Overblog Suivre ce blog
Administration Créer mon blog
2 août 2017 3 02 /08 /août /2017 12:01

1926.

 

"Le sujet de cette conférence est quelque peu abstrait, et je m'en excuse, mais son choix a été dicté par le désir de vous communiquer quelques réflexions personnelles et de provoquer des observations sur l'enseignement des sciences {en particulier des sciences expérimentales qui sont spécialement de mon domaine), sur le rôle que peut et doit y jouer le point de vue historique et de son importance dans la préparation de ceux qui sont appelés à enseigner les sciences.

 

Il faut reconnaître tout d'abord que, dans cet enseignement, on néglige à peu près entièrement le point de vue historique, alors qu'il en est tenu grand compte dans d'autres branches comme la littérature et la philosophie. L'enseignement de la musique lui-même vient de voir son programme augmenté, dans les établissements secondaires, d'un aperçu des « grandes étapes » et des « grandes figures » de l'histoire de cet art. Or, dans l'enseignement des sciences, on ne saurait que gagner à introduire de même le point de vue historique." 

 

Ainsi s'exprimait Paul Langevin en introduction de sa conférence sur "la valeur éducative de l'histoire des sciences", en 1926. 

 

Extrait :  "Ce que nous proposerons ici sera de mettre en évidence tout ce que l'enseignement scientifique perd à être uniquement dogmatique, à négliger le point de vue historique.

 

En premier lieu il perd de l'intérêt. L'enseignement dogmatique est froid, statique, et aboutit à cette impression absolument fausse que la science est une chose morte et définitive. Personnellement, si j'en étais resté aux impressions éprouvées à la suite des premières leçons de sciences de mes professeurs - à qui je garde cependant le souvenir le plus reconnaissant - si je n'avais pris un contact ultérieur ou différent avec la réalité, j'aurais pu penser que la science était faite, qu'il ne restait plus rien à découvrir, alors que nous en sommes à peine aux premiers balbutiements dans la connaissance du monde extérieur. Croire qu'il n'y a plus que des conséquences à tirer de principes définitivement acquis est une idée absolument erronée et qui risque de faire perdre toute valeur éducative à l'Enseignement scientifique.

 

Ce défaut, général dans tous les pays, est encore plus sensible en France où, par une coquetterie déplacée, on hésite à introduire dans l'enseignement les notions nouvelles qui, à un degré plus ou moins grand, sont encore en état de développement. Seules les théories ayant fait, au moins en apparence, leurs preuves ont droit de cité dans nos livres classiques ; il en résulte qu'en réalité celles qui sont déjà périmées sont presque les seules qu'on puisse y rencontrer, tant est rapide encore le changement continuel de nos idées les plus fondamentales.

 

Or pour contribuer à la culture générale et tirer de l'enseignement des sciences tout ce qu'il peut donner pour la formation de l'esprit, rien ne saurait remplacer l'histoire des efforts passés, rendue vivante par le contact avec la vie des grands savants et la lente évolution des idées. Par ce moyen seulement on peut préparer ceux qui continueront "

 

Ce texte, constamment rappelé, reste une référence qu'il est intéressant de suivre dans le siècle qui a suivi.

 

XXXXXXXXXXXXXXXX

 

1960.

 

La revue "La Nature" fait le compte rendu d'un colloque réuni à l'initiative de l'Association Paul Langevin" consacré à l'histoire des sciences dans l'enseignement et l'éducation.

 

 

 

 

Extrait : "Une discussion présidée par René Lucas, président de l'association, révéla le plein accord des nombreux spécialistes et enseignants en faveur de l'introduction de l'histoire des sciences dans l'enseignement secondaire et aussi, sous une forme anecdotique, dans l'enseignement primaire. Des professeurs d'histoire et de philosophie sont intervenus pour montrer combien leur enseignement gagnerait en intérêt et en profondeur si, en enseignant les sciences, on montrait non seulement l'évolution interne des idées, mais aussi l'influence des techniques et conditions historiques sur l'évolution de la pensée scientifique"

 

XXXXXXXXXXXXXXXXXXX

 

1989...1994.  Les journées Langevin à Brest.

 

De 1989 à 1994 sont organisées à la faculté des sciences à Brest, à l'initiative de Jean Rosmorduc professeur d'histoire des sciences à l'Université, des "Journées Langevin" consacrées à l'enseignement de l'histoire des sciences. Lors des deuxièmes journées Langevin en 1990, Gérard Borvon, enseignant au lycée de l'Elorn à Landerneau, expose des "Exercices historiques en classe de sciences".

 

" rien ne vaut d'aller aux sources, de se mettre en contact aussi fréquent et complet que possible avec ceux qui ont fait la science et qui en ont le mieux représenté l'aspect vivant "  écrivait Langevin.

 

Gérard Borvon montre que ces sources sont souvent facilement accessibles (ce qui est encore plus vrai avec le développement d'internet) et propose de les utiliser en classe (voir ci dessous).

 

XXXXXXXXXXXXXXXXXXX

 

Tentatives de mise en oeuvre.

 

 

L’histoire des sciences ne doit pas être un simple ornement. Utilisée comme un outil pour faire progresser le cours elle évite le piège du dogmatisme qui est à l’opposé de la démarche scientifique dans le même temps qu’elle inscrit les sciences comme une part entière de la culture humaine.

 

 

On trouvera ici quelques expériences tentant de mettre en oeuvre cette conception.

 

 

Ou encore : des rayons X à la photographie et au cinéma.

 

 

 

 

XXXXXXXXXXXXXXXXXX

 

 

2005.

 

Le thème est repris par Bernadette Bensaude-Vincent, historienne des sciences, dans la revue d'histoire des sciences sous le titre : Paul Langevin : L'histoire des sciences comme remède à tout dogmatisme

 

Le texte, extrêmement riche, s'appuie sur la conférence de Paul Langevin "L'esprit de l'enseignement scientifique" de 1904. Il se conclut par une citation de Langevin extraite de sa conférence sur "La pensée et l'action" datée de 1946.

 

 
2017 ?
 
 
Repost 0
14 août 2016 7 14 /08 /août /2016 20:13

Une industrie chimique des algues en Bretagne

par Gérard Borvon et les élèves du lycée de l'Elorn à Landerneau.

 

Ce texte est le résultat d'une recherche à la fois historique et pédagogique menée avec des classes de seconde du lycée de Landerneau entre les années 1995 et 2000.

 

C'est un travail historique : il montre l'évolution et la permanence d'une industrie liée aux algues en Bretagne depuis le début du 18ème siècle.

 

C'est un travail pédagogique avec pour objectifs :
- de sortir l'enseignement des murs de l'école.
- de faire participer les élèves à la construction de leur savoir.
- d'étudier un programme dans le cadre d'un projet.
- de situer une science et une technique, comme toute activité humaine, dans l'histoire et en particulier celle d'une région.

 

 

 

Vous y trouverez tous les dosages des éléments contenus dans les cendres d'algues. Les méthodes d'extraction de l'iode et des alginates. Les formules de masques de beauté et de moulages aux alginates. La recette d'un "flan" au "pioka". Le texte que nous présentons ici est une invitation à aller plus loin.

 

 

 

Une industrie chimique dans le Nord-Finistère

 

Le Nord-Finistère, en Bretagne, n'est pas particulièrement réputé pour son industrie chimique. Pourtant, depuis le 17e siècle, c'est à dire depuis le début de la chimie, une activité chimique y est menée, sans interruption, autour des algues.

 

L'industrie de la "soude" (carbonate de sodium) se développe d'abord. On extrait ce produit des cendres de goémons séchés. Il est indispensable à la fabrication du verre. Cette activité s'arrête à la fin du 18e siècle quand de nouveaux procédés sont découverts.

 

Elle reprend en 1829 après que le chimiste Bernard Courtois ait découvert, en 1812, un nouveau et utile produit dans les cendres d'algues : l'iode. L'iode est utilisée, en particulier, en photographie et en médecine. Sa production en Bretagne s'arrête en 1952 à cause de la concurrence de l'iode extrait des nitrates du Chili.

 

Aujourd'hui le relais est pris par l'extraction des alginates contenus dans les grandes laminaires.

 

 

En 1883 Edward Stanford isole l'algine des algues, plus tard le norvégien Axel Kefting en extrait l'acide alginique. La production à grande échelle commence en 1930. La Bretagne en produit environ 2000 tonnes dans les usines de Lannilis et Landerneau. Les alginates sont des agents épaississants et stabilisateurs qui interviennent aussi bien dans l'industrie pharmaceutique que dans l'industrie alimentaire ou celle du papier, des colorants ou des produits de moulage.

 

Plus confidentiels mais tout aussi riches d'intérêt sont les usages alimentaires, pharmaceutiques et cosmétiques des algues.De nombreux laboratoires, dans le Finistère, travaillent dans ces domaines pour des produits " haut de gamme " souvent destinés à l'exportation.

 

Cette ancienneté, cette richesse et cette diversité ont nourri les activités de plusieurs classes du lycée de l'Elorn à Landerneau. Ce site leur doit beaucoup. Il s'adresse à ceux qui voudraient s'inspirer de leur expérience mais aussi à tous ceux dont la curiosité aurait été éveillée par cette curieuse et attachante industrie.

 

La soude

 

En vous promenant sur les dunes du Nord-Finistère, vous ne pouvez manquer de rencontrer de longues tranchées tapissées de pierres plates. Les habitants du lieu vous dirons que ce sont les " fours à soude " des anciens goémoniers.

 

Pour le chimiste contemporain le mot " soude ", nom usuel de l'hydroxyde de sodium de formule NaOH, est déjà un archaïsme. La " soude " des goémoniers, quant à elle, évoque des temps encore plus reculés et désigne le carbonate de sodium (Na2C03). Dans un passé récent les droguistes savaient encore distinguer cette " soude du commerce " utilisée comme décapant banal de la " soude caustique " (l'hydroxyde de sodium) bien plus corrosive.

 

Un rapide coup d'œil dans un dictionnaire contemporain nous apprendra que le mot soude désigne également une plante des terrains salés appartenant à la famille des salsolacées qui comprend, entre autres, les salicornes. Le Larousse en trois volumes précisera même que le nom dérive de l'arabe " sunwäd ".

 

Un produit de la science arabe.

 

Ce sont bien les arabes qui ont introduit l'usage de la soude en Europe.

Depuis l'antiquité égyptienne, les populations du sud de la Méditerranée

 

Salicorne

 

savaient utiliser les propriétés des cendres des plantes terrestres riches en carbonate de potassium et celles des plantes marines contenant du carbonate de sodium. Le nom de " al kali ", par lequel les arabes désignaient ces plantes et leurs cendres, se retrouve dans le terme " alcalin " de la chimie récente. Ces cendres pouvaient être utilisées pour dégraisser les laines ou fabriquer des savons, elles entraient également dans la composition du verre.

 

Le verre, dont la découverte est attribuée aux égyptiens, est en effet un produit qui contient 70% de silice, 15% de chaux et 15% de soude ou de potasse.

 

Pour ceux que l'histoire du vocabulaire de la chimie intéresserait on peut signaler que, pour ces usages, les égyptiens de l'époque pharaonique utilisaient également les dépôts cristallins de carbonate de sodium déposés par évaporation sur les rivages des lacs Natron (Ouadi-Natroun), groupe de lacs à l'ouest du delta du Nil. Cette origine se retrouve dans le nom de natrium et le symbole Na retenus par la nomenclature internationale pour désigner ce que les chimistes français continuent à appeler sodium par référence à la soude.

 

On pourra noter également que le mot " kali " a donné le kalium de symbole K qui est le " potassium " de la nomenclature française. Cette autre exception française tire son nom du mot potasse, dérivé de l'allemand " Potasche " ou " Cendre de pot ". Ce terme a d'abord désigné le carbonate de potassium présent dans les cendres des végétaux terrestres et qui était utilisé, sous cette forme ou " lessivé " à travers un chiffon, pour la corvée de la " buée ", c'est à dire la " lessive " du linge sale. Le mot potasse désigne aujourd'hui l'hydroxyde de potassium.

 

De la salicorne à la soude.
 

Cette parenthèse étant refermée, il faut donc retenir que le carbonate de sodium extrait des cendres de plantes marines était une matière première indispensable aux industries du verre et du savon.

 

Aux 17e et 18e siècle la " pierre de soude " est un produit encore essentiellement importé d'Espagne. La soude d'Alicante est particulièrement réputée. Les arabes de l'époque andalouse ont introduit, dans cette région, la culture de la " Barille ", une variété de salicorne dont les cendres contiennent jusqu'à 30% de carbonate de sodium. Afin de rendre la France moins dépendante de ce pays parfois hostile, Colbert fera développer la culture de la salicorne et la fabrication de la " pierre de soude " sur les côtes françaises de la Méditerranée, inaugurant ainsi la vocation chimique de la région marseillaise.

 

La culture se fait sur les rives des étangs autour de Montpellier et Marseille. Les semailles sont faites en Février et Mars. La plante atteint la maturité fin Juillet, début Août, elle est alors jaune ou rouge et commence à sécher. On l'arrache, on la laisse faner comme le foin, on la bat avec des fléaux pour en recueillir la graine, elle est alors prête à être brûlée. Deux mille cinq cents quintaux d'herbes sèches donneront cent quintaux de " pierre de salicor ".

 

 

 

La combustion se fait dans une fosse circulaire de deux mètres cinquante de diamètre pour cinquante centimètres de profondeur tapissée de pierres. Le four est d'abord chauffé par des fagots de bois, la salicorne est ensuite jetée sur les braises en couches continues pendant trois heures environ. La cendre apparaît alors comme une masse en fusion qui est pétrie au moyen de perches de bois et qui deviendra un bloc compact lors du refroidissement. L'opération se poursuit jusqu'à ce que le fourneau soit rempli. Quand la " cuisson " de la pierre se fait de nuit on voit avec surprise dans la fournaise, une matière embrasée, liquide comme du métal fondu.

 

On ressent le même étonnement quand on observe l'aspect de lave en fusion de la soude des fours des goémoniers bretons au soir des démonstrations estivales.

 

 

La soude en Bretagne
 

La salicorne pousse également sur les côtes bretonnes, normandes ou vendéennes. Pourtant c'est une matière première différente qui y sera à l'origine d'une industrie de la soude : le goémon. Les cendres de warech et de laminaires ont rapidement été utilisées comme substituts aux cendres de salicorne. Cependant leur réputation est mauvaise pour ce qui concerne le blanchissage et la savonnerie, elles sentent le " foie de soufre " (le sulfure d'hydrogène), elles dissolvent mal les graisses, elles tachent le linge. Par contre elles sont efficaces en verrerie.

 

A l'initiative de verriers installés dans la région de Cherbourg l'industrie de la " soude de warech " se développe donc en Normandie, en Bretagne et partiellement en Vendée. Le verre obtenu n'est pas un verre de qualité, les sels minéraux composant les algues le colorent en vert, mais c'est un " verre à bouteille " très utile à l'industrie vinicole française. L'activité ne se développe pas sans difficultés, il faut convaincre les pêcheurs inquiets pour la reproduction du poisson et rassurer les agriculteurs persuadés que les épaisses fumées des fours, à l'odeur âcre, viendront ruiner leurs cultures. De savants académiciens seront mobilisés et viendront sur place apporter la caution de la science.

 

 

 

 

La technique des goémoniers est directement dérivée de celle des brûleurs de salicorne. Seule diffère la forme du four. La plus faible qualité combustible du goémon oblige à un four en tranchée orienté dans le sens des vents dominants. Les perches de bois utilisées pour malaxer la cendre en fusion cèdent la place à une perche de fer terminée par une pelle étroite : le " pifoun ". Le four est divisé en compartiments par des pierres transversales qui permettront un démoulage commode des " pains de soude " contrairement à la méthode méditerranéenne qui oblige à casser la " galette " en morceaux irréguliers.

 

L'une des premières industries chimiques développée en France s'est donc installée en Bretagne. La transformation des algues est, depuis cette date, restée la seule activité chimique consistante de cette région. L'industrie de la soude, pour sa part, s'y maintiendra jusqu'à la fin du 18e siècle.

 

 

Naissance de la soude factice
 

Très tôt, les chimistes avaient su reconnaître que la soude de warech contenait un élément présent dans le sel marin. L'idée de fabriquer la soude à partir de ce sel était donc naturelle. Elle ne se concrétisera qu'à la fin du 18e siècle. En 1781, l'Académie des sciences lance un concours pour " trouver le procédé le plus simple et le plus économique " de fabriquer de la soude à partir du sel marin.

 

Voir à ce sujet le mémoire présenté par Lavoisier

 

Deux propositions retiennent l'attention de l'Académie. L'une faite par un chimiste alsacien nommé Hollenweger, l'autre par Guyton de Morveau chimiste bourguignon déjà renommé. Les deux lauréats sont invités à rechercher une région exempte de gabelle pour y installer une manufacture. Tous les deux se retrouvent en Bretagne. L'un, Guyton de Morveau, s'installe au Croizic, l'autre, Hollenweger, au Pouliguen. Cependant, aucun de ces deux manufacturiers n'a vraiment réussi à développer sa méthode au moment où le Comité de Salut Public de la République lance un appel à tous les savants pour qu'ils établissent un procédé vraiment efficace.

 

Celui de Nicolas le Blanc est retenu. Il consiste à faire agir de l'acide sulfurique sur le chlorure de sodium dans une chambre en plomb. Le sulfate de sodium obtenu est ensuite porté à haute température en présence de charbon et de calcaire. Le chimiste moderne traduirait ces deux réactions par les équations suivantes :

 

H2SO4 + 2 NaCl -> Na2SO4 + 2 HCl

Na2SO4 + 2 C + CaCO3 -> Na2CO3 + CaS + 2 CO2

 

Pendant un siècle ce procédé restera le seul utilisé par l'industrie mais celle-ci ne s'installera pas en Bretagne. Depuis l'abolition des privilèges le sel breton a le même prix que celui des autres régions et rien ne pousse plus les industriels à venir s'installer dans cette province excentrée.

 

Quant à la soude de warech, autant ne pas en parler, elle n'a aucune compétitivité par rapport à la soude dite " factice ". Le métier de " soudier " aurait donc dû disparaître en Bretagne, si un événement fortuit ne l'avait pas relancé sur une autre base. Nous en reparlerons.

 

 

Retour aux sources
 

Depuis plusieurs années, les populations du Nord-Finistère ont voulu faire revivre la tradition du métier de goémonier. A Plouguerneau, un musée a choisi d'en conserver les outils et les gestes. Chaque été, ici ou là, les fours sont remis en activité pour une fête qui n'attire pas uniquement les touristes. Professeur de physique-chimie au lycée de l'Elorn à Landerneau, attaché à la région de Plouguerneau et au métier de goémonier par tradition familiale, j'ai très tôt eu le sentiment que les cendres d'algues pourraient constituer un produit de choix pour la construction d'un cours de chimie.

 

L'industrie des algues, d'hier et d'aujourd'hui, au lycée.
 

Petit à petit ce sentiment s'est transformé en une pratique. Des élèves ont procédé au brûlage des algues sous la conduite des derniers représentants de la profession qui faisaient revivre les tours de main ainsi que le vocabulaire, en breton, du vieux métier. Les cendres ont été concassées, tamisées, analysées et dosées au laboratoire. La chimie y trouvait une couleur nouvelle, plus chaleureuse, plus humaine, reliée à une histoire proche, sans que pour autant le " programme " soit oublié.

 

Mais pourquoi ne voir que le passé ? L'activité chimique autour des algues est, plus que jamais vivante en Bretagne. Les laminaires sont une source essentielle pour les alginates dont les domaines d'utilisation croissent sans arrêt. L'industrie alimentaire, cosmétique et pharmaceutique exploitent de plus en plus les ressources des plantes marines dans lesquelles on découvre en permanence de nouvelles propriétés.

 

Les " goémoniers" d'aujourd'hui sont des marins équipés de moyens modernes de récolte. Ce sont également des ingénieurs et des techniciens de haut niveau qui pratiquent dans des laboratoires ou des unités de production à taille humaine une " chimie du vivant " qui a de quoi séduire. Nous leur avons rendu visite. Ils nous ont initié à une chimie qui ne se trouve pas dans nos livres scolaires. Ils nous ont confié l'essai de leurs produits. Nous avons adapté leurs techniques à nos salles de travaux pratiques et constaté, là encore, que nos programmes de chimie " organique " pouvaient très bien se construire autour des algues.

 

Par séquences séparées, mais aussi parfois dans le cadre d'un projet construit sur l'ensemble de l'année scolaire, les algues, d'hier et d'aujourd'hui, sont donc entrées dans nos classes. Ce sont des éléments de ces travaux que nous proposons ici. L'année 2000 verra l'introduction dans les classes de seconde des lycées, de thèmes et de méthodes très proches de ce que nous avons réalisé. Des enseignants y trouveront peut-être des idées. Des élèves pourront y trouver des pistes pour des travaux personnalisés. Des apprentis chimistes voudront peut-être en reproduire certaines manipulations qui peuvent se faire, chez soi, avec peu de matériel.

 

Nous destinons également ce texte, qui est un travail de mémoire, à tous ceux que cette tradition, qui a fait se côtoyer des marins, des manufacturiers et des chimistes, intéresse. Au delà des techniques et des formules, c'est la vie d'une région qui est concentrée dans cette chimie.

 

Pour reprendre l'expression d'un élève d'une classe de seconde :

" ici des hommes ont su extraire de la nature, en la respectant, le mieux de ce qu'elle pouvait offrir ".

 

________________________________________________


Extraction de la soude (carbonate de sodium)
 

Le musée des goémoniers à Plouguerneau, sur la côte du Nord-Finistère, organise chaque été un brûlage des algues dans les anciens fours afin d'obtenir les cendres riches en soude.

 

Nous nous sommes rendus sur place pour extraire un " pain de soude " qui se présente sous une forme très compacte. Les cendres chaudes ont un aspect de matière en fusion et se moulent dans les alvéoles du four pendant leur refroidissement.

 

On peut également réaliser la combustion d'algues sèches dans une fosse de 40 à 50 cm de côté creusée dans le sol et tapissée de pierres plates.

 


Le traitement au lycée.
 

 

Le travail au pifoun dans le four.

 

 

 

Concasser le pain de soude

 

opération de lessivage

 

 

analyser le filtrat

 

__________________________________________________________________________________

 

Un fabuleux hasard : l'iode
 

La découverte de l'iode est due au chimiste Bernard Courtois (1777-1838). Fils d'un maître salpêtrier de Dijon, il reprend cette activité à Paris au moment où les guerres de Napoléon réclament le salpêtre nécessaire à la fabrication de la poudre à canons. En tant que responsable de la régie des poudres, Lavoisier a donné à cette activité une nouvelle rationalité. Le salpêtre est élaboré dans des « salpêtrières » où le développement des bactéries nitrifiantes sur des mélanges terreux appropriés est favorisé. Les terres enrichies en salpêtre doivent alors être lessivées. Les eaux-mères obtenues sont ensuite traitées par des cendres de bois riches en potasse afin d'obtenir la cristallisation du salpêtre.

 

Cependant le blocus commercial organisé autour de la France rend difficile l'approvisionnement en cendres potassiques dont la Suède est le principal fournisseur. Courtois tente donc l'essai des cendres de warech. Ces dernières contenant des composés sulfurés indésirables, le chimiste entreprend de décomposer ceux ci par l'acide sulfurique concentré. C'est à cette occasion qu'il observe le dégagement de vapeurs violettes et la précipitation d'un corps noir et brillant. Courtois est un chimiste suffisamment avisé pour comprendre qu'il est en présence d'un corps nouveau. Il en prépare une petite quantité qu'il confie à ses amis Clément et Désormes pour en faire une étude chimique qui sera ultérieurement complétée par Gay-Lussac et Davy. Cette découverte est annoncée à l'Académie des Sciences le 29 Novembre 1813 par Nicolas Clément. Le mot grec iôdês (violet) inspire le nom de « iode » qui est donné à ce produit par référence à la couleur de ses vapeurs.

 

Rapidement l'iode apparaît comme un produit de grand intérêt. Il est à l'origine des premiers daguerréotypes, photographies sur plaques de cuivre argentées sensibilisées aux vapeurs d'iode. C'est, en solution dans l'eau ou l'alcool, un excellent désinfectant encore très utilisé aujourd'hui. On reconnaît également, très vite, son efficacité contre le goitre. C'est donc un produit précieux dont la production s'annonce rémunératrice.

 

En 1828, arrive en Bretagne un jeune chimiste prêt à tenter l'aventure de sa production industrielle. François-Benoît Tissier a d'abord dirigé, à Paris, l'usine d'iode crée par son professeur, le chimiste Clément. Il y met au point une méthode efficace. Au Conquet, il rencontre la famille Guilhem déjà engagée dans cette aventure mais sans grande conviction. Il leur rachète leur fabrique et commence alors une ère de prospérité qui permettra à Tissier d'amasser une fortune colossale.

 

Le succès amène des concurrents. Des usines s'ouvrent à Granville (1832), Pont-Labbé (1852), Vannes (1853), Quiberon, Portsall (1857), Tréguier (1864), L'Aber-Wrach (1870), Guipavas (1877), Lampaul-Plouarzel, Audierne (1895), Loctudy, Penmarc'h (1914), Plouescat, Argenton (1918). Toutes ne connaîtrons pas le succès, d'autant plus qu'une rude concurrence existe avec l'iode du Chili.

 

Dès 1830 on constate que les riches gisements de nitrates du Chili contiennent de l'iode. Abondant, facile à extraire, il pourrait inonder les marchés européens si des mesures protectionnistes n'étaient pas prises. Un organisme international la « combinaison de l'iode » fixe la part de marché de chaque usine et le cours de l'iode. Le Chili qui pourrait produire jusqu'à 3000 tonnes par an limite sa production à 900 tonnes. L'Angleterre et la France disposent chacune d'un quota de 70 tonnes. Cet accord permet à l'industrie française de se maintenir jusqu'à 1955 environ. A cette date le gouvernement français décide de lever les mesures protectionnistes et invite les manufacturiers à rechercher un autre débouché pour les algues. S'ouvre alors l'ère des alginates.

 

L'extraction de l'iode des cendres d'algues

 

L'iode est extrait des cendres d'algues, le vieux métier de producteur de soude se poursuit donc avec la nouvelle activité. Un problème cependant : pour obtenir de beaux pains de soude, bien gris et bien compacts, il fallait des températures élevées et une combustion vive. A l'inverse la production d'iode nécessitait une température modérée, les iodures étant des corps très volatils. Plusieurs brevets avaient été déposés pour des fours à combustion ménagée utilisant la chaleur produite afin de sécher les algues mais aucun ne débouchera sur des applications rentables. Il aurait fallu pour cela pouvoir dépasser le maigre quota de production attribué à la France. Les goémoniers reprendront donc les vieux fours de leurs pères. Ils voudront, comme eux, mouler de beaux pains de soude en faisant brûler les algues à feu vif au détriment de la teneur en iode des cendres et ceci malgré la pression exercée par les manufacturiers qui les payaient en fonction de cette teneur. Il est vrai que des pains bien compacts se transportaient mieux, surtout si on devait les ramener des îles où les goémoniers faisaient de longues campagnes.

 

La teneur en iode dans les algues séchées variait suivant les algues de 2% à 3%. Dans les cendres cette teneur tombait de 1% à 1,5%. Reste à extraire cet iode.

 

Traitements pour obtenir l'iode
 

Lixivation : Les cendres sont concassées en morceaux de l'ordre de quelques cm 3. Le broyage se fait à la masse sur une table recouverte d'un plaque de fonte. Le lessivage dégage une partie soluble qui peut représenter jusqu'à 65% de la totalité. Les lessives contiennent de 6kg à 9kg d'iode au m3.

 

Concentration : Les solutions sont concentrées par évaporation dans des chaudières peu profondes chauffées à feu nu ou encore en utilisant des serpentins où circule de la vapeur d'eau sous pression. Le chlorure de sodium se dépose d'abord, le chlorure de potassium ensuite. Les eaux mères finales contiennent 100g à 150g d'iode par litre mais aussi les carbonates, les sulfures, sulfites et hyposulfites solubles.

 

Désulfuration : La désulfuration se fait en milieu acidifié. Il faut verser de l'acide sulfurique ou de l'acide chlorhydrique dans la solution qui à l'origine est très basique. Les carbonates se décomposent les premiers avec un dégagement de dioxyde de carbone. Les composés sulfurés se décomposent ensuite avec un dégagement de sulfure d'hydrogène et un précipité de soufre sous forme essentiellement colloïdale. En portant la solution à ébullition on chasse le sulfure d'hydrogène dissout et on favorise la précipitation du soufre.

 

Précipitation de l'iode : L'iode est chassé de la solution par l'action du chlore. Celui ci est obtenu par l'addition de chlorates dans la solution acide (au laboratoire on pourra utiliser de l'eau oxygénée). L'iode se précipite alors sous la forme d'une poudre noire.

 

Sublimation : L'iode lavé et séché par pression est sublimé dans des cuves de céramique surmontées d'un couvercle sous forme de cloche chauffées sur bain de sable. On obtient alors des paillettes contenant de 97% à 98% d'iode. Une nouvelle sublimation peut porter ce taux à 99,5%. C'est en nous inspirant de ces techniques que nous procéderont à l'extraction de l'iode puis à son dosage.

 

Vapeurs d'iode violettes.

 

Nous avons extrait l'iode de la solution par action de l'eau oxygénée H2O2 en milieu acide.

 

Fiche expérimentale
 
Etapes de la manipulation Réactifs et méthodes utilisés observation
Acidification de la solution Acide sulfurique concentré L'acidification de la solution a pour premier effet de libérer le dioxyde de carbone provenant des ions carbonates
Libération de l'iode eau oxygénée L'eau oxygénée oxyde les ions iodure, il se forme de l'iode qui colore la solution en brun. On observe même un léger précipité d'iode.
mise en évidence de l'iode gazeux chauffage Un chauffage léger libère les vapeurs d'iode violettes

Aujourd'hui - Les alginates et les carraghénanes

 

L'anglais Edward Stanford (1837-1899) isole, dans les algues, un gel qu'il désigne du nom d'algine. Le norvégien Axel Krefting est le premier à en extraire l'acide alginique. Ce produit trouve un intérêt immédiat comme apprêt pour les tissus. Sa production à grande échelle commence vers 1929 sur les côtes californiennes.

 

En Bretagne, cette industrie débute à Pleubian, dans les Côtes d'Armor, dès le début du siècle. Elle ne prendra son essor que vers les années 1960. A cette date l'état français a décidé de ne plus subventionner la fabrication de l'iode, obligeant ainsi les manufacturiers à se reconvertir. Ceux-ci font preuve d'une extraordinaire capacité d'adaptation. Il faut d'abord élaborer la théorie de l'extraction, il faut inventer et construire de nouvelles machines. Il faut surtout imaginer les utilisations possibles d'un produit aux débouchés encore limités.

 

Beaucoup d'usines disparaissent dans la tourmente mais le pari est gagné et le Nord-Finistère devient le producteur principal de l'alginate en Europe. Actuellement de l'ordre de 2000 tonnes par an sont produites dans les deux usines de Lannilis et de Landerneau qui se partagent le marché. L'essentiel de la production est exporté mais, sur place, une constellation de petites entreprises utilisent cette matière première pour des produits cosmétiques, pharmaceutiques ou alimentaires.

 

L'alginate est utilisé comme épaississant et stabilisateur dans les glaces, les crèmes et même les yaourts et les fromages frais. Dans la nomenclature européenne ce sont les E 400 et E 411. On trouve encore les alginates dans la fabrication du papier, de la peinture, des électrodes....Un marché en constante expansion qui n'est limité que par la quantité d'algues que l'on peut récolter. En Bretagne cette quantité est limitée aussi la production est-elle orientée vers des produits de qualité destinés aux industries cosmétiques, pharmaceutiques et alimentaires.

 

Le Pioka et les carraghénanes

 

Depuis plusieurs siècles le Chondrus est une algue utilisée en médecine et dans l'alimentation. Il y a plus de 600 ans les irlandais du comté de Carragheen dans le sud de l'Irlande savaient utiliser cette " Irish moss " pour des pommades et des flans. Cette algue séchée a, en effet, un extraordinaire pouvoir gélifiant en présence de lait. Les émigrants irlandais ont emporté leurs recettes avec eux quand, vers 1700, ils ont rejoint l'Amérique du Nord et constaté que leur " irish moss " poussait également sur les côtes du Massachusetts. Le polysaccharide extrait de cette algue et obtenu pur vers 1871 a été logiquement nommé carrageenan dans la nomenclature de la Société Chimique Américaine et est encore désigné sous ce nom.

 

En Bretagne, le Chondus Crispus est également abondant. Dans le Léon finistérien on le désigne par le terme de " pioka ", en Cornouailles il est parfois appelé " piko ". Une tradition de gâteaux et flans au pioka existe dans le Nord-Finistère. Est-elle ancienne ? Il est certain, par contre, que dès le début du 19ème siècle les industriels on su mesurer l'intérêt de ce produit. La cueillette du pioka, les jours de grande marée, est devenue une activité rémunératrice qui se pratique, encore de nos jours, avec les mêmes méthodes. Jadis vendu sec et blanchi, il est acheté humide aujourd'hui, sauf pour de petites productions artisanales. Actuellement, une seule usine, installée en Normandie, produit les quelques 3000 tonnes fabriquées en France.

 

Comme les alginates, les carraghénanes sont utiles dans l'industrie textile, la peausserie, la fabrication des peintures. Le gel qu'ils forment avec le lait les font utiliser en priorité dans tous les produits alimentaires lactés, mais aussi dans les bières, les pâtes alimentaires, les confitures.

 

 


Deux entreprises d'alginates à Landerneau

 

Dans la région de Landerneau, deux entreprises traitent les algues pour en utiliser les alginates.

 

L'entreprise Danisco est spécialisée dans l'extraction de l'acide alginique à partir des algues brutes.

 

L'entreprise Technature utilise les alginates pour élaborer des produits finis.

 

 

L'entreprise Danisco : Nous l'avons visitée sous la direction de son directeur Monsieur Pasquier. L'usine (9000 mètres carrés d'ateliers et de laboratoires) traite chaque année 6000 tonnes d'algues séchées pour la production d'alginates particulièrement purs utilisés pour la pharmacie et l'alimentation. La société Danisco nous a fourni un sachet d'acide alginique pur pour en étudier les propriétés. Son directeur nous a également détaillé le procédé d'extraction des alginates à partir des algues (voir fiche).

 

L'entreprise Technature : Nous y avons été reçus par son directeur, Monsieur Le Fur, et par son directeur commercial, Monsieur Winkler (aujourd'hui directeur de l'entreprise Lessonia). L'entreprise conditionne les alginates pour ses différents usages : moulages, cosmétiques, alimentation... Sa clientèle est mondiale (Europe, U.S.A, Japon). La réputation des produits bretons est internationale ! L'entreprise nous a confié des alginates de moulage pour que nous puissions réaliser un moulage. Elle nous a également proposé de mettre au point un nouveau masque de beauté.

 

 

Retour au laboratoire

 

Nous y avons extrait les alginates contenues dans des laminaires. Nous avons utilisé pour cette manipulation des laminaires de l'espèce " laminaria digitata " dont le nom en langue bretonne est " tali ".

 

Les procédés d'extraction des alginates nous ont été expliqués par M. Pasquier directeur de l'usine DANISCO et M. Le Fur directeur de l'entreprise TECHNATURE. Nous avons réalisé cette opération en suivant les étapes indiquées dans le tableau ci-dessous. Nous avons utilisé pour cette manipulation des laminaires de l'espèce " laminaria digitata " dont le nom en langue bretonne est " tali ".

 

 

Nature de l'opération méthode observation
préparation des algues découper une algue fraîche (laminaire) en morceaux (1cm x 1cm) ou réhydrater des morceaux d'algue sèche. Il faut utiliser des algues fraîches ou rapidement séchées après la cueillette.
Déminéralisation faire " mariner " les algues dans trois bains successifs de 25 minutes chacun d'une solution d'acide sulfurique à pH=2 Les algues prennent une consistance très ferme. Le bain d'acide dissout les sels minéraux et prend une coloration verdâtre.
Formation de l'alginate de sodium soluble les algues sont placées dans une solution de carbonate de sodium à pH=11. Les morceaux d'algues se ramollissent, l'ensemble prend un aspect pâteux dû à la dissolution de l'alginate de sodium.
Filtration, blanchiment La pâte est pressée à travers un tissu de coton blanc afin de séparer l'alginate de la cellulose le filtrat obtenu est légèrement gélatineux et faiblement coloré. On peut le décolorer par quelques gouttes d'eau de Javel (hypochlorite de sodium)
précipitation de l'acide alginique On utilise une solution d'acide sulfurique ou d'acide chlorhydrique. Il faut atteindre un pH=1,8 l'acide alginique se coagule. On peut l'extraire en utilisant un agitateur ou en filtrant.

 

voir aussi

 

Nous avons également construit des modèles moléculaires de ces monomères et de leurs polymères.

 

 

La technique du moulage à l'alginate

 

L'alginate de moulage est une poudre blanche composée d'alginate de calcium et de terre de diatomée (contrairement à l'alginate de sodium qui est soluble dans l'eau, l'alginate de calcium forme un gel insoluble). Mélangée à quatre fois son poids d'eau, la poudre d'alginate se transforme en une pâte onctueuse. Elle gélifie en 6 à 10 minutes en fonction de la température et de la concentration. On obtient une masse souple et résistante qui permet de réaliser le moule dans lequel on viendra verser du plâtre ou de la cire. Sa rapidité de prise, sa finesse de reproduction, son absence totale d'agression, en font un matériau idéal pour mouler des objets vivants : une main, le pieds d'un bébé, un visage.

 

Préparation de la pâte :

 

prévoir 300g de poudre pour un litre d'eau. Verser l'eau sur la poudre et mélanger activement avec une main pendant une minute pour obtenir une pâte homogène. A partir de ce moment on dispose d'un temps de travail de 3 à 5 minutes pour réaliser le moule. Ce moule dans certains cas pourra être utilisé deux ou trois fois si le démoulage ne l'a pas endommagé.

 

Que mouler ?

 

De façon classique on peut démarrer par la trace d'un animal sur le sol. La rapidité de la prise et la finesse de l'empreinte sont immédiatement perceptibles. La contre-empreinte réalisée en plâtre sera riche de détails.

 

Le plus spectaculaire : le moulage d'une main d'enfant !

 

Il faut trouver un pot pas trop large mais dans lequel la main de l'enfant puisse plonger jusqu'au dessus du poignet. Faire un essai du volume de pâte de moulage nécessaire en remplissant d'eau le récipient dans lequel l'enfant a plongé sa main. Calculer la quantité de poudre nécessaire ( ¼ du poids de l'eau).

 

Préparer la pâte. Verser la pâte dans le coffrage.

 

Masser la main avec un peu de pâte, celle ci ne collera pas à la peau en durcissant mais vous obtiendrez ainsi de fins détails.

 

Plonger la main dans le coffrage jusqu'à ce que les doigts touchent le fond et remonter légèrement.

 

Maintenir la pause quelques minutes, on sentira alors que l'alginate est bien gélifié, il résistera sous la pression des doigts et se détachera bien de la peau. Un petit tour de main pour décoller le moule : agiter les doigts doucement en rapprochant le pouce du petit doigt.

 

L'enfant doit, de la sorte, retirer la main sans trop de difficultés.

 

Un conseil : la surface de l'alginate est légèrement acide, le plâtre de moulage prend mal à son contact. On peut y remédier en versant dans l'empreinte une solution diluée de bicarbonate de sodium pour la rincer rapidement.

 

Mise au point d'un masque de beauté

 

L'entreprise Technature nous a confié la mise au point d'un masque de beauté. C'est un nouveau produit que l'entreprise souhaite commercialiser. Il s'agit d'un masque aux fruits tropicaux dont le support est constitué par un alginate de moulage.

voir :

 

Nous avons testé un premier masque d'alginate sans aucun additif afin d'observer l'effet " moulant " de ce produit. Nous avons ensuite essayé plusieurs formulations en faisant en particulier varier les colorants et les parfums. Pour finir, nous avons testé le masque obtenu

préparation phase 1

 

 

La recette d'un masque de beauté

alginates

couleur naturelle

extrait de papaye, d'ananas

parfum de mangue

phase 2

 

Dose : 30g de poudre d'alginate pour 100g d'eau.

 

Dilution du produit

Verser rapidement l'eau sur la poudre. Mélanger énergiquement jusqu'à l'obtention d'une pâte lisse et onctueuse. Important : La dilution se fait dans de l'eau à 20°C.

 

Application

Appliquer immédiatement sur le visage en évitant le contour des yeux. La prise a lieu au bout de 6 minutes.

Durée du soin 15 minutes environ.

 

Résultat peau plus douce plus fine, teint plus lumineux

 

Réalisation du masque.

 

__________________________________________________________________________________

 

 

L'agar-agar et la formation de gel

 

Agar-Agar est un mot malais.

 

Ce corps, utilisé en Malaisie, était également d'un usage courant au Japon et dans tout l'Extrême-Orient. L'Agar-Agar provient d'algues diverses et en particulier de l'espèce gélidium. Ces algues, après des lavages fréquents, sont séchées et soumises à ébullition. Le gel obtenu est déshydraté puis réduit en poudre.

 

Le pouvoir gélifiant de l'Agar-Agar est extrême. Deux grammes dans un quart de litre d'eau portée à ébullition pendant 5 minutes donnent un gel très ferme après refroidissement.

 

Au laboratoire de biologie, l'Agar-Agar sert à préparer des supports nutritifs pour les plantes. Au laboratoire de chimie, il sert, par exemple, à préparer des " ponts électrolytiques " conducteurs dans l'étude des piles.

 

Nous avons préparé un gel d'Agar-Agar coloré par de l'hélianthine. L'Agar-Agar est aussi utilisé pour préparer des flans mais nous avons utilisé pour cela une algue originaire de Bretagne, le Pioka, qui contient des carraghénanes.

 

L'Agar-Agar : un excellent gélifiant extrait des algues rouges
 

_________________________________________________________________________________

 

Les algues dans l'alimentation
Le " pioka " et les carraghénanes

pioka de Bretagne

 

Pioka est le nom breton d'une algue qu'on appelle également " lichen " de mer. On la récolte aux grandes marées, son prix élevé attire les cueilleurs saisonniers. Son nom scientifique est Chondrus crispus. Le principe actif qu'on en extrait est constitué par les carraghénanes . C'est un excellent gélifiant dans le lait. De façon traditionnelle, il est utilisé par les populations côtières du Nord de la Bretagne pour réaliser des " flans ". Préparation des algues Après la récolte, les algues sont étalées sur les dunes et séchées en les retournant fréquemment. On peut également les arroser d'eau douce de temps en temps afin de les débarrasser du sel et des débris divers. A la fin de ce traitement les algues sont blanches et sèches on peut alors les conserver. Juste avant l'usage On peut parfaire le rinçage par trempage et rinçages répétés. Les algues doivent être totalement débarrassées de leur odeur de " mer "


Recette de flan au pioka

 

Nous avons réalisé la recette de dessert suivante. Elle nous a été communiquée par une personne agée de la région de Brignogan dans le Nord-Finistère. Elle l'avait vue elle même réalisée par ses parents.

 

Remarque : les carraghénanes du pioka donnent facilement un gel avec le lait, il ne donnent pas de gel avec de l'eau. Pour cela il faudrait utiliser de l'Agar-agar que nous avons également testé (il est également utilisé pour des flans).

Notre recette

Utiliser une petite poignée d'algues sèches par quart de litre de lait. Les rincer. Faire bouillir pendant 5 à 10 minutes dans le lait en remuant. Filtrer le lait chaud dans une passoire ou une écumoire. Remettre le lait à bouillir cinq minutes avec l'arôme souhaité, chocolat ou vanille sucrés ( par exemple 3 cuillérées de Nesquik par ¼ de litre de lait). Verser dans des coupes. Laisser refroidir et mettre au frigo.

 

_________________________________________________________________________________
 
 
 
Conclusion
 

Si, comme nous, vous ignoriez que la chimie, depuis si longtemps, s'intéressait aux algues, vous savez maintenant que, chez nous en Bretagne, des personnes ont fabriqué, et fabriquent encore, des produits utilisés dans le monde entier.

 

Nous avons rencontré des " anciens ". Goémoniers et manufacturiers. Ils nous ont transmis la fierté qu'ils gardent de leur métier. Nous avons, également, rencontré les acteurs modernes de cette aventure. Des marins qui font un travail toujours hasardeux mais qui ont mis au point des techniques sures et efficaces et ne vivent plus la vie de forçats de leurs ancêtres exilés sur les îles. Des chimistes extrayant de la nature le meilleur de ce qu'elle peut fournir. Des biologistes mariant les essences et les extraits pour embellir, soigner ou nourrir.

 

Pour ce qui est de notre programme scolaire, il a avancé sans que nous nous en rendions compte. Etude théorique, recherche documentaire, visite des usines et discussion avec les chimistes de métier, manipulations au laboratoire, mise au point de nouvelles recettes et de nouveaux produits...tout cela faisait partie du même projet.

 

En rédigeant ce dossier nous avons eu le désir de garder la trace de notre travail et de transmettre cette expérience à tous ceux qui voudraient la partager et la compléter. Nous avons également pensé à nos lecteurs qui ne seraient ni chimistes ni lycéens. Nous avons cherché à leur faire découvrir un aspect de l'histoire et de l'actualité de notre région. A eux de nous dire si l'objectif a été atteint.

 

La classe de seconde A, année 1997/1998, La classe de seconde C, année 1998/1999 et leur professeur, Gérard Borvon.

 

___________________________________________________________________________________

 

 

Second prix du concours CEFIC pour l'enseignement des sciences.

 

Ce travail a reçu le second prix européen au concours CEFIC de 1999.

 

____________________________________________________________________________________

 


Une suite à notre travail

 

Il est cité et en partie repris sur le site CultureSciences-Chimie de l'école normale supérieure de Cachan.

voir : Les algues : une « agroressource » d'avenir


Il a fait également l'objet d'un sujet à des olympiades de chimie.

 

 

 

 

Ce travail est également mentionné par l'observatoire de l'eau en Bretagne

.


L'actualité des algues


Décembre 2008 : des algues sous serre.


 
Repost 0
13 mai 2009 3 13 /05 /mai /2009 08:23

Lavoisier et le phlogistique.

 

Peut-on parler du modèle de la combustion proposé par Lavoisier sans parler du phlogistique ?

 

Un nom est attaché à la théorie du phlogistique, celui de Georg Ernest Stahl (1660-1734), chimiste et médecin du roi de Prusse. Nous n'exposerons pas ici le détail de la théorie de Stahl, mais nous pourrons l'évoquer dans une forme proche de celle qu'enseignait en France le chimiste Guillaume-François Rouelle (1703-1770).

 

Rouelle donnait à Paris des cours de chimie, véritables spectacles, qui attiraient la meilleure société de la capitale. Diderot a été son élève et a noté ses cours mais aussi Lavoisier. Sa "chimie phlogistique" y était présentée d'une façon claire et dépouillée.

 

Le phlogistique (du grec phlogos, flamme) est la matière du feu. Un corps qui brûle libère son phlogistique. Certains corps peuvent même être considérés comme du phlogistique pratiquement pur, le charbon par exemple qui disparaît presque totalement dans une combustion en ne laissant que peu de cendres. Les métaux aussi peuvent brûler, l'observation montre que l'on obtient ce que le 17ème siècle appelle une chaux métallique.

 

Selon l'interprétation de Stahl suivi par Rouelle, une chaux métallique est donc un métal qui a perdu son phlogistique : un métal déphlogistiqué.

 

C'est aussi cette même chaux que l'on trouve dans les minerais. L'observation des procédés métallurgiques apprend que, partant de cette chaux métallique, on obtient le métal par l'action du charbon qui, non seulement apporte la chaleur nécessaire à la fusion, mais qui doit également être au contact du minerai, jouant lui-même le rôle d'un réactif chimique.

 

La réaction de réduction de la chaux en métal s'interprète donc de façon simple : le phlogistique libéré par la combustion du charbon se fixe sur la chaux métallique et régénère le métal.

 

Chaux métallique         +        Charbon               ->   Métal

                     (métal déphlogistiqué)     (phlogistique) 

 

De même la combustion d'un métal :

 

Métal   ->  Phlogistique   +  Chaux métallique

 

La théorie est séduisante et, avant d'en être l'adversaire victorieux, Lavoisier s'exprimera lui-même en phlogisticien convaincu.

 

Un problème cependant : tous les métallurgistes savent qu'une livre de plomb fondu et maintenu en fusion sous le courant d'air d'un soufflet se transforme bientôt en une masse de litharge (chaux de plomb) de poids supérieur à celui du plomb initial. Le plomb a pourtant perdu son phlogistique, comment expliquer qu'il s'alourdisse ?   A l'inverse comment expliquer que ce même plomb retrouvant son phlogistique par l'action du charbon devienne plus léger ?

 

Une explication est communément avancée : le phlogistique  s'échappant du métal, celui-ci se resserre à l'image d'une éponge privée d'eau. Il deviendrait donc plus "lourd". Explication évidemment peu satisfaisante qui confond masse et densité et qui est pourtant celle de personnes considérées comme "savantes". Nos lycéens contemporains qui, eux aussi, confondent parfois les deux notions n'ont donc pas à en rougir.

 

Des Philosophes de la Nature mieux éclairés et plus imaginatifs évoquent un phlogistique à "masse négative", mais sans convaincre.

 

La nécessité de répondre à cette contradiction et sa connaissance de la nouvelle chimie des airs amènent Lavoisier à refuser une théorie unanimement admise mais dont les faiblesses sont de plus en plus évidentes. Un combat qu'il engage en 1777 par le rédaction de réflexions sur le phlogistique et qui trouve son aboutissement en 1877 avec la publication de la Méthode de nomenclature chimique en collaboration avec Guyton de Morveau, Berthollet et Fourcroy.

 

Refusant le Phlogistique, Lavoisier interprète les calcinations et combustions à partir d'un principe que nous considérons aujourd'hui comme évident mais qui était en rupture avec la tradition du moment, à savoir que l'air est  composé de deux gaz. L'un que Lavoisier proposera d'appeler Azote (qui prive de la vie), l'autre Oxygène (qui génère les acides).

 

La combustion devient alors un gain de matière, une "oxygénation", suivant un schéma désormais classique  : 

 

Métal   +   oxygène  ->   oxyde métallique

 

La réduction d'un minerai à l'état de métal par le carbone  devient :

 

Oxyde métallique   +   carbone   ->   métal   +  oxyde de carbone

 

Mais les chimistes français devront batailler ferme pour le faire admettre.

 

_________________________________

 

 

Quand Lavoisier était encore Phlogisticien

 

Au cours de l'année 1994, bicentenaire de la mort de Lavoisier, cherchant à en savoir plus sur le brillant chimiste, nous avons eu connaissance de sa visite dans le Finistère par un rapport adressé à l'Académie des Sciences.

 

L'année 1778, il participait à une visite d'inspection de la mine de plomb argentifère de Poullaouen près de Huelgoat et détaillait les méthodes métallurgiques utilisées. Depuis un an, le combat contre le phlogistique était engagé. Cependant le rapport de Lavoisier, acte de nature administrative, est un modèle de mise en œuvre de la théorie de Stahl et sans doute l'une des meilleures illustrations de cette théorie.

 

Le minerai de Poullaouen est un sulfure de plomb (la galène) qui doit d'abord subir un "grillage" pour être transformé en oxyde de plomb avec libération de dioxyde de soufre. L'oxyde devra alors être réduit en plomb par l'action du carbone.

 

Lavoisier décrit la méthode : " La première opération à faire est de griller la mine (le minerai) pour détruire le soufre par combustion et pour le volatiliser. Cette opération ne peut se faire sans qu'une partie du métal se réduise en chaux ; et on ne peut le ramener à l'état métallique que par l'addition de phlogistique".

 

Après avoir décrit le fourneau utilisé, Lavoisier décrit le procédé : " De temps en temps on jette dans le fourneau quelques pelletées de menu charbon de terre ou de bois, pour rendre le phlogistique au métal, et ce dernier, lorsqu'il est fondu et revivifié, se rassemble par la pente naturelle du fourneau dans le milieu, où on a soin de le tenir toujours couvert avec du charbon embrasé."

 

En cette année 1994, Lavoisier nous a amenés à parler du phlogistique dans une classe de seconde du lycée de l'Elorn qui marquait l'évènement par une exposition.

 

 

Les élèves ont positivement apprécié cette théorie qui, de leur avis, "n'était pas si mal imaginée". Certains qui étaient tombés dans les pièges tendus par le professeur dans des cours précédents( voir : Chimie au lycée. En classe avec Lavoisier.), ont eu le plaisir de constater que leurs "erreurs" d'aujourd'hui étaient assez proches de "vérités" de certains chimistes du 18ème siècle.

 

Le phlogistique ne fait plus partie de notre mémoire collective, pas même de celle de la communauté des chimistes, pourtant certains indices laissent entendre qu'il agit encore dans certaines franges de notre inconscient en orientant notre raisonnement vers de mauvaises pistes.

 

C'est sans doute une raison suffisante pour que la "révolution chimique" introduite par Lavoisier et les "chimistes français" mérite au moins d'être encore contée.

 

________________________________________

Voir aussi : Lavoisier : "Cette théorie est la mienne".

 

 

 

Repost 0
8 mai 2009 5 08 /05 /mai /2009 13:52

d

En Classe avec Lavoisier.
par Gérard Borvon

________________________________
 
Cet article est  issu de cours de chimie assurés pendant plusieurs années dans les classes de secondes du lycée de l'Elorn à Landerneau. Le principe de ce travail est d'utiliser l'histoire des sciences, non pas comme un simple accompagnement, mais comme un des outils de l'apprentissage. Dans le cas présent, il s'agit d'utiliser les travaux de Lavoisier pour construire le cours du premier trimestre d'enseignement de la chimie en classe de seconde.


Ce travail a fait l'objet de trois publications.

Dans le Bulletin de l'Union des physiciens sous le titre : "1789 dans le laboratoire de Lavoisier". n° 720. p 39-55
.1989.

Dans : Les Cahiers de Beaulieu. Université de Rennes. n°23. 1997.

Dans : Histoire des sciences et des techniques. Editions du CRDP de Bretagne.  p 365-379.
1997.

Suite à ces publications, les fiches et la méthode ont été mises en oeuvre par plusieurs collègues qui y ont apporté leur propre créativité.

Cet article, à ranger dans la catégorie "didactique", ne doit pas effrayer le lecteur occasionnel. Il a été rédigé pour s'adresser à des enseignants, futurs ou actuels mais il devrait pouvoir aussi concerner toute personne s'intéressant à l'éducation, à l'histoire ou aux sciences. C'est du moins le souhait de l'auteur.
 
__________________________________________________________


Une exposition au lycée de l'Elorn à Landerneau pour le bicentenaire de la mort de Lavoisier
_________________________________________________________________________________________

 

Lavoisier est entré dans notre classe, au lycée de l'Elorn à Landerneau, par l'intermédiaire de son Traité élémentaire de chimie publié en 1789. Un livre de cours à l'usage des chimistes débutants qui se proposait de former un chimiste en deux ans et auquel on peut encore emprunter quelques manipulations commodes.

 

La chimie, en classe de seconde des lycées, peut être considérée comme le passage de l'approche qualitative du collège à une approche plus quantitative. Nous allons apprendre la mole, les masses et les volumes molaires. Nous allons être capables de déterminer des proportions stœchiométriques d'une réaction et d'en déduire les quantités de produits obtenus. Lavoisier, le chimiste de la mesure, ne serait-il pas le meilleur des guides pour accompagner cette évolution ?

 

Nous hisser, après trois mois d'études, au niveau de la recherche "de pointe" de la fin du XVIIIe siècle, passer les résultats de Lavoisier au crible de nos connaissances actuelles, comparer son travail expérimental au nôtre, confronter son modèle de la combustion à nos représentations intuitives : voilà de quoi donner des couleurs à notre début de cours.

 

Un premier trimestre en classe de seconde.

 

Début septembre on prépare le terrain par un TP.

 

Commencer par une séance de travaux pratiques, un "TP", est une bonne façon de prendre contact au moment d'une rentrée scolaire. C'est, dès l'abord une occasion d'entrer en possession du laboratoire et du matériel, flacons, bec Bunsen, réactifs.

 

Ce premier TP aura pour thème : "Combustions dans le dioxygène, celle du carbone, du soufre (sous la hotte), du fer, du magnésium". Ce TP mettant en œuvre un matériel divers annonce déjà Lavoisier et l'observation de la combustion du fer qui l'amène à formuler l'hypothèse de l'existence du dioxygène dans l'air. Il est aussi l'occasion d'accumuler des écritures de réactions chimiques qui seront rapidement utiles dans la suite du cours et dans les exercices.

 

Pour la combustion du fer nous utilisons de la "laine de fer", produit généralement utilisé pour l'entretien du bois des meubles. Son intérêt est une combustion vive qui se fait avec une forte incandescence mais sans émission d'étincelles.

 

Première manipulation : Un flacon est empli de dioxygène. Un tampon de laine de fer est placé à l'extrémité d'un crochet suspendu à une plaque de bois assez grande pour obturer le flacon. Le seul fait de passer rapidement ce tampon dans la flamme éclairante d'un bec bunsen en enflamme quelques fragments. Il faut alors le plonger rapidement mais sans heurt dans le flacon. La goutte d'oxyde magnétique obtenue après combustion adhère fortement au crochet.

 

Un premier sondage nous permettra d'évaluer l'image que se font les élèves de la combustion, sujet déjà étudié en collège.

 

Dès la fin de la manipulation chacune et chacun est invité à prendre un papier afin d'y inscrire son nom  et de répondre à deux questions posées l'une après l'autre. :

 

1ère question : La matière qui reste fixée au crochet est-elle : moins lourde, de même masse, plus lourde, que celle du fer initial ?

 

2ème question : justifiez votre choix par une courte phrase (posée après la réponse à la première.

 

Les papiers sont ramassés sans autre commentaire immédiat. Le dépouillement effectué après le cours indiquera (chiffres de 1993 représentatifs de la répartition régulièrement observée) :

 

- 3 "moins lourd".
- 15 "même masse".
- 9 "plus lourd".

 

Les cours à venir semblent devoir être utiles !

 

En classe, on se sera contenté de traduire la réaction par l'équation :

 

3 Fe + 2 O2 -> Fe3O4

 

 

Cette équation, comme celles qui l'accompagnent dans ce TP, devront être retenues par cœur (c'est du moins le souhait du professeur). Nécessaire cet apprentissage ? Ces quelques formules seront un bagage, léger mais utile, pour les étapes ultérieures. Par exemple pour illustrer un calcul de masse molaire ou pour explorer le tableau périodique.

 

 

Début novembre : la mesure en chimie.

 

Dans un cours sur "La mesure en chimie", nous introduisons l'ensemble des outils utiles à un élève de seconde : le nombre d'Avogadro, la mole, les masses molaires, le volume molaire et la densité des gaz.

 

Des exercices faisant appel aux proportions stœchiométriques deviennent alors possibles. On peut, par exemple, calculer la masse d'oxyde magnétique obtenue à partir d'une quantité donnée de fer ainsi que le volume de dioxygène nécessaire. Le moment est alors venu de faire intervenir Lavoisier.

 

Mi-novembre : Lavoisier dans notre classe.

 

Les fiches ci jointes, relatant la combustion du fer par Lavoisier et proposant un exercice sur ce thème sont distribuées. Une courte présentation du chimiste est faite et les élèves sont eux-mêmes invités à rassembler une documentation et à réaliser un dossier personnel le présentant dans son époque et situant sa place dans le développement de la chimie. Les fiches et le dossier seront remis au professeur quinze jours plus tard.

 

__________________________________________________________

__________________________________________________________

 

Fiche n° 1 : Masses, longueurs, volumes à l'époque de Lavoisier.

 

Lavoisier est véritablement le premier chimiste à avoir accordé toute son importance à la mesure en chimie. Son activité de fermier général fait de lui un homme riche qui peut utiliser revenus pour faire fabriquer les meilleurs instruments de l'époque. Son laboratoire est aujourd'hui une des pièces essentielles présentées dans le musée des Arts et Métiers à Paris.

 

Dans son "Traité élémentaire de chimie", il relève la difficulté pour le commerce de la diversité des étalons de mesure, en particulier ceux des masses. La livre, dit-il "diffère d'un royaume à un autre, d'une province et souvent même d'une ville à une autre".

 

Les chimistes, par contre, devraient pouvoir échapper à ces inconvénients dans la mesure où les réactions chimiques sont une question de proportions. Peu importe la livre choisie pourvu que les masses soient partout exprimées avec les mêmes divisions. D'où la proposition par Lavoisier d'un système décimal :

 

"Ces considérations m'ont fait penser qu'en attendant que les hommes, réunis en société, se soient déterminés à n'adopter qu'un seul poids et qu'une seule mesure les chimistes, de toutes les parties du monde, pourraient sans inconvénient se servir de la livre de leur pays, quelle qu'elle fût, pourvu qu'au lieu de la diviser, comme on l'a fait jusqu'ici, en fractions arbitraires, on se déterminât par une convention générale à la diviser en dixièmes, en centièmes, en millièmes, en dix-millièmes, etc. c'est-à-dire, en fractions décimales de livres".

 

A la fin de son traité de chimie, Lavoisier propose donc des tables de conversion entre le système de mesure français et un système décimal. Lui-même fait fabriquer des masses décimales pour ses propres balances.

 

Exercice : compléter les tableaux suivants.

 

Mesure des masses : Au 18ème siècle le système de masse, en France, comprend : la livre, le marc, l'once, le gros, le grain.

 

 

 

 

Unité du 18ème siècle

Définition

Valeur en grammes

Livre

Marc

Once

Gros

grain

 

1 marc=1/2 livre

1 once= 1/16 livre

1 gros=1/8 once

1 grain=1/72 gros

489,5 g

 

 

Mesure de longueurs : Le système comprend le pied, le pouce, la ligne, le 1/12 de ligne.

 

 

Unité du 18ème siècle

définition

Valeur en cm

Pied (de roi)

Pouce

Ligne

1/12 de ligne

 

1 pouce=1/12 pieds

1 ligne=1/12 pouce

32,5 cm

 

 

 

Volumes : Les chimistes utilisent le pouce cube (ou pouce cubique).

 

Convertir.

 

1 pouce cube =               cm3

1 litre =                             pouce cube

 

 

Exercice : Lavoisier trouve qu'une livre d'eau a un volume de 24,687 pouces cubiques. Etes-vous d'accord ? (à rédiger sur feuille séparée)

 

__________________________________________________________

__________________________________________________________

 

Fiche n° 2 : Analyse d'une expérience fondamentale : la combustion du fer dans l'oxygène.
 

 

Dans son traité élémentaire de chimie (1789), Lavoisier décrit une combustion de fer dans le dioxygène qui ressemble beaucoup à celle que nous réalisons au laboratoire.

 

"Tout le monde connaît aujourd'hui la belle expérience de M.Ingenhouz sur la combustion du fer. On prend un bout de fil de fer très fin BC, (figure ci-contre), tourné en spirale, on fixe l'une de ses extrémités B , dans un bouchon de liège A, destiné à boucher la bouteille DEFG. On attache à l'autre extrémité de ce fil de fer, un petit morceau d'amadoue C. Les choses ainsi disposées, on emplit avec de l'air dépouillé de sa partie non respirable*, la bouteille DEFG.

 

 

On allume l'amadou C, puis on l'introduit promptement, ainsi que le fil de fer BC dans la bouteille, et on la bouche comme on le voit dans la figure que je viens de citer.

 

Aussitôt que l'amadoue est plongée dans l'air vital*, elle commence à brûler avec un éclat éblouissant ; elle communique l'inflammation au fer, qui brûle lui-même en répandant de brillantes étincelles, lesquelles tombent au fond de la bouteille, en globules arrondis qui deviennent noirs en se refroidissant, et qui conservent un reste de brillant métallique. Le fer ainsi brûlé, est plus cassant et plus fragile, que ne le serait le verre lui-même ; il se réduit facilement en poudre et est encore attirable à l'aimant, moins cependant qu'il ne l'était avant sa combustion."

 

*remarque : " l'air dépouillé de sa partie non respirable" est l'oxygène ou "air vital". A ce moment de son cours, Lavoisier n'utilise pas les mots oxygène et azote qu'il a cependant déjà définis deux ans plus tôt mais qui ne sont pas encore dans le langage courant. Il les introduira dans la suite de son livre. La "poudre d'algoroth", le "sel alembroth", le "pompholix", le "turbith minéral", sont des termes familiers aux chimistes du 18ème siècle alors que les mots oxygène ou hydrogène sont considérés comme barbares !

 

Pour pouvoir effectuer des mesures précises, Lavoisier élabore un montage d'une grande ingéniosité ( voir figures 3 et 11).

 

 

Le fer est placé dans une soucoupe sous une cloche contenant du dioxygène, l'ensemble étant posé sur une cuve à mercure. On peut ainsi mesurer le volume de dioxygène consommé dans la combustion et la masse de l'oxyde de fer formé. Remarquez (figure 11) l'emploi d'une loupe pour enflammer une mèche à travers le verre de la cloche.

 

 

Quand la combustion est terminée :

 

"On enlève doucement la cloche ; on détache de la capsule les globules de fer qui y sont contenus ; on rassemble soigneusement ceux qui pourraient s'être éclaboussés et qui nagent sur le mercure, et on pèse le tout. Ce fer est dans l'état de ce que les anciens chimistes on nommé éthiops martial ; il a une sorte de brillant métallique ; il est très cassant, très friable, et se réduit en poudre sous le marteau et sous le pilon. Lorsque l'opération a bien réussi, avec 100 grains de fer on obtient 135 à 136 grains d'éthiops. On peut donc compter sur une augmentation de poids au moins de 35 livres par quintal.

 

Si l'on a donné à cette expérience toute l'attention qu'elle mérite, l'air se trouve diminué d'une quantité en poids exactement égale à celle dont le fer a augmenté. Si donc on a brûlé 100 grains de fer et que l'augmentation de poids que ce métal a acquise ait été de 35 grains, la diminution du volume de l'air est assez exactement de 70 pouces cubiques à raison d'un demi grain par pouce cube. On verra dans la suite de ces Mémoires, que le poids de l'air vital est en effet, assez exactement d'un demi-grain par pouce cube."

 

Par la description qu'il en donne, on aura compris que le corps appelé par Lavoisier éthiops martial est ce que nous appelons oxyde magnétique auquel nous avons déjà donné la formule Fe3O4.

 

Relevons encore dans le texte suivant le souci de rigueur expérimentale chez Lavoisier :

 

"Je rappellerai ici une dernière fois que dans toutes les expériences de ce genre, on ne doit point oublier de ramener par le calcul le volume d'air au commencement et à la fin de l'expérience à celui qu'on aurait eu à 10 degrés du thermomètre, et à une pression de 28 pouces : j'entrerai dans quelques détails sur la manière de faire ces corrections, à la fin de cet ouvrage."

 

Aujourd'hui nous savons que le volume molaire des gaz est 22,4 l à la température de 0°C et à la pression de 760mm de mercure. On vérifiera facilement que la pression de 28 pouces est très proche de la valeur précédente. Par contre la température de 10° correspond à l'échelle Réaumur qui va du 0°R de la glace fondante au 80°R de l'eau bouillante, c'est donc une température correspondant à 12,5°C de notre échelle.

 

L'utilisation de la "loi des gaz parfaits" nous permettra de calculer le volume molaire des gaz dans les conditions du laboratoire de Lavoisier : 23,5 l.

 

Nous pouvons maintenant comparer nos connaissances avec les résultats expérimentaux de Lavoisier.

 

__________________________________

 

Exercice : (à rédiger sur feuille)

 

1) Quelle masse de fer exprimée en grammes représentent 100 grains de fer.

 

2) Quelle quantité théorique d'oxyde magnétique (exprimée en grammes puis en grains) peut-on obtenir par la combustion de ces 100 grains de fer ? Comparez à la valeur mesurée par Lavoisier.

 

3) Quel est le volume théorique de dioxygène (exprimé en litres puis en pouce-cubes) consommé dans cette réaction si le volume molaire des gaz est 23,5 l ? Comparez à la valeur proposée par Lavoisier.

 

4) Lavoiser indique que la masse (le "poids") du dioxygène ("air vital") est assez exactement d'un demi-grain par pouce-cube. Déterminez la masse volumique du dioxygène en g/cm3 puis en grain/pouce cube et comparez à la valeur proposée par Lavoisier ( le volume molaire des gaz étant 23,5 l).

 

__________________________________________________________

__________________________________________________________


Len résultat est généralement intéressant. La lecture du texte de Lavoisier est commode, l'étude stœchiométrique de la réaction de combustion du fer a déjà été faite en classe sous forme d'exercice d'application, le travail avec les valeurs proposées par Lavoisier est donc une forme de révision. C'est surtout une façon de comparer les calculs résultant de la théorie enseignée aux valeurs expérimentales de Lavoisier et de constater la remarquable précision de celles-ci.

 

Nous laisserons aux chimistes en herbe et à leurs professeurs le soin de compléter ces fiches. Pour répondre à la curiosité du lecteur pressé, disons simplement que le calcul indique une masse de 138 grains  d'oxyde magnétique obtenus pour 100 grains de fer, à comparer aux 135 ou 136 grains mesurés par Lavoisier. Ce qui donne à l'expérience de Lavoisier un rendement expérimental de 98% qui mérite d'être signalé.

 

Plus tard, dans un autre TP dont nous reparlerons, les élèves seront eux-mêmes mis en mesure de mesurer et de comparer leurs propres résultats expérimentaux avec ceux du célèbre ancêtre.

 

Les dossiers remis par les élèves sont également généralement de bonne qualité. Les moyens de reprographie et de traitement de textes disponibles dans les années 90 permettent des présentations agréables en un minimum de temps. Internet n'existe pas encore dans les centres de documentation des lycées, la recherche demandait donc un travail d'investigation relativement important, pourtant, de l'avis général, ce travail était plutôt considéré comme un des bons moments du cours de chimie.

 

L'expérience pourrait s'arrêter là mais il est logique de poursuivre.

___________________________________________________________________________

___________________________________________________________________________

 

 

Travaux pratiques avec Lavoisier ou comment sortir d'un piège didactique.

 

Fin novembre, une nouvelle séquence de travaux pratiques est proposée sous le titre "Combustion du fer dans le dioxygène. Proportions stœchiométriques".  La réaction a déjà été réalisée au premier TP, elle a fait l'objet de plusieurs exercices en classe, il est clairement exposé que l'intérêt de la refaire réside dans notre capacité nouvelle à en prévoir les conditions quantitatives initiales et le résultat final à partir d'un calcul.

 

La séance commence donc par la résolution d'un problème portant sur les conditions initiales de l'expérience :

 

Problème : On souhaite réaliser la combustion de 1g de fer dans le dioxygène. Quel est le volume de dioxygène nécessaire ? (on prendra 24 l pour volume molaire des gaz). Le flacon utilisé contient 650 cm3 de dioxygène. Est-ce suffisant ?

 

Le calcul indique un volume minimum de 286 cm3 de dioxygène, les conditions sont donc remplies et il est possible de passer à la manipulation.

 

Manipulation : 1 g de laine de fer est pesé, le tampon fixé au crochet est rapidement passé dans la flamme d'un bunsen et plongé dans le flacon de dioxygène. La combustion se fait sans étincelles et la boule brillante d'oxyde magnétique reste à nouveau fixée au crochet.

 

 

C'est alors que les élèves sont invités à prendre un papier et que deux questions leur sont posées.

 

1ère Question : La matière qui reste fixée au crochet est-elle, moins lourde, de même masse, plus lourde, que celle du fer initial ?

 

2ème Question (posée après la réponse à la première) : justifiez votre choix.

 

On aura reconnu les questions posées dès la première séance, avant même que le cours soit abordé. Cette façon d'agir était initialement destinée à vérifier les progrès des élèves, on verra par la suite que son objectif aura varié.

 

Les papiers sont ramassé, ils seront dépouillés par la suite. Cependant il est possible de faire un sondage oral. Nous donnerons ici encore les chiffres de l'année 1993-1994.

 

-         Qui a répondu moins lourd ? 2 élèves (3 en septembre)

 

-         Qui a répondu même masse ? 15 élèves ( 17 en septembre)

 

-         Qui a répondu plus lourd ? 9 élèves (9 en septembre)

 

Des proportions figées à trois mois d'intervalle malgré un enseignement particulièrement répété. De quoi désespérer le professeur le mieux trempé quand, du moins, il rencontre ce résultat  pour la première fois. Le professeur averti saura que le même test pratiqué plusieurs années de suite donne à chaque fois des résultats proches.

 

La question était donc en elle-même un "piège didactique" dans lequel professeur et élèves semblaient être tombés. Restait à en sortir honorablement et, pourquoi pas, en faire un élément d'apprentissage.

 

Trois réponses différentes donc dans la classe. Comment trancher ? Les balances sont à portée de main sur les paillasses et tout naturellement quelqu'un propose : et si on pesait ?

 

Mais la mesure n'est pas encore faite qu'une agitation gagne les rangs. Un premier qui avait pronostiqué une masse égale se ravise : "Ah oui, bien sur, je me suis trompé, on a fait l'exercice, cela doit peser plus".  Avis rapidement partagé par une écrasante majorité. L'autorité de la chose enseignée vient de faire irruption dans la classe et a rapidement raison de l'intuition première pourtant solidement ancrée quelque part, dans un de ces lieux secrets du cerveau.

 

Pesons tout de même ! Et nous obtenons une série de mesures comprises entre 1,30g et 1,40g. La masse augmente bien !

 

La vérification par la pesée. Aujourd'hui, à la place du trébuchet, on trouverait des balances électroniques sur les paillasses.

 

Et maintenant calculons ! Un calcul rapide prévoit une masse de 1,38g d'oxyde magnétique. Certaines, ou certains, se rappellent alors que Lavoisier obtenait de 135 à 136 grains d'éthiops martial  à partir de 100 grains de fer. Et chacun de comparer son travail à celui de Lavoisier, et le professeur de rappeler que celui-ci disposait des meilleurs instruments de mesure de l'époque ce que chacune et chacun  est invité à aller le vérifier, à l'occasion d'un passage à Paris, en visitant le musée du Conservatoire des Arts et Métiers.

 

A la fin de cette séance, Lavoisier est un peu plus présent dans la classe. La conscience de l'importance de l'expérience, et surtout de la mesure, en sort renforcée. Sur un plan plus pratique, chacun a la conviction qu'il ne tombera plus dans ce piège (hélas, les professeurs ont le secret des pièges dans lesquels on tombe si facilement ! ).

 

J'ai retrouvé l'année suivante, en première, quelques uns et quelques unes de ces élèves. A l'occasion d'un travail sur la "chimie de la photographie" (c'était encore l'époque du noir et blanc argentique officiellement né, en 1839, avec Niepce et Daguerre), j'ai interrogé l'ensemble de la classe sur l'époque à laquelle on pouvait situer le début de la chimie. A la totale surprise de leurs camarades, ces élèves se sont rappelés Lavoisier, sa découverte du rôle de l'oxygène, sa mort sur l'échafaud en 1794. Je ne sais pas si le piège de la combustion du fer aurait encore fonctionné, mais au moins j'ai pu vérifier qu'un morceau de "culture scientifique" s'était installé pour quelque temps dans leur mémoire.

 

_________________________________________________

_________________________________________________

 

Analyse d'un piège didactique

 

 

Pour éclairer la persistance du pourcentage de réponses "justes" et "fausses" après un trimestre de cours, il est intéressant d'analyser les explications apportées par les élèves pour justifier leur choix.

 

 

 

 

Pourquoi "moins lourd" ?

 

 

C'est la réponse de 3 élèves sur 29.

 

Aurélien : Elle est moins grande qu'avant, une partie de la masse de fer a été brûlée par le dioxygène.

 

Maël : Moins lourd car le fer s'est consumé, donc sa masse a diminué par rapport à sa masse initiale.

 

Les mots "combustion", "brûler", "consumer", induisent presque nécessairement l'idée d'une perte de matière. L'image forte est celle du bois qui se consume en ne laissant que peu de cendres.

 

 

Il n'est d'ailleurs que de consulter un dictionnaire courant pour le vérifier. Par exemple, dans le Larousse en trois volumes (édition 1970).

 

"Combustion : action d'un corps qui se consume par le feu : quelques tourbes ne laissent qu'un faible résidu après la combustion"

 

"Consumer : v.tr. (lat.consumere, détruire peu à peu). Détruire peu à peu en réduisant à rien : la rouille consume le fer - une maison consumée par les flammes  - la passion le consume - il se consume de chagrin - les bûches se consument lentement."

 

Nous pouvons trouver quelque excuse à nos élèves si les très sérieux auteurs du Larousse ont de la combustion l'image de la rouille "consumant" le fer.

 

Lavoisier, dans son introduction à la Méthode de nomenclature (1787), puis dans celle de son Traité élémentaire de chimie (1789), insistait sur la nécessaire précision du mot :

 

"Toute science physique est nécessairement formée de trois choses : la série des faits qui constituent la science ; les idées qui les rappellent ; les mots qui les expriment. Le mot doit faire naître l'idée ; l'idée doit peindre le fait : ce sont trois empreintes d'un même cachet ; et comme ce sont les mots qui conservent les idées et qui les transmettent, il en résulte qu'on ne peut perfectionner le langage sans perfectionner la science, ni la science sans le langage, et que quelque certains que fussent les faits, quelques justes que fussent les idées qu'ils auraient fait naître, ils ne transmettraient encore que des expressions fausses, si nous n'avions pas des expressions exactes pour les rendre."

 

 

Le mot combustion fait naître une idée : celle d'une bûche qui se consume dans un foyer et qui se réduit à presque rien. Lavoisier propose de le remplacer par le terme oxygénation. Mais les mots ont la vie dure et même les professeurs de chimie continueront longtemps à parler de combustion (comme il continuent, d'ailleurs, à parler d'oxydation pour des réaction ne faisant pas intervenir l'oxygène).

 

Notre mise en scène aura été utile si elle fait comprendre que la combustion du chimiste n'est la combustion ordinaire et qu'il faudra surveiller ce mot à l'avenir. Nous aurons d'ailleurs d'autres occasions de signaler à nos élèves qu'il en est souvent ainsi des mots de la physique et de la chimie, il faut apprendre à les dépouiller de leurs habits de tous les jours.

 

Mais revenons à notre questionnaire et aux autres réponses des élèves.

 

 

Pourquoi de même masse ?

 

 

 

réponse de 17 élèves sur 29, très majoritaire (59%).

 

Keltia : égale parce que la paille de fer a fondu, elle est devenue plus petite mais elle a conservé son poids.

 

Séverine : égale. En effet, toutes les particules se sont regroupées, cela forme une boule très compacte.

 

Delphine : je pense que la masse reste la même mais que c'est le volume qui change.

 

Ici c'est l'observation qui guide l'interprétation. Ce que l'on perçoit, c'est d'abord une fusion et chacun sait que lamasse se conserve dans une telle opération physique. C'est la réponse de 59% des élèves et elle répond à une logique. Pendant des siècles les métallurgistes ont décrit leur art comme celui de la simple fusion des minerais provoquée par le feu et facilitée par les "fondants" qu'on y ajoutait.

 

Pour d'autres élèves, l'interprétation est aussi guidée par un "savoir chimique mal assimilé".

 

Céline : La masse est égale, les proportions se conservent.

 

Frédéric : Egale, rien ne se perd dans une réaction chimique. Rien ne se gagne dans une réaction chimique.

 

La loi des proportions définies, celle dite de Lavoisier (qui ne l'a jamais énoncée), trouvent ici une curieuse application. 

 

Passons à présent à la dernière série de réponses.

 

Pourquoi plus lourd ?

 

 

réponse de 9 élèves sur 29.

 

En septembre, environ un tiers des élèves a répondu "plus lourd". On pourrait se satisfaire de ce résultat si l'analyse des réponses ne révélait quelques surprises.

 

Stéphanie :  plus lourd parce que le fer est devenu plus compact, il a durci.

 

Vincent : plus lourd, la limaille de fer rassemblée en boule est plus lourde que quand elle est dispersée.

 

Natacha : supérieure, parce que la paille de fer est légère mais lorsqu'elle a brûlé toute la paille de fer a fondu sur elle-même, elle pèse doc plus lourd.

 

Thomas : le fer a diminué de volume donc sa masse est supérieure.

 

L'interprétation est ici encore celle d'une simple fusion mais mal analysée. La confusion entre masse et densité est classique : il est difficile d'admettre que le kilogramme de plomb ne "pèse" pas plus lourd que le kilogramme de plumes.

 

Il nous reste cinq élèves qui ont su mobiliser les connaissances acquises au collège pour nous donner une réponse en rapport avec le modèle enseigné.

 

Cynthia : la masse de l'oxyde est plus grande car le fer est associé à un autre corps, le dioxygène.

 

Guillaume : l'oxygène s'est associé avec le fer en lui conférant ainsi sa masse ce qui donne l'oxyde magnétique.

 

En novembre huit élève donneront la réponse attendue. Après un trimestre de cours et un même exercice répété sous différentes formes, le taux de réponses "correctes", avant vérification expérimentale, n'est toujours que de 30%. Même si l'ultime vérification par la balance a probablement fait progresser le score final, cette constatation est propre à convaincre le professeur du fait que l'art d'enseigner est d'abord celui de savoir répéter sans avoir l'air de le faire.

 

Il est remarquable de constater que les résultats de ce questionnaire se confirment d'année en année. Par exemple pour trois années successives.

 

Année

(en novembre)

Moins lourd

Masse égale

Plus "lourd"

(plus dense)

Plus lourd

(combinaison)

1992

1993

1994

4

2

4

8

15

9

7

1

7

10     (34%)

8       (31%)

8      (28%)

 

 

Il est également intéressant d'observer la stabilité des réponses avant et après enseignement : rappelons les résultats de 1993-1994.

 

Mois

Moins lourd

Masse égale

Plus lourd

(plus dense)

Plus lourd (combinaison)

septembre

novembre

3

2

17

15

4

1

5       (17%)

8     (31%)

 

 

Si la proportion de réponse justes passe de 17% à 31%, c'est surtout la persistance d'un taux élevé d'erreurs qui saute aux yeux.

 

A y regarder de plus près, la lecture des phrases d'explication est une véritable révélation dans la mesure où elle indique une étonnante persistance dans les idées. Ceci particulièrement chez les élèves considérant que la masse ne varie pas.

 

Xavier en septembre : égale, la combustion n'allège pas le matière.

Xavier en novembre : égale, la combustion n'allège pas le fer.

 

Frédéric en septembre : égale. Rien ne se perd dans une réaction chimique. Rien ne se gagne dans une réaction chimique.

Frédéric en novembre : égale. Dans une réaction chimique, à une masse, rien n'est ajouté, rien n'est enlevé.

 

Céline, en septembre :  égale parce que la paille de fer est devenue plus compacte mais sa masse n'a pas changé.

Céline, en novembre : égale parce que la paille de fer s'est condensée mais sa masse n'a pas changé.

 

Non seulement les idées se sont conservées mais les mots qui les expriment sont restés les mêmes. Les élèves auteurs de ces réponses sont les premiers étonnés quand on les met en face de ce constat.

 

Une chose est certaine : la notion de combustion n'est pas simple  et il n'y a rien d'étonnant à ce que Lavoisier et les chimistes français qui partageaient ses idées aient dû mener bataille pour faire triompher leurs vues.

 

Nous invitons les lectrices et lecteurs intéressés à lire l'article que nous consacrons au sujet de leur combat contre la théorie du phlogistique.

 

_________________________________________________________

 

 

Dernier test.

 

Après quelques années consacrées à peaufiner et à faire varier ce dialogue entre notre classe et Lavoisier, un doute à commencé à germer dans l'esprit du professeur.

 

La combustion, au sens classique, c'est bien celle du charbon. Il faut un chimiste comme Lavoisier pour considérer que le fer est lui même un "combustible". Un retour aux sources ne serait-il pas nécessaire ?

 

Après avoir "brûlé" du fer et constaté l'augmentation de masse de l'oxyde obtenu. Après avoir nous être efforcés de corriger des intuitions "fausses", revenons à une manipulation classique.

 

Manipulation : Portons au rouge, dans la flamme chauffante d'un bunsen, un point d'un charbon de bois suspendu à un couvercle et plongeons celui-ci dans le dioygène contenu dans un flacon.

 

L'expérience avait déjà été faite dès le premier TP et le gaz carbonique obtenu testé à l'eau de chaux. L'équation de la réaction avait plusieurs fois été utilisée pour déterminer les proportions de la réaction, en particulier pour illustrer la notion de volume molaire des gaz. Il était donc logique, dans ce cas aussi, de proposer un test sous forme d'une question.

 

Question (répondez rapidement par écrit) : le morceau de charbon restant à la fin de la combustion est-il : plus lourd, de masse égale, moins lourd ... qu'il ne l'était au départ.

 

Le test est révélateur : une moitié de la classe se partage entre "moins lourd" et "même masse ou plus lourd" et il faut proposer de refaire l'expérience en pesant pour que les choses se remettent en ordre et que la grande majorité accepte l'idée que la masse a diminué car, cette fois, l'oxyde n'est plus un solide fixé au corps initial mais un gaz qui s'en est échappé.

 

L'expérience réalisée en pesant est d'ailleurs une excellente façon d'aborder la notion de rendement d'une réaction.

 

Qu'en conclure ? Qu'il faut un long cheminement avant de cerner la notion de "combustion". Qu'il faut savoir que le mot est trompeur et qu'il est essentiel de bien en préciser le sens chimique.

 

Et bien d'autres choses livrées à la réflexion de chaque lectrice ou lecteur.

 

Voir aussi : Lavoisier et le phlogistique

 

_________________________________________________________

 

Retour à la vie civile.

 

La combustion des déchets ménagers, opération à laquelle on à, aujourd'hui, attribué la dénomination "d'incinération", est un des grands sujets d'actualité. Dans l'esprit de la plupart de nos concitoyennes et concitoyens, pourtant passés sur les bancs de nos écoles et  ayant  subi nos cours de chimie, cette opération est la meilleure façon d'éliminer.

 

Question posée à un public intéressé par le sujet :

 

Question : A partir d'une tonne de déchets ménagers obtient-on : 10 kg, 100 kg, 1 tonne, deux tonnes, quatre tonnes... de produits ultimes ?

 

Question "piège" qui amène généralement une réponse majoritaire pour les 100 kg voire même 10 kg.

 

Il faut alors rappeler à nos concitoyens le bon vieux temps de leur cours de chimie et leur rappeler que leurs déchets étant essentiellement composés de matières organiques, c'est-à-dire de carbone, d'hydrogène et d'azote ils produiront de l'oxyde de carbone 3,67 fois plus lourd que le carbone initial, de la vapeur d'eau 9 fois plus lourde que l'hydrogène du départ et différents oxydes d'azote, le tout s'échappant par les cheminées dans une atmosphère devenue l'ultime poubelle (oublions les dioxines et autres produits du même genre). On peut leur rappeler aussi que le poids du mâchefer qu'il faudra ensuite gérer est supérieur à celui des métaux contenu dans leurs déchets.

 

En gros : en incinérant 1 tonne de déchets, ce sont bien environ quatre tonnes de nouveaux déchets qui viendront alimenter l'effet de serre ou encombrer nos "décharges".

 

C'est peut-être aussi pour ce rappel de notions anciennes fait à d'anciens collégiens et lycéens devenus citoyens adultes, qu'il est bon de bien décortiquer la notion de combustion dans nos cours de collège et de lycée.

 

____________________________________

 

Pour comprendre la persistance d'intuitions erronées, on peut lire :

 

Lavoisier et le phlogistique  

__________________________________________________________

 

Documents joints :

 

On trouvera les premières fiches de ce travail proposées en 1986 par le lien ci dessous. On notera leur nature manuscrite correspondant à une période sans traitement de texte et sans internet. La photocopieuse elle même était d'usage limité. 

 

Lavoisier au Laboratoire

 

 

___________________________________
 

 

 

Une copie en 1989

 

 

 

__________________________________________________________

 

 

 

 

Repost 0

Présentation

  • : Le blog d'histoire des sciences
  • Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens