans ceux-ci une disposition analogue... »

 


Barreau aimanté représenté comme parcouru par des courants de direction Est/Ouest, à l’image de l’aimant terrestre.

"Exposé des nouvelles découvertes sur l’électricité et le magnétisme, par MM.  Ampère et Babinet, Méquignon-Marvis, Paris, 1822"


 

Un aimant est donc le siège de courants électriques. Ces courants forment des boucles perpendiculaires à l’axe de l’aimant, tournant toutes dans le même sens. Leur résultante superficielle donne à l’aimant une apparence de solénoïde.

 

L’hypothèse est hardie à un moment où on ne connaît rien de la nature des atomes et à plus forte raison des électrons.

 

Cette analogie se renforce quand Ampère à connaissance des expériences faites par le physicien Arago. Celui-ci à d’abord l’idée de présenter de la limaille de fer à l’action d’un fil parcouru par un courant : la limaille est attirée et retombe dès que le courant cesse. Une aiguille d’acier présentée au courant s’aimante et conserve cette aimantation.

 

Arago, puis Ampère, imaginent alors d’introduire un barreau d’acier dans un solénoïde. Leur intuition se vérifie : le barreau s’aimante en présentant les mêmes pôles que ceux du solénoïde.

 

Voici donc le moyen efficace et rapide de fabriquer des aimants permanents. Coulomb, qui en avait fait un de ses principaux objets d’étude, aurait aimé vivre cet instant.

 

Tout aussi digne d’intérêt : une tige de "fer doux" placée dans un solénoïde s’aimante également mais perd son aimantation dès que le courant cesse. Mieux qu’un aimant permanent, l’aimant temporaire, l’électro-aimant vient d’être découvert.

 

C’est l’électroaimant qui bientôt transportera des charges métalliques mais aussi permettra d’imaginer le télégraphe et surtout les moteurs puis les génératrices électriques.

 

De Ampère nous retiendrons également le "bonhomme" placé sur le conducteur de façon à ce que le courant "positif" lui entre par les pieds. La force qui agit sur le pôle nord de la boussole qu’il regarde, se dirige vers sa gauche.


Le bonhomme dessiné par Ampère.

 

voir aussi : Au sujet du sens du courant électrique, du bonhomme d’Ampère et du tire-bouchon de Maxwell.


Ampère publie l’ensemble de ses travaux en 1826, sous le titre "Théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l’expérience". L’expérience : le mot est essentiel. Quelle que soient les hypothèses qui pourront être formulées sur le magnétisme, ma loi restera juste, affirme Ampère, car elle "restera toujours l’expression des faits".

 

Les faits l’ont imposé : l’ambre et l’aimant se sont à nouveau rencontrés. L’électromagnétisme est né.


Voir aussi :

 

"Gilbert, qu’on peut à juste titre appeler le père de l’électricité moderne"


Pour aller plus loin :

 

Histoire de l’électricité. De l’ambre à l’électron. Chez Vuibert.

 

Cet ouvrage retrace l’histoire de l’électricité et des savants qui ont marqué son évolution.

L’électricité paraît être une énergie évidente et n’étonne aujourd’hui plus grand monde ; son utilisation est très banale, et pourtant un nombre incalculable de nos actes et modes de vie ne sauraient se passer de son indispensable compagnie. L’électricité est une science récente… mais, des Grecs de l’Antiquité qui, en frottant l’ambre, s’émerveillaient de ses propriétés électrostatiques aux Curie étudiant la radioactivité, de découvertes heureuses en expériences dramatiques, portés par des hommes et des femmes qui ont tout sacrifié à la compréhension des phénomènes électriques, plus de vingt-cinq siècles ont défilé avant que l’on perçoive, peut-être, l’essence de cette force naturelle.

 

Au fil d’un récit imagé - celui d’une succession de phénomènes généralement discrets qui, sous le regard d’observateurs avertis, débouchèrent sur des applications spectaculaires - nous croiserons des dizaines de savants, d’inventeurs et de chercheurs dont les noms nous sont déjà familiers : d’Ampère à Watt et de Thalès de Milet à Pierre et Marie Curie, ce sont aussi Volta et Hertz, Ohm et Joule, Franklin et Bell, Galvani et Siemens ou Edison et Marconi qui, entre autres, viennent peupler cette aventure. On y verra l’ambre conduire au paratonnerre, les contractions d’une cuisse de grenouille déboucher sur la pile électrique, l’action d’un courant sur une boussole annoncer : le téléphone, les ondes hertziennes et les moteurs électriques, ou encore la lumière emplissant un tube à vide produire le rayonnement cathodique. Bien entendu, les rayons X et la radioactivité sont aussi de la partie.

 

De découvertes heureuses en expériences dramatiques, l’électricité reste une force naturelle qui n’a pas fini de susciter des recherches et de soulever des passions.


Partager cet article

Repost 0

commentaires

Présentation

  • : Le blog d'histoire des sciences
  • Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens