Overblog
Suivre ce blog Administration + Créer mon blog
4 février 2018 7 04 /02 /février /2018 10:03

____________________________________________________________________________________________________________________

 

RESPIRER TUE. Un livre pour s’informer et agir

contre la pollution de l’air.

 

Paru en septembre 2016.

Lemieux éditeur. 144 pages, 12€.

 

 

Lu sur Lire pour demain.

 

Le livre a été retenu dans la sélection du Prix "Lire pour demain".

Le prix se veut le reflet de la diversité des approches, contenus, analyses, mais aussi des types d’écrits (essais, biographies, fictions, documentaires, bandes dessinées…) et des genres littéraires traitant des questions environnementales. Chaque lycée participant reçoit deux séries d’ouvrages des six livres sélectionnés. Les enseignants et documentalistes impliqués dans le projet se l’approprient de la manière qui leur semble la plus adéquate en fonction du temps, du niveau de lecture des élèves, de leur motivation, des disciplines concernées. Les travaux autour de la sélection sont divers et variés : fiches de lecture, moments de lecture groupée, affiches, théâtre, petits films, animation de blog, rédaction d’articles pour le journal du lycée… Etc. Chaque classe participante vote (généralement à la fin du mois de mars) pour ses trois livres préférés, dont son « coup de cœur ». Une remise du prix a ensuite lieu à Lyon (en mai) sous forme de rencontre entre auteurs, lycéens, MEML et MNEI.

L’objectif du prix :

> Sensibiliser les lycéens aux questions environnementales à travers l’écrit.Retour ligne automatique
> Favoriser l’acquisition d’une culture environnementale complexe et globale au travers de la découverte de livres et d’auteurs sur des thématiques environnementales prises au sens large.Retour ligne automatique
> Développer une dimension culturelle et citoyenne en favorisant le débat, la réflexion, l’argumentation, la prise de décision des lycéens.Retour ligne automatique
> Valoriser l’activité menée par les lycéens : faire lire et écrire les lycéens autour des ouvrages sélectionnés par eux, leur donner la possibilité de faire partager leurs choix auprès de leurs camarades en les plaçant en position de « prescripteurs » auprès des CDI des établissements de la Région.Retour ligne automatique
> Favoriser si possible des échanges / activités entre disciplines : philosophie, SVT, Histoire-Géographie, SES, Lettres, ESC, documentation…


Lu dans "Journal de Lectures".

Les transports collectifs sont gratuits par suite des pics de pollution, pourtant le ciel est bleu dans ma banlieue et la température plutôt clémente pour un jour de décembre. Une amie qui vient d’atterrir à Roissy me décrit la chape de plomb sur la capitale, on croit qu’il fait beau mais au-dessus se tient le terrible nœud de toutes les pollutions et nuisances. La presse dénonce les voitures et les (rares) ménages qui se chauffent au bois, c’est bien peu. Gérard Borvon, dans un court ouvrage incisif et remarquablement documenté, nous explique pourquoi Respirer tue et comment agir contre la pollution de l’air. Le poison est connu et résulte du productivisme : pesticides, oxydes d’azote, ozone, particules fines, composés benzé- niques…Le ministère de la Santé déplore 42 000 morts chaque année, victimes de la pollution de l’air. La France semble fière d’être dans le peloton de tête des consommateurs de pesticides, aux terribles conséquences, surtout pour les produits classés cmr (cancérigènes, mutagènes et reprotoxiques).

Une pomme subit de 30 à 50 traitements chimiques avant la récolte pour être présentable sur l’étal du supermarché… L’épandage aérien (qui bénéficie de sournoises dérogations accordées par le trio Le Foll-Royal-Touraine) ignore les limites du champ et touche les crèches, écoles et habitations voisines. Les lobbyistes s’activent à Bruxelles pour légalement polluer non seulement le sol, mais aussi le vivant, dont les humains. Les effets mutagènes et cancérigènes des pesticides à base de glyphosate sont dorénavant démontrés, sans pour autant que ces produits soient interdits.


Lu dans Clim’actions.


Vu et entendu sur France 3 Bretagne.

cliquer sur l’image.

C’est après le tabac et l’alcool, la troisième cause de mortalité dans notre pays : la pollution de l’air, extérieure mais aussi intérieure serait chaque année responsable de 48 000 décès prématurés en France dont 2000 en Bretagne. L’Heure du débat fait le point dimanche 23 avril.

Par Isabelle Rettig avec E.C. Cliquer sur l’image

La qualité de l’air aurait un impact notable sur notre espérance de vie. Dans le monde, 7 millions de décès seraient imputables à la pollution de l’air.

Transport, chauffage, industrie, agriculture, nous émettons beaucoup trop d’oxydes d’azote ou de particules fines responsables aujourd’hui de nombreux problèmes de santé, de l’asthme aux maladies cardiovasculaires, en passant par des insuffisances respiratoires voire des cancers.

En Bretagne, respire-t-on mieux qu’ailleurs ?

Quelles solutions faut-il mettre en place pour lutter efficacement contre ce mal sournois, devenu aujourd’hui un véritable enjeu de société ?

Pour tenter de répondre à cette question, plusieurs invités prendront la parole sur le plateau de l’Heure du débat, dimanche 23 avril à 11 h : Docteur Isabella Anessi-Maesano, directrice de recherche à l’INSERM, Frédéric Vénien, ancien president d’Air Breizh, l’association chargée de mesurer la qualité de l’air en Bretagne.

Gérard Borvon sera également présent. Ce militant écologiste du Finistère a publié un livre en 2016 : "Respirer tue, agir contre la pollution de l’air". Pierre Chasseray, délégué général de l’association 40 millions d’automobilistes viendra évoquer la pollution des transports, celle des voitures et des mesures qu’il faudrait mettre en place.

cliquer sur l’image.Retour ligne automatique

Voir encore :

https://ftv-bo.alchemyasp.com/permalink/v1/4/9451/preview/?token=uPSpXZTL


Lu dans Eau et Rivières de Bretagne

Avril 2017.

Retour ligne automatique
cliquer sur l’image pour agrandir.

Retour ligne automatique
cliquer sur l’image.

Lu dans la revue Déclic.

« La mesure d’exposition aux particules fines doit être améliorée »Retour ligne automatique
 

Gérard Borvon, auteur de l’ouvrage « Respirer tue »

PDF - 89 ko


Lu dans La Recherche N°520 Février 2017.

Gérard Borvon milite depuis longtemps pour la préservation de l’environnement. Cet enseignant de physique-chimie en Bretagne s’est mobilisé face à la pollution de l’eau. Dans ce livre, il dresse un inventaire de la pollution atmosphérique : pesticides, oxydes d’azote, ozone, particules fines... L’auteur s’alarme du dangereux cocktail que l’air transporte à nos poumons. Il appelle à l’action et rappelle que depuis la loi de 1996, l’État et les citoyens doivent concourir « à la mise en oeuvre du droit reconnu à chacun à respirer un air qui ne nuise pas à sa santé » .


 

 

Lu sur Ouest-France du 05.01.2017.

 

« Il y a péril dans la biosphère », assure Gérard Borvon. Le scientifique et militant écologiste finistérien dresse, dans un petit ouvrage très pédagogique, un état des lieux préoccupant.

L’ère du méchant air

48 000 décès prématurés par an en France, selon l’agence de Santé publique. Les particules fines empoisonnent notre atmosphère. Jusqu’à produire, comme ce fut le cas durant les fêtes de fin d’année, une « neige de pollution » ! Ancien professeur de physique chimie en lycée et formateur en histoire des sciences à l’IUFM de Bretagne, Gérard Borvon vient de publier un essai au titre volontairement alarmiste : Respirer tue. Il y dresse un bilan inquiétant de la qualité de l’air, y compris en Bretagne et dénonce « les tours de passe-passe des experts et lobbies » pour minimiser ou relativiser le phénomène. Il propose aussi des solutions pour sortir au plus vite de cette « ère du méchant air. »

Les discours et les faits

« L’environnement, ça commence à bien faire , lâchait Nicolas Sarkozy quelques mois après le Grenelle de l’environnement, en 2008. « Le XXe siècle a été celui de l’hygiène bactériologique, le XXIe siècle doit être celui de l’hygiène chimique », professait François Hollande, lors de la Cop 21, à Paris. « Plus le propos est lyrique, plus on mesure le gouffre qui sépare le discours de la politique », écrit Gérard Borvon, constatant que qu’on continue à urbaniser des terres agricoles, à éventrer des espaces boisés qui conduiront encore plus de voitures dans des centres-villes déjà saturés, qu’on continue à épandre des engrais industriels, des lisiers et des pesticides « qui empoisonnent les rivières et rendent insalubre l’air que nous respirons. »

Le cas breton

À l’écoute des militants d’autres régions lorsqu’il siégeait au Comité de bassin Loire-Bretagne et au Comité national de l’eau, Gérard Borvon a pu constater que « la Bretagne n’est pas nécessairement la plus polluée. » Les grandes plaines céréalières, les régions productrices de fruits et les vignobles lui disputent plusieurs records. « Mais peu à peu, la conscience d’une source de pollution encore plus inquiétante que la pollution de l’eau s’est faite jour : celle du dangereux cocktail que l’air transporte jusqu’à nos poumons : pesticides, oxydes d’azote, ozone, particules fines ».

Des mesures insuffisantes

Lutter contre cette pollution, c’est d’abord bien la connaître, explique Gérard Borvon. On ne compte, en Bretagne, que huit points de mesure, dont trois seulement bénéficient du dispositif complet permettant d’établir l’indice de qualité de l’air Atmo, calculé pour les agglomérations de plus de 100 000 habitants à partir des concentrations de quatre polluants : le dioxyde de soufre, le dioxyde d’azote, l’ozone et les particules de diamètre inférieur à 10 micromètres, les fameux PM 10. Un réseau de contrôle « très insuffisant, car c’est sur l’ensemble du territoire que les habitants respirent un cocktail de pollutions générées par l’industrie, l’agriculture, le chauffage et les transports » rappelle Gérard Borvon. Soulignant aussi, qu’au-delà des pics qui conduisent les pouvoirs publics à prendre des mesures ponctuelles, c’est toute l’année que les populations sont exposées à une « pollution silencieuse » de l’air.

Respirer tue, agir contre la pollution de l’air. Gérard Borvon. Lemieux éditeur. 140 pages. 12 €.Retour ligne automatique

__________________________________________________________________________

 

Sur le Télégramme du 4 décembre 2016.

Maxime Recoquillé

L’écologiste landernéen Gérard Borvon publie : « Respirer tue ».

Il y expose méthodiquement la dangerosité de la pollution de l’air en Bretagne, liée, en partie, à la propagation des pesticides. « En Bretagne, les gens pensent respirer un air sain grâce au vent soufflant fort dans la région, c’est faux ». MIlitant écologiste depuis plus de 40 ans, Gérard Borvon souhaite casser le mythe du bon air pur breton. Pendant longtemps, il s’est intéressé à la pollution de l’eau, au sein de l’association S-Eau-S et du Comité national de l’eau. Mais la cause ayant progressé, l’homme se penche désormais sur un débat plus actuel mais tout aussi épineux : la pollution de l’air.

Son dernier livre, intitulé « Respirer tue », revient de façon académique sur plusieurs épisodes de la recherche bretonne sur la pollution aux pesticides et les raisons pour lesquelles, selon l’ancien professeur de physique-chimie au lycée de l’Élorn, il convient maintenant « d’agir ». Selon Gérard Borvon, c’est en 1995, à Trémargat (Côtes-d’Armor), qu’une première prise de conscience de la dangerosité des pesticides dans l’air a eu lieu. À l’époque, des chercheurs de l’Inra de Rennes (Institut national de la recherche agronomique) ont l’idée de rechercher la trace de pesticides, non plus dans les ruisseaux et rivières, mais dans l’eau de pluie. Résultat : 80 % des échantillons dépassaient la norme maximale européenne. Si l’eau de pluie est contaminée, l’air n’y est donc pas pour rien. « C’est donc en permanence que l’on respire des pesticides en Bretagne », conclut le professeur.

Risques pour le foetus

Puis les scientifiques s’intéressent aux risques. L’étude Pélagie, de l’Inserm, entre 2002 et 2006 a mesuré l’impact des pesticides sur 3.500 femmes enceintes puis leurs enfants, en Bretagne.Retour ligne automatique
Cette fois, on y apprend que la présence de certains agents, même à des niveaux faibles, augmente les risques d’anomalie de croissance dans l’utérus.

Aujourd’hui, la pollution de l’air aux pesticides est notamment mesurée grâce à l’émission de particules fines. Les gens les connaissent sous le nom de PM10. Mais pour Gérard Borvon subsiste encore un problème : « Aujourd’hui, seules les villes de plus de 100.000 habitants ont l’obligation de mesurer la qualité de l’air et ces PM10. Alors qu’en vérité, les campagnes souffrent de la même pollution qu’à Saint-Brieuc ou Rennes », indique t-il, en précisant que « 60 % des émissions de particules fines viennent de l’agriculture ».

Informer davantage

Alors pour respirer mieux, l’auteur propose plusieurs pistes, comme privilégier le bio ou développer les transports en commun. Mais surtout, il appelle à informer davantage, en mesurant encore et encore la qualité de l’air, sur tout le territoire. « Si l’on a un pic de pollution à Brest, pourquoi penser que Landerneau n’est pas touché ? », souffle-t-il. Impossible de le savoir à l’heure qu’il est. Pour plus de données sur la qualité de l’air, des solutions existent, comme à Rennes, où, pendant deux ans, des citoyens, à l’aide de petits capteurs, vont effectuer eux-mêmes des mesures en centre-ville dans le cadre de l’opération Ambassad’Air. Ils en publieront les résultats librement, en open data. De quoi permettre d’informer un peu plus sur un fléau qui, selon l’Agence de santé publique, causerait la mort de 48.000 personnes par an.


Sur "L’Ecologiste" de décembre 2016.

Retour ligne automatique
cliquer sur l’image pour agrandir.

PDF - 69.4 ko

 

 

cliquer sur l’image pour agrandir.

Vous pouvez trouver le livre chez votre libraire habituel ou, à défaut, en vous adressant à l’auteur :Retour ligne automatique
Gérard Borvon 20 rue des frères Mazéas 29800 LanderneauRetour ligne automatique
En joignant un chèque de 15€ (12€ +3€ port) à votre demande.

En bibliothèque :

Sudoc ; Worldcat ; Catalogue Collectif de France


Sur France Culture 25 septembre 2016 :

Respirer, est-ce encore bien vivre ?

Respirer, est-ce encore bien vivre ? C’est la question que nous allons poser, en compagnie de nos invités, Robert Barouki, toxicologue, directeur de l’unité INSERM « pharmacologie, toxicologie et signalisation cellulaire »,co-auteur du livre Toxique ? Santé et environnement : de l’alerte à la décision , paru chez Buchet-Chastel. Avec par téléphone, depuis Genève, le Dr Maria Neira, directeur du Département Santé publique et environnement à l’Organisation Mondiale de la Santé, à Genève depuis septembre 2005, ancienne Vice Ministre de la Santé et Présidente de l’Agence espagnole de Sécurité sanitaire des Aliments au Ministère espagnol de la Santé. Et en duplex de nos studios de Quimper (France Bleue Breizh Izel) , nous serons pour en parler en compagnie de Gérard Borvon, ancien enseignant de physique-chimie en lycée et formateur en histoire des sciences à l’IUFM de Bretagne. Il est l’auteur de Respirer tue. Agir contre la pollution de l’air Lemieux éditeur.

Intervenants

Gérard BorvonRetour ligne automatique
Robert Barouki : Toxicologue, directeur de l’unité INSERM « pharmacologie, toxicologie et signalisation cellulaire »Retour ligne automatique
Maria Neira : directeur du Département Santé publique et environnement à l’Organisation Mondiale de la Santé, à Genève (Suisse)Retour ligne automatique
Guilhem Lesaffre : naturaliste


 

 

 

Sur Babelio. 3 octobre 2016

marinecaquineau, 18 ans.

C’est le tout premier livre que je lis sur l’écologie. Je dois dire que je suis conquise...

et d’autres critiques et citations sur Babelio.

Junie21 octobre 2016

Cet excellent thriller de Gérard Borvon ne fait pas dans la dentelle : il s’agit de démasquer un serial killer dont les victimes se comptent par centaines, non, pire que ça, par milliers ! Chez nous, en France, en 2016 !

Mais que fait la police ? que fait le gouvernement ? l’assassin court toujours, depuis des années....

Ce scélérat tue ses victimes par asphyxie, et ses méthodes sont implacables. le crime parfait, qui ne laisse pas de traces, car le procédé est légal, et invisible.Retour ligne automatique
Tous les jours, nous respirons un air de plus en plus toxique, ce qui entraine environ 48 000 décès prématurés par an EN FRANCE. Et couterait plusieurs milliards d’euros à l’Etat selon un rapport du Sénat en 2015.

Les substances en cause viennent de l’industrie, du trafic routier, mais aussi de l’épandage des produits généreusement pulvérisés sur nos belles campagnes : champs de céréales, vignobles, vergers, dont un important pourcentage se disperse dans l’air ambiant.

Vous vouliez quitter les miasmes de la ville pour respirer l’air pur de nos campagnes ? c’est raté si votre chaumière se trouve au milieu de zones cultivées. Retour ligne automatique
Sachez aussi que si la qualité de l’eau est très contrôlée depuis 1964, celle de l’air n’a eu droit à une loi qu’en 1996, en instituant des normes et des points de contrôle sur le territoire. Mais les crédits sont dérisoires et les moyens très insuffisants. Cinquante millions/an pour l’air, deux milliards pour les agences de l’eau. Huit points de mesure par exemple, pour toute la Bretagne !

Respirer un air sain est pourtant le premier besoin fondamental des êtres humains. Nous inhalons chaque jour, sans le savoir, des substances toxiques à doses très faibles, qui nuisent à notre santé. Cancers, maladies cardiaques et respiratoires, perturbation du système hormonal.

Ce phénomène est connu, prouvé, et pourtant des tonnes de pesticides sont toujours déversées, le trafic routier augmente, les industries polluent impunément.

Aaaaaaaaaaaaah, je crois que le serial killer essaie d’entrer chez moi par la fenêtre, vite, mon masque à gaz.....


Revue Sans Transition !

92% de la population mondiale respire un air trop pollué : c’est la principale conclusion d’un rapport, intitulé Pollution de l’air ambiant : une évaluation globale de l’exposition de la charge de morbidité, publié par l’Organisation mondiale de la santé (OMS), mardi 27 septembre. Ce livre de Gérard Borvon, militant breton pour la protection de l’environnement, fait écho à cette situation alarmante.

De la Bretagne aux Antilles

Particules fines, résidus de pesticides ou encore composés benzéniques : Agir contre la pollution de l’air détaille les substance nocives qui passent, bien malgré-nous, dans nos poumons. Au travers des cas concrets antillais et bretons, le livre dresse l’incapacité des pouvoirs publics à agir efficacement pour lutter contre les pollutions, notamment issues de l’agriculture. Mais il ne manque pas aussi de souligner que des citoyens ou des villes ont su se mobiliser et obtenir des résultats positifs en matière d’amélioration de la qualité de l’air. Des résultats qui ne pourront être généralisés que si l’on change de modes de consommation. Et si l’on ouvre davantage la gestion des risques à la société civile.

A lire :

Respirer tue, Un livre pour s’informer et agir contre la pollution de l’air, Gérard Borvon, 2016, Lemieux Editeur, 144 p. 12 euros


Sur France Bleu Breizh Izel.

Interrogé par Michel Pagès le dimanche 16 octobre.

https://www.francebleu.fr/emissions/l-invite-du-dimanche-midi/breizh-izel/l-invite-du-dimanche-midi-du-dimanche-16-octobre-2016


Respirer Tue : La sélection de Consogloble 

accompagnant un article sur la pollution en chine.

Partager cet article
Repost0
27 janvier 2018 6 27 /01 /janvier /2018 08:16

 

" Qu'est-ce que l'électricité ? " La question a-t-elle trouvé sa réponse ?

 

L'histoire commence avec éclat quand Gilbert rencontre la propriété "magique" de l'ambre dans des matières aussi banales que le verre ou le soufre. Il franchissait ainsi les premières étapes de la construction d'une nouvelle branche du savoir : l'électricité.

 

Un nouveau pas est franchi quand la "vertu" électrique se concrétise sous la forme d'un "fluide" et quand Stephen Gray puis Dufay et Franklin établissent les notions de conducteur et d'isolant.

 

Un seul fluide comme le pensent Franklin et ses successeurs ? Deux fluides comme proposé par Dufay ? Il faudra plus d'un siècle et demi pour que l'existence de deux espèces d'électricité s'impose et que chacune trouve sa place respective dans l'atome : la négative dans les électrons, la positive dans les protons du noyau. Enfin un résultat stable !

 

Entre temps se sera posée la question de l'action externe de ce fluide. Gilbert avait su établir la barrière entre magnétisme et électricité et voilà que ces deux propriétés se rejoignent dans les propriétés électromagnétiques des courants électriques.

 

Et à nouveau revient la question des actions à distance qui avait opposé "newtoniens" et "cartésiens" dans le domaine de la mécanique céleste. Les premiers acceptant une action sans contact matériel. Les seconds imaginant d'invisibles engrenages sous forme de "tourbillons" de cet "éther" mystérieux dont on emplira l'espace à chaque fois qu'on voudra en exclure le vide.

 

Newton et ses successeurs avaient su imposer leur schéma d'actions à distance. Coulomb avait appliqué le modèle avec succès dans le domaine de l'électrostatique. Ampère en avait fait de même dans celui des effets électromagnétiques des courants. L'affaire semblait entendue : les actions électromagnétiques sont des actions "à distance".

 

C'est alors que Faraday vient, à nouveau, peupler l'espace d'un "éther" structuré en lignes de "champ". C'est en coupant ces lignes de champ, dit-il, et non par une action à distance qu'un conducteur est le siège d'une force électromotrice.

 

Quand Maxwell aura établi l'équation de propagation, dans ces champs, d'ondes progressant à une vitesse égale à celle de la lumière, faisant du même coup de l'onde lumineuse un cas particulier d'onde électromagnétique, quand Hertz aura produit et étudié ces ondes, il ne sera plus possible de douter de leur existence et de celle des champs. Il existe donc alors deux entités bien définies : les charges électriques portées par les atomes d'un côté, les champs électriques issus de ces charges et portés par l'éther de l'autre.

 

Et pourtant à peine validées les ondes rencontrent un problème : l'éther n'existe pas. Or une onde demande un support. C'est le mouvement successif de chaque point de ce support à partir d'une source qui est le propre d'une onde. Les ondes lumineuses, les ondes hertziennes, n'auraient donc aucun support ? Comment alors parler encore d'ondes électromagnétiques ? Faut-il abandonner ce modèle ? Il décrit si bien la réalité observée qu'il faudra plutôt faire une entorse au "réalisme" et s'accommoder d'ondes sans support matériel même si l'intuition immédiate s'y refuse.

 

Même si les ondes électromagnétiques deviennent ainsi un être sans aucun lien autre que mathématique avec les phénomènes physiques dont elles portent le nom, l'électricité peuple encore deux univers séparés : celui de la matière où se trouvent et circulent les "charges" électriques, celui de l'espace immatériel qui est le domaine des champs et des ondes électromagnétiques.

 

 

Et voilà que Einstein, étudiant l'effet photoélectrique, revient à un modèle corpusculaire de l'onde lumineuse et que, dans une démarche inverse, De Broglie imagine un modèle ondulatoire des corpuscules matériels. Voilà que les ondes lumineuses se matérialisent en photons pendant que les électrons se diluent en ondes. Voilà que, avec Heisenberg, naît un être nouveau, le quanton, objet insaisissable enfanté par les concepts d'onde et de matière et doué du don d'ubiquité.

 

Qu'en déduire ? Que, aussi spectaculaires que soient les applications de l'électricité, aussi prodigieuse que soit la façon dont elles ont transformé notre univers, l'histoire de la science électrique ne serait donc que celle d'une succession d'erreurs ?

 

Pourtant ces "erreurs" sont encore de solides vérités pour tous ceux dont l'électricité est le quotidien, qu'ils soient professionnels ou simples utilisateurs. On n'a pas trouvé mieux que les électrons pour expliquer ce qui se passe dans un circuit électrique ou électronique. Mieux que les ondes électromagnétiques pour décrire ce qui se transmet entre les multiples émetteurs et récepteurs qui peuplent notre quotidien. Dans les énormes accélérateurs dont se dotent les modernes physiciens, ce sont bien encore des particules qu'ils nous disent vouloir accélérer.

 

L'enseignement de l'électricité, lui-même, ne serait donc que l'enseignement d'erreurs successives ? A-t-on le droit, à travers les programmes d'enseignement, ou dans les revues de vulgarisation, de continuer à enseigner des modèles dépassés ?

 

D'autant plus que certaines de ces "erreurs" ont laissé des traces durables. Comment, sans faire passer la science électrique pour un bricolage approximatif, expliquer, par exemple, que le sens "conventionnel" du courant dans un conducteur est inverse de celui du déplacement des électrons. Ou encore qu'un ion négatif est une particule portant plus d'électricité que l'atome correspondant.

 

Comment ? En faisant appel à Dufay, à Franklin, à Symmer. En n'oubliant pas l'histoire qui, seule, peut expliquer ces "cicatrices" dans l'enseignement des sciences et la diffusion de la culture scientifique.

 

 

Pas de science sans son histoire.

 

Une loi physique n'est pas une vérité "révélée", c'est une création humaine. Connaître les tâtonnements, les réussites, les avancées et les doutes des hommes et des femmes qui s'y sont investis est aussi passionnant que d'apprendre à mettre en œuvre les lois et les méthodes qu'ils nous ont transmises.

 

Etudier les sciences à travers leur histoire, c'est aussi leur donner une place, au côté de l'art ou de la littérature dans l'aventure culturelle de l'humanité. Lire un Mémoire de Dufay sur l'électricité, c'est établir une connivence, aussi forte que celle qui passe par l'émotion poétique ou artistique, avec un homme qui nous invite à partager sa passion. Lire une communication de Marie Curie à l'Académie des Sciences c'est, à la fois, vivre au jour le jour l'éclosion d'un nouveau et fantastique domaine scientifique, y compris dans ses moments de doute, mais aussi découvrir une femme qui réussit à imposer son énergie et son intelligence dans le milieu misogyne du monde scientifique de son époque.

 

Les sciences, à condition de ne pas occulter leur histoire, peuvent être le socle d'une culture qui franchisse les frontières. Les savoirs scientifiques, peut-être plus que d'autres, sont le résultat d'échanges permanents entre civilisations. La science "moderne" qui s'est développée dans l'espace européen, à partir du 17ème siècle, est aussi l'héritière des sciences nées en Chine, dans l'Inde ou dans le monde arabe. Le vocabulaire des sciences lui-même a emprunté à de multiples cultures. Aujourd'hui, enseignées et pratiquées dans les mêmes termes dans le monde entier, elles construisent un langage universel.

 

Elles participent aussi, ce faisant, à la "mondialisation" de nos société humaines, y compris dans leurs moments de crise.

 

Ce n'est qu'un début, l'histoire continue.

 

Crise environnementale, crise économique, crise sociale… . Le mot "crise" semble être celui qui devrait marquer les premières années de ce XXIe siècle. Les sciences physiques n'y échappent pas. Témoin l'interpellation à la une de la revue Sciences et Vie de février 2009 : "La physique quantique rend elle fou ?". Titre assorti du commentaire : "Etre à Paris et Marseille en même temps, ou à la fois en voiture et dans le train : impossibles à priori, ces situations ne le sont pas dans le monde quantique ! Face à ce constat, la raison vacille… et d'abord celle des physiciens." Le propos est volontairement provocateur mais révélateur du trouble qui agite le milieu des chercheurs et celui des "médiateurs" scientifiques.

Déjà Heisenberg, l'un des "pères" de la physique quantique, avouait sa difficulté à comprendre ce que décrivaient ses équations : "La nature peut-elle vraiment être aussi absurde qu'elle nous semble l'être dans ces expériences atomiques ? " écrivait-il, il y a un demi siècle. La nouveauté est cependant que, si Heisenberg et ses contemporains raisonnaient sur des expériences "virtuelles" qu'ils illustraient d'images exotiques comme celle du "chat de Schrödinger" à la fois mort et vivant, aujourd'hui des expériences de plus en plus nombreuses, dans la lignée de celle imaginée par l'équipe de Alain Aspect, prouvent que l'impensable est devenu réalité.

Alors que les sciences se fixaient l'objectif d'élaborer une vision unifiée du monde et qu'un pas essentiel avait été franchi par Einstein en réunissant les notions de masse et d'énergie, d'onde et de particule, les expériences récentes introduisent une réalité non descriptible dans le monde réel. "Mon cerveau reptilien n'est pas câblé pour comprendre la quantique", déclare Jean-Michel Raimond, directeur du département de physique de l'École Normale Supérieure, dans cet article de Sciences et Vie, tout en souhaitant que le temps et l'effort finissent par étendre les bizarreries quantiques jusqu'aux "zones d'intuition" de ses étudiants et des futures générations de physiciens. "Aujourd'hui les physiciens manipulent le formalisme quantique sans même comprendre à quoi ça renvoie", ajoute Mioara Mugur-Schäfer, spécialiste de physique quantique qui fut collaboratrice de Louis de Broglie.

Pourtant certains commentateurs n'hésitent pas à annoncer une seconde révolution quantique. Dans les laboratoires, des équipes, comme celle de Serge Haroche, lauréat 2009 de la médaille d'or du CNRS, imaginent déjà les applications possibles de "l'intrication" quantique dans les systèmes d'information et de cryptage. Un nouveau chapitre de l'histoire des sciences commence à s'écrire et on imagine assez facilement l'enthousiasme des jeunes chercheurs engagés dans cette aventure qui nous rappelle celui des Rutherford, Wilson, Langevin… regroupés par J.J Thomson au sein du Cavendish Laboratory au moment où ils allaient être les acteurs de la première révolution quantique.

 

Pour en revenir au sujet de ce livre, "l'électricité", qui sait ce que ce mot signifiera pour les générations à venir et quel sera leur étonnement devant la façon dont, aujourd'hui, nous concevons ce que nous appelons "électricité".

 

Nous ne pouvons conclure cette histoire de l'électricité sans évoquer une autre révolution à venir : celle de l'utilisation et de la production de l'énergie électrique. Les vulgarisateurs de la fin du XIXème siècle, tels que Louis Figuier, ne s'étaient pas trompés : l'électricité a bien répondu à l'attente des savants, ingénieurs et industriels rassemblés à l'occasion de l'exposition internationale d'électricité de 1881. Elle éclaire les villes, elle alimente les moteurs industriels et domestiques, après le son elle transmet les images. Par contre, nous devons aussi nous rappeler que s'ils imaginaient une électricité produite par les forces naturelles, les barrages hydrauliques, le vent, les courants marins, la réalité a été toute différente.

L'essentiel de l'énergie électrique est aujourd'hui produite pas des centrales thermiques consommatrices d'énergies fossiles, charbon, gaz, pétrole dont les ressources arriveront à expiration avant la fin du siècle et dont on connaît l'impact négatif sur le réchauffement de la planète par l'émission de gaz carbonique. La production d'électricité a aussi été le prétexte au développement d'une industrie nucléaire dont l'objectif principal reste encore souvent la production d'armes de destruction massive et dont on mesure le danger de la version "civile" à la lumière des accidents de Three Mile Island, de Tchernobyl, de Fukushima, ou à celle des problèmes de gestion des déchets radioactifs dont l'héritage pèsera pendant des millénaires.

 

Aujourd'hui l'accord se fait pour un changement radical du modèle de consommation de l'énergie. Celui-ci passera d'abord pas la recherche de la sobriété et par le développement des énergies renouvelables. Parmi celles-ci l'énergie solaire. Découvert en 1839 par Antoine Becquerel, retrouvé sous une autre forme en 1887 par Hertz, expliqué en 1905 par Einstein, l'effet photovoltaïque est devenu le thème de recherche d'une multitude de laboratoires qui s'emploient à augmenter les rendements et à diminuer les coûts de panneaux photovoltaïques. "Solaire, pourquoi on peut enfin y croire" titrait le numéro de Sciences et Vie de mai 2009. Quoi de plus élégant, en effet, que ces cellules capables de transformer de façon immédiate la lumière en courant électrique. Quoi de plus satisfaisant que de pouvoir produire localement l'énergie nécessaire à la plupart de ses activités quotidiennes.

 

Révolution dans les concepts, révolution dans les modes de production et d'utilisation… Ce n'est qu'un début, l'histoire de l'électricité continue.

 

 

Partager cet article
Repost0
26 janvier 2018 5 26 /01 /janvier /2018 16:58

La Nature est généreuse. En dotant le soufre et le verre de la propriété d’attraction, elle a permis à tout un chacun de s’emparer du phénomène électrique. Le plus simple bâton de soufre ou le plus banal des tubes de verre donnent déjà de beaux effets. Mais ces matériaux se prêtent surtout à la fabrication de " machines " qui viendront compléter les " cabinets de curiosités ", attraction obligatoire de toute demeure noble ou bourgeoise qui se respecte, dès la deuxième moitié du 17ème siècle.


Otto de Guericke (1602-1686)

Parmi les constructeurs, un premier nom émerge, celui de Otto de Guericke. Il est le descendant d’une famille de notables de la ville franche de Magdebourg. Son père et son grand-père y ont tous deux occupé la fonction de bourgmestre, contribuant à en faire une cité prospère et populeuse. Il étudie d’abord à l’université de Leipzig puis rejoint Leyde pour compléter son instruction dans les langues ainsi que dans l’art des fortifications et des machines de guerre.

En 1626, il regagne Magdebourg où ses connaissances deviennent rapidement utiles car, en 1631, la cité protestante est assiégée par les armées de l’Empereur d’Allemagne en conflit avec la Suède dont la ville est alliée.

Le 20 mai, à l’aube, les troupes de mercenaires catholiques du seigneur de guerre Tilly, composées d’Espagnols, d’Italiens, de Français, de Polonais et d’Allemands pénètrent dans la ville. La population résiste de façon héroïque mais ne parvient pas à repousser les assaillants. Commence alors ce qui est resté dans les mémoires comme le "massacre de Magdebourg" : en quatre jours, vingt mille civils sont passés au fil de l’épée ou brûlés vifs dans l’incendie de leur maison.

Une fois la paix revenue, Otto de Guericke contribue à relever la ville de ses ruines et en devient maire. Dans cette fonction, il représente Magdebourg au congrès de paix qui, en 1648, clôt cette "guerre de trente ans". Bon négociateur, il obtient pour sa ville, la reconnaissance de ses anciens privilèges. Cette mission l’amène à siéger à la Diète impériale. C’est à l’une de ces réunions, à Ratisbonne, en 1654, qu’il choisit de révéler les capacités de la pompe à vide qu’il a récemment mise au point.

L’expérience dite des "hémisphères de Magdebourg " est bien connue. Elle fait suite aux expériences de Torricelli (1608-1647) sur la pression atmosphérique.

En 1643, pour répondre au problème posé par les fontainiers de Florence qui avaient des difficultés à pomper l’eau dans leurs puits au-delà de 32 pieds (environ 10 mètres), Toricelli avait renversé un tube plein de mercure sur une cuve contenant le même liquide. Il avait pu constater que le mercure descendait dans le tube pour se stabiliser à une hauteur de 28 pouces (76cm) au-dessus de la surface libre. Il démontrait ainsi l’existence de la pression atmosphérique mais aussi celle du vide dont, prétendaient ses adversaires, la Nature avait "horreur".

Le sujet passionne Otto de Guericke qui entreprend avec succès, la mise au point d’une pompe capable de faire le vide dans un récipient plein d’air. Après avoir tenté de vider un tonneau qui ne résista pas à l’expérience, Guericke fait fabriquer une sphère de cuivre, composée de deux demi-sphères jointives, et munie d’un robinet. Devant un nombreux public, il fait le vide dans cette sphère imposante d’une aune de diamètre (1,19 mètre). Vingt-quatre chevaux attelés aux hémisphères sont incapables de rompre l’adhérence entre les deux parties.

Cette expérience inaugure avec éclat la pratique de la "science spectacle" dont la popularité sera également déterminante dans l’avancement de la science électrique.

L’expérience des "Hémisphères de Magdebourg" est un repère dans l’histoire de la mécanique. La place de Guericke dans celle de l’électricité est plus modeste. Son apport dans ce domaine était d’ailleurs resté ignoré de la plupart de ses contemporains. Pourtant, près d’un siècle plus tard, plusieurs physiciens, et en particulier le français Dufay, constatent qu’on aurait gagné à considérer ses expériences avec plus d’attention.

Guericke, en réalité, ne s’intéresse qu’incidemment à l’électricité. Il ne la rencontre qu’à travers les questions qu’il se pose sur le fonctionnement de l’Univers. Il s’interroge d’abord sur celui de la terre. Parmi les "vertus" qu’il attribue à notre globe, deux lui semblent fondamentales. D’abord une vertu "conservative" : la terre attire à elle tous les matériaux qui sont nécessaires à sa formation, l’eau, les roches... Ensuite une vertu "expulsive" : elle repousse tout ce qui peut la détruire. Le feu, par exemple, dont la flamme monte vers le ciel.

Guericke en propose une spectaculaire démonstration. Prendre, dit-il, un ballon de verre de la taille de la " tête d’un enfant", le remplir de soufre finement moulu, chauffer jusqu’à fusion du soufre, laisser refroidir, casser le verre et recueillir le globe de soufre. Munir la boule d’un manche et la placer sur un support de bois. Frotter cette boule vigoureusement d’une main bien sèche.


La "machine électrique" de Otto de GuerickeRetour ligne automatique
(Louis Figuier, Les Merveilles de la Science)


La boule manifestera alors plusieurs des vertus terrestres. La vertu "conservative" d’abord, en attirant à elle des objets légers.

Plus étonnante est l’observation de la vertu "expulsive" ! Le globe repousse parfois ce qu’il a d’abord attiré. Une plume, par exemple, après avoir touché le globe en est repoussée. Ainsi suspendue dans l’air, elle peut être promenée dans toute la pièce. Mieux : quel que soit le mouvement du globe elle semble lui présenter toujours la même face. Exactement comme la lune vis à vis de la terre.

Guericke, qui a lu Gilbert, ne peut douter un seul instant que la vertu attractive de la terre ne soit tout simplement de nature électrique. Quant à la vertu répulsive, personne avant lui ne semble l’avoir notée. Il lui attribue une cause différente et l’imagine uniquement propre aux éléments constitutifs de la terre et parmi ceux-ci au soufre. Il passe, ainsi, à côté d’une vérité qui restera longtemps occultée jusqu’à ce que le Français Dufay en fasse l’étude approfondie et montre que l’électricité possède également une "vertu répulsive" !

Les récits de Guericke recèlent d’autres riches intuitions. Pour prouver que l’air n’est pas le véhicule de l’attraction, il montre que cette vertu peut se transmettre par l’intermédiaire d’un fil de lin, long de plus de un mètre, tendu à partir de la surface du globe. Cette première observation de la "conduction" électrique restera, elle aussi, sans lendemain. Il appartiendra à l’Anglais Gray de la redécouvrir près d’un siècle plus tard.

Même si son titre de gloire reste la fameuse expérience des hémisphères et si son apport théorique dans le domaine de l’électricité est resté limité, le talent d’observateur et d’expérimentateur de Guericke, reconnu par ses successeurs, mérite la place qui lui est réservée dans le Panthéon des électriciens.

Hauksbee ( ?- 1713)

L’électricité et le vide font également bon ménage dans les machines imaginées par Francis Hauksbee.

On connaît mal les premières années de sa vie. Autodidacte, il est remarqué par Newton. En décembre 1703, le célèbre physicien, auteur de la loi de gravitation universelle, devient président de la Royal Society of London, la plus importante Académie scientifique anglaise. Il engage Hauksbee comme son expérimentateur principal. Jusqu’en 1705, celui-ci anime donc les séances de l’Académie. En particulier par des expériences classiques sur le vide inspirées de Guericke.

A partir de cette date il s’oriente vers l’étude de la phosphorescence "mercurielle" ou "barométrique". Depuis 1675, une observation faite de façon fortuite intrigue les physiciens. Quand on bouscule, dans l’obscurité, un tube barométrique disposé dans les conditions de l’expérience de Toricelli, une lueur phosphorescente apparaît dans le vide libéré à la partie supérieure du tube. Au moment où Hauksbee s’attaque au problème, il est généralement admis que cette lueur provient d’une émanation du mercure. Pour sa part il choisit d’user de méthode et d’étudier les rôles respectifs du vide, du verre et du mercure.

Le vide ? Hauksbee emplit partiellement de mercure un ballon dans lequel il fait le vide. L’ensemble reste obscur tant que le liquide reste immobile. Il est donc clair que le vide n’est pas suffisant mais que, par contre, le frottement, provoqué par le mouvement, est indispensable.

Frottement sur le mercure ou sur le verre ? A partir de novembre 1705 Hauksbee utilise, pour répondre à cette question, un montage qui fait abstraction du mercure. Il s’agit d’une sphère de verre munie de deux pièces de cuivre diamétralement opposées lui servant d’axe. Cette sphère peut être mise en mouvement rapide en la plaçant sur une machine inspirée d’un tour de menuisier. Mais sa propriété essentielle est d’avoir été conçue pour qu’on puisse y réaliser le vide. Hauksbee a pris la précaution de ménager un robinet dans une des pièces de l’axe qui peut être relié à une pompe à vide.



La machine électrique de Hauksbee. Un robinet permet d’y faire le videRetour ligne automatique
(Louis Figuier, Les Merveilles de la Science)


La sphère, vidée de son air, est mise en mouvement et frottée par la main de l’expérimentateur. Soudain, dans l’obscurité, la sphère s’emplit d’une forte lueur diffuse. Un mur situé à dix pieds en est éclairé. Un livre tenu à proximité du globe peut être lu. Quand un doigt s’approche de la sphère, la lumière se concentre en filaments qui semblent attirés par ce doigt. La lumière diminue progressivement quand, peu à peu, on laisse entrer l’air dans le tube.

Même quand la pression atmosphérique est atteinte, on peut encore arracher quelques lueurs au globe. Elles sont externes cette fois, et se présentent sous la forme nouvelle d’étincelles. Hauksbee hésite encore mais pour Newton, la cause est entendue : La lumière ne provient ni du vide, ni du mercure mais du verre !

Nous savons, à présent, que si c’est bien le verre qui est électrisé, la lueur, elle, provient de l’air. Dans le globe "vide", il reste encore du gaz résiduel et celui-ci est "ionisé" sous l’effet du champ électrique créé par la friction du verre. Il devient, par ce fait, lumineux, à l’image du néon dans un tube d’éclairage. Naturellement cette interprétation était impossible à qui n’avait ni la connaissance de la nature de l’air, ni, à plus forte raison, de l’existence et de la constitution des atomes.

Cette "phosphorescence électrique" continuera à obséder des générations de physiciens. Son étude amènera aux tubes cathodiques qui ont équipé nos premiers écrans de télévision et d’ordinateurs. La découverte des rayons X, celle des électrons, celle de la radioactivité, seront également au bout de cette aventure que nous évoquerons par la suite.

Pour le moment, les démonstrations de Hauksbee, à la fois spectaculaires et inquiétantes quand elles se font dans l’obscurité d’un cabinet, deviennent les expériences vedettes des spectacles de physique.

Tube ou globe ?

Une chose est sûre : à ceux qui considéraient le verre comme un matériau secondaire et de peu d’effets électriques, et qui continuaient à lui préférer l’ambre, le soufre ou la cire, Hauksbee oppose un démenti convaincant.

Le verre s’impose donc, mais sous quelle forme ? Hauksbee lui-même pour ses démonstrations classiques renonce à ses sphères et n’utilise qu’un tube de flint-glass, ce verre au plomb utilisé pour l’optique et dont les Anglais sont les spécialistes. Avec un tube long de un mètre et de trois centimètres de diamètre, il attire de fines feuilles de cuivre à plusieurs dizaines de centimètres de distance. Ces feuilles de cuivre, ou mieux : d’or, plus sensibles que des morceaux de ficelles ou de papier, deviendront le matériau classique des laboratoires d’électricité. Pour les mettre en mouvement, un tube de verre est largement suffisant.

Le globe, monté sur un tour, sera oublié pendant trente ans jusqu’au moment où, vers 1733, un physicien allemand, Bose, en reprenne l’idée.

Bose (1710-1761)

Georg Matthias Bose, né à Leipzig, s’intéresse aux nouveautés de la physique et des mathématiques tout en poursuivant ses études de médecine. En 1738 il est nommé sur une chaire de "philosophie naturelle" à l’université de Wittenberg. De ce poste, il établit des relations suivies avec tout ce que l’Europe compte comme personnes de renom, aussi bien scientifiques que hommes de lettres, de religion ou de politique. L’aspect magique de l’électricité le séduit. Quand ses lectures l’amènent à rencontrer les expériences électriques de Gray et Dufay (deux personnages de première importance dont nous reparlerons), et en particulier celles sur les conducteurs et les isolants ; quand, de plus, il retrouve la description du globe de Hauksbee, il sait qu’il a trouvé, à la fois, sa vocation et son public.

Il complète d’abord le dispositif de Hauksbee par un montage qui deviendra le standard de tous les laboratoires européens. Un tube de fer, qui prend parfois la forme d’un canon de fusil, est suspendu horizontalement à deux cordons de soie. Il effleure, sans pourtant le toucher, le globe de verre frotté. Ce "premier conducteur" servira ensuite à distribuer le "fluide électrique", par l’intermédiaire de chaînes ou de conducteurs divers vers les dispositifs expérimentaux qui l’entourent.

Bose organise alors des "fêtes électriques" qui ne se limitent pas à son public d’étudiants. Imaginez un repas où vous avez convié tous les notables les plus en vue dans votre ville. Les pieds de la table ont été isolés par des galettes de cire de même que la chaise que vous vous êtes réservée. De la machine électrique que vous avez actionnée et que vous avez dissimulée, un fil conducteur est amené jusqu’à proximité de votre main. Au moment où vos convives voudront saisir leur fourchette, il vous suffira d’établir le contact avec la table pour qu’un choc électrique vienne les faire bondir sur leur chaise. Au dessert vous mettrez le feu à une coupe de liqueur alcoolisée simplement par l’approche de l’un de vos doigts d’où seuls les plus proches spectateurs auront vu sortir une étincelle. Vos invités seront alors tout disposés à vous suivre dans le cabinet de curiosités où vous les transporterez dans un univers à la fois merveilleux et terrifiant.

Merveilleux ! Des galettes de cire épaisse sont disposées sur le sol. Chaque participant monte sur l’une d’entre elles et tend la main à ses voisins, formant ainsi une chaîne dont le premier maillon tient fermement le canon de fusil suspendu au-dessus du globe de la machine. Quand le globe est mis en mouvement, la personne située à l’autre extrémité de la chaîne tend la main au-dessus de feuilles d’or placées sur une coupelle. Chacun voit alors les feuilles s’élever d’un vol léger, comme attirées par une volonté magique, vers la main ouverte de l’expérimentateur. Eteignons les bougies qui éclairent ce salon aux volets fermés et tendons le doigt vers le conducteur de la machine, nous en verrons jaillir de lumineuses étincelles. Sous forme d’apothéose on pourra proposer la démonstration de la "béatification électrique". La plus aimable personne de l’assemblée est conviée à monter sur un gâteau de cire et à saisir le conducteur. Quand la machine est vigoureusement actionnée ses cheveux se déploient en une auréole qui s’éclaire, dans l’obscurité, des milles lueurs de la sainteté.

Terrifiant ! L’homme qui a le courage de faire couler quelques gouttes de son sang les voit scintiller comme des perles de feu dans l’obscurité au moment où il se saisit du conducteur. Les doigts tendus d’une personne reliée à la machine peuvent tuer les pauvres mouches vers lesquelles on dirigera l’étincelle. Ne pourra-t-on demain faire de plus conséquentes victimes ? De telles manipulations auraient certainement valu le bûcher à leurs auteurs aux temps, encore proches, de l’Inquisition !

Terrifiant et traître ! Aussi belle soit la jeune personne auréolée par le contact de la machine, il ne faudra pas s’aviser de vouloir en approcher les lèvres pour un baiser. La "Vénus électrisée" défendra sa vertu par une sérieuse secousse électrique.


Electricité de salonRetour ligne automatique
(Louis Figuier, Les merveilles de la science)


Les nouvelles de ces merveilles parviennent en France et en particulier à l’abbé Nollet qui est alors le plus en vue des électriciens européens. Il avoue n’avoir pu dormir avant d’avoir lui-même construit et perfectionné une machine qui devient alors un meuble volumineux.

L’abbé Nollet (1700-1770)

Le globe, de un pied de diamètre, utilisé par Nollet, est en verre épais. La roue qui l’entraîne au moyen d’une courroie passant par une poulie fixée sur son axe, doit avoir au moins quatre pieds de diamètre et être munie d’une manivelle qui permette à deux hommes de l’actionner. Nollet préfère frotter le globe à la main mais de nombreux physiciens européens ont choisi de lui adjoindre un coussin de cuir.


La Machine électrique de l’Abbé Nollet (1747)Retour ligne automatique
(Louis Figuier, Les Merveilles de la Science)


Les machines à plateau.

Cette volumineuse machine équipera la plupart des cabinets de physique jusqu’à ce que l’Anglais Ramsden (1735-1800) construise la première machine à plateau en 1768. La machine à plateau se perfectionne rapidement et deviendra vraiment efficace quand apparaîtront les premières machines " à influence électrique ", c’est à dire ne nécessitant aucun frottement. La célèbre machine inventée par l’Anglais Wimshurst en 1883, équipe encore les laboratoires de nos lycées.

La machine de Van Marum construite en 1784 est encore une attraction remarquée au pavillon des Pays-Bas de l’Exposition Internationale d’électricité de Paris en1881. (La Nature, 1881)


On peut trouver un développement de cet article dans ouvrage paru en septembre 2009 chez Vuibert : "Une histoire de l’électricité, de l’ambre à l’électron"

JPEG

Commentaire du Bulletin de l’Union des Physiciens :

Voici un ouvrage à mettre entre toutes les mains, celles de nos élèves dès lesRetour ligne automatiqueclasses de premières S et STI de nos lycées, et entre les mains de tous les futurs enseignantsRetour ligne automatiquede sciences physiques et de physique appliquée (tant qu’il en reste encore !).

L’auteur est unRetour ligne automatiquecollègue professeur de sciences physiques, formé à l’histoire des sciences, et formateur des enseignantsRetour ligne automatiqueen sciences dans l’académie de rennes. Bref quelqu’un qui a réfléchi tant à l’histoire de saRetour ligne automatiquediscipline qu’à son enseignement et sa didactique, et cela se sent. Le style est fluide et imagé, brefRetour ligne automatiqueplaisant au possible.

la suite

Partager cet article
Repost0
26 janvier 2018 5 26 /01 /janvier /2018 10:34

Émanation, fluide, particule, onde… quelle est l’identité de cette chose insaisissable mais bien présente dont la quête remonte à vingt-cinq siècles et dont la réalité nous échappe dès qu’on pense l’avoir cernée ?

 

 

Au fil d’un récit imagé – celui d’une succession de phénomènes généralement discrets qui, sous le regard d’observateurs avertis, débouchèrent sur des applications spectaculaires – nous croiserons des dizaines de savants, d’inventeurs et de chercheurs dont les noms nous sont déjà familiers : d’Ampère à Watt et de Thalès de Milet à Pierre et Marie Curie, ce sont aussi Volta et Hertz, Ohm et Joule, Franklin et Bell, Galvani et Siemens ou Edison et Marconi qui, entre autres, viennent peupler cette aventure.

On y verra l’ambre conduire au paratonnerre, les contractions d’une cuisse de grenouille déboucher sur la pile électrique, l’action d’un courant sur une boussole annoncer : le téléphone, les ondes hertziennes et les moteurs électriques, ou encore la lumière emplissant un tube à vide produire le rayonnement cathodique. Bien entendu, les rayons X et la radioactivité sont aussi de la partie.

De découvertes heureuses en expériences dramatiques, l’électricité reste une force naturelle qui n’a pas fini de susciter des recherches et de soulever des passions.


Table des matières

__________________________________________________________________

 

Quand est née l’électricité ?

L’ambre.

Une matière attirante.

Le long sommeil du succin.

William Gilbert, le premier électricien.

La naissance de l’électricité.

L’électricité est une propriété générale de la matière.

Les premières machines électriques.

Otto de Guericke (1602-1686).

Francis Hauksbee (? – 1713).

Tube ou globe ?

Georg Matthias Bose (1710-1761).

L’abbé Nollet (1700-1770).

Les machines à plateau.

Gray, Dufay, Franklin et la conduction électrique.

Tardives et fabuleuses découvertes.

Dufay : premier classement.

Corps électriques et non-électriques, quelle différence ?

Benjamin Franklin : le vocabulaire.

 

De Dufay à Ampère : des deux espèces d’électricité aux deux sens du courant électrique.

 

Dufay (1698-1739) et la répulsion électrique.

Un discours de la méthode.

La répulsion rejoint l’attraction.

La loi de Dufay.

Benjamin Franklin (1706-1790) : un vocabulaire neuf pour un fluide unique.

Entre Dufay et Franklin : les bas de soie de Robert Symmer.

Des charges jusqu’aux courants électriques.

De la pile Volta au bonhomme d’Ampère.

Oersted : la pile et la boussole.

Ampère et le sens conventionnel.

Le retour de Franklin.

Une situation bloquée.

 

La bouteille de Leyde : la puissance cachée de l’électricité.

 

De terribles nouvelles venues de Leyde

Ce premier condensateur électrique, comment fonctionne-t-il ?

Une bouteille miracle.

 

A la conquête du feu céleste : le paratonnerre.

Retour ligne automatique
La longue histoire du tonnerre.

Un coup de tonnerre dans le ciel parisien.

Coulomb et le temps de la mesure.

La loi de Coulomb

De Galvani à Volta : la découverte de la pile électrique.

Galvani et les grenouilles.

Volta et la pile électrique.

Electricité et chimie.

Humphry Davy (1778-1829).

Une course aux nouveaux éléments.

L’autre pierre magique : l’aimant.

L’héritage chinois.

Pierre de Maricourt (XIIIe siècle).

William Gilbert.

Coulomb et la mesure.

Oersted, Ampère et la naissance de l’électromagnétisme, Retour ligne automatique
ou quand l’ambre retrouve l’aimant.

Hans Christian Oersted (1777-1851).

Ampère (1775-1836).

Un montage ingénieux.

La Terre est un électroaimant.

Du cadre mobile au solénoïde.

Du solénoïde à l’aimant droit.

Faraday et les champs.

Michael Faraday (1791-1867).

Du moteur à la génératrice.

Lignes de force et champs.

La loi de Faraday.

Maxwell (1831-1879), la mise en équations.

Maxwell et les ondes : au rendez-vous de la lumière et de l’électricité.

L’éther lumineux.

L’éther électromagnétique et la nature de la lumière.

Construire un système cohérent d’unités électriques.

Etablir les équations de propagation d’une perturbation électromagnétique.

Hertz et la réalité des ondes électromagnétiques.

A la conquête des hautes tensions : la bobine de Ruhmkorff.

Vers la découverte des ondes hertziennes.

L’éther existe donc ? L’expérience de Michelson et Morley.

Branly, Marconi et le début de la radiophonie.

Le temps des ingénieurs : l’Exposition internationale d’électricité de 1881.

L’époque des génératrices électriques.

L’exposition internationale d’électricité à Paris.

La lumière électrique.

Les nouvelles génératrices.

La force motrice de l’électricité.

Après l’exposition de 1881.

Le côté sombre de la force électrique.

Quel futur pour l’électricité ?

Les unités électriques, ou quand les électriciens font naître un langage universel.

Le système métrique décimal.

Naissance des unités électriques.

Avant 1881 : des systèmes nationaux différents.

1881 : premier congrès international des électriciens et preemier système international.

Un succès remarqué.

Les suites du congrès de 1881 : le joule, le watt…

Des mécaniciens dépassés.

Vers le système MKSA.

Une étrange lumière : le rayonnement cathodique.

William Crookes et la matière radiante.

Röntgen et les rayons X.

Röntgen et la découverte

L’épopée des rayons X.

Les rayons X, le dernier cri de la mode.

Le revers de la médaille.

Un monument à la mémoire des victimes des radiations.

Un nouveau rayonnement : le rayonnement radioactif.

Henri Becquerel : la découverte du rayonnement radioactif.

Marie Curie et les premières hypothèses.

Le polonium.

Le radium.

Vie et mort de l’électron.

Thomson et la découverte de l’électron.

L’électron et l’atome, de Thomson à Rutherford.

Planck, Einstein et la naissance du photon.

L’atome de Bohr.

Louis de Broglie et la nature ondulatoire de l’électron.

Quand l’incertitude devient un principe.

Et l’électricité, l’électron, la charge électrique dans tout cela ?

Histoire à suivre.

Pas de science sans son histoire.

Ce n’est qu’un début, l’histoire continue.

Bibliographie.
Index des noms ; Index des matières. Les dates de l’électricité.
Partager cet article
Repost0
25 janvier 2018 4 25 /01 /janvier /2018 10:43

Page du journal de Sébastien Le Braz, Chirurgien de Marine à Brest au temps de la guerre d'indépendance américaine.

 

Landerneau. Janvier 1777.

 

Le hasard d'une visite à l'Hôpital Royal de Brest me fit entrer dans une salle où un professeur de médecine, dont l'attitude affichait celle d'un personnage détenteur d'une science supérieure, faisait la démonstration à un groupe d'étudiants du traitement par l'électricité de patients atteints d'infirmité.

 

La machine qu'il utilisait était d'un modèle récent du type de celle construite par Jesse Ramsden, le constructeur anglais d'instruments scientifiques. Un disque de glace de deux pieds de diamètre, actionné par une manivelle placée à son centre, est mis en mouvement entre quatre coussinets de cuir, diamétralement disposés. Le fluide électrique ainsi libéré par le frottement est reçu entre deux "peignes" constitués de deux tubes de laiton courbés en forme de fer à cheval et armés intérieurement de dents. Ceux-ci sont reliés à un gros tube de laiton horizontal, isolé par un pied en verre et terminé par une sphère conductrice, constituant le réservoir de l'électricité.

 

Machine de Ramsden

 

Le patient sur lequel le démonstrateur s'acharnait était soumis alternativement à un traitement par l'étincelle le long de son membre inerte suivi de la décharge d'une batterie électrique fortement chargée du type de celle construite par Franklin.

 

batterie électrique.

 

Le choc électrique était accompagné du cri de douleur du patient et du mouvement involontaire de son membre. Je savais, pour l'avoir entendu lors des séances publiques de l'Abbé Nollet au collège de Navarre, que ce traitement, dont on avait pu espérer un temps le succès, était depuis longtemps abandonné faute d'autre résultat que celui de torturer la personne qui le subissait. Pourtant la méthode n'avait pas été abandonnée par des médecins souhaitant ajouter au prestige de leurs sentences latines celui d'un "modernisme" aussi spectaculaire qu'inefficace. En dehors des riches amateurs de "cabinets de curiosité", ceux-ci étaient donc les meilleurs clients de ces constructeurs de machines électriques.

 

Cette anecdote a eu cependant le mérite de faire resurgir de ma mémoire un épisode ancien de ma jeunesse bretonne qui, à n'en pas douter, avait orienté mes études ultérieures.

 

J'avais à peine plus de onze ans en ce mois de novembre de l'année 1764 quand mon père et ma mère m'ont accompagné dans cette ville de Quimper dont la réputation, sulfureuse pour les habitants de mon prude Léon natal, pouvait attirer le jeune homme rêvant d'aventures que j'étais alors. Le moment était venu d'entrer au collège où, espéraient mes parents, je prendrai l'élan pour une vie plus riche que celle qui attendait la plupart de mes compagnons de jeu des quais de l'Elorn à Landerneau.

 

Le collège de Quimper était une très ancienne institution. Nos maîtres se plaisaient à nous rappeler qu'il en était fait mention dès 1317 quand le clerc breton, Nicolas Galeron, avait institué une bourse pour cinq écoliers méritants. Ils évoquaient aussi le Concile de Trente qui avait imposé à chaque évêché de se doter d'un collège et de l'évêque de Quimper, Charles de Liscoët, ancien élève des Jésuites du Collège de Clermont, aujourd'hui Louis le Grand, qui avait reçu du pape Grégoire XIII l'ordre d'établir à Quimper un collège de la Compagnie de Jésus. Ils nous parlaient peu des années obscures des guerres de la Ligue. Elles avaient été particulièrement violentes en Cornouaille - où sévissait Guy Eder de la Fontenelle - et avaient ruiné tout projet d'élargissement de l'établissement. Des années de prospérité allaient suivre et quelques privilégiés se voyaient montrer les lettres patentes reçues de Louis le treizième en 1621. Depuis cette date, le collège ne connut que le succès. Ceci d'autant plus que l'enseignement y est gratuit avec un droit d'inscription modéré. Outre l'évêché de Cornouaille, on y vient des évêchés du Léon, de Vannes et même de Tréguier et de Saint-Brieuc. On y a compté jusqu'à 1000 élèves avec des classes dépassant les 50 élèves..

 

La chapelle du collège

Trop nombreux pour loger tous au Collège, les élèves logent souvent chez l'habitant. Mon oncle Guillaume Mazéas, lui même ancien élève du collège, m'avait recommandé auprès de l'un de ses condisciples, Yves-Marie Le Coz. Installé comme notaire dans la rue Kéréon, il occupait une de ces récentes maisons de pierre construites après l'incendie de la rue dont les traces étaient encore visibles. Ce tuteur m'avait dès le début mis en garde à l'encontre de ces collégiens, issus de la riche bourgeoisie de Quimper et des ports de la côte, dont la corporation était souvent à l'origine de nombreux troubles dans la ville. Gourdins, épées et armes à feu faisant partie des accessoires des plus turbulents d'entre eux. J'avoue que le timide jeune homme du Léon que j'étais alors avait plus d'une fois envié l'insouciance et la gaieté de ces étudiants cornouaillais et avait souvent regretté de ne pas pouvoir partager leurs sarabandes.

 

Rue Kéréon

Il fallait savoir lire avant d'entrer au Collège et fort heureusement l'enseignement que nous dispensait notre mère avait fait de ses enfants des lecteurs assidus. Par contre les débuts en latin, langue dans laquelle nous étions instruits, furent plus laborieux et sans l'aide du notaire Le Coz les premiers moments auraient été difficiles. Le grec, qui était pour moi nouveau, devint vite une passion. Mais la vraie découverte a été celle de la physique enseignée en plus de l'arithmétique, de l'algèbre et de la géométrie.

L'enseignement le la physique était récent quand j'arrivais au collège. Il y avait été introduit par le directeur, Denis Bérardier, qui avait été nommé à ce poste après l'expulsion de jésuites deux ans avant mon arrivée. Je dois à cet excellent professeur mon intérêt, sans cesse renouvelé, pour les sciences. Il avait été élevé par son aïeul fondateur, dans le quartier de Locmaria, de la faïencerie qui fait aujourd'hui la célébrité de la ville. Après des études en Sorbonne et son titre de docteur en théologie il était revenu dans sa ville natale avec le désir d'y enseigner une science qui faisait alors fureur dans la capitale : la physique et plus particulièrement l'électricité. De ses propres deniers il avait équipé un cabinet de physique d'après les plans de l'abbé Nollet dont il avait assisté aux démonstrations de physique expérimentale à Paris. Les ouvrages de ce maître figuraient en bonne place dans la bibliothèque de l'école mais seuls quelques élèves, remarqués pour leur assiduité, pouvaient les consulter. J'avais cette chance et je ne manquais pas d'en profiter.

 

Denis Bérardier.

Au centre du cabinet de physique régnait la machine électrique, un monstre porté par un solide socle de chêne qui effrayait les moins hardis d'entre nous, marqués par le souvenir de quelques vigoureuses secousses. L'âme de la machine résidait dans un globe de verre de un pied de diamètre et d'une épaisseur de deux lignes, monté sur un axe horizontal dont l'une des extrémité portait une poulie taillée dans un vieux buis. Le corps de l'appareil consistait en une lourde roue de cinq pieds de diamètre. Deux manivelles, fixées à chaque extrémité de son axe, permettaient à deux vigoureux assistants de lui donner un mouvement de rotation qui entraînait une corde de boyau de l'épaisseur d'une plume à écrire passée dans une gorge creusée à la surface de sa jante. Cette corde, reliée à la poulie du globe donnait à celui-ci un rapide mouvement de rotation. L'abbé Bérardier nous avait fait remarquer qu'un habile croisement de la corde inversait le sens du mouvement du globe par rapport à celui de la roue. Ainsi la roue était actionnée en poussant les manivelles pendant qu'il était commode de frotter le globe de verre en appliquant les mains à sa partie inférieure. C'est en effet par ses mains nues et rugueuses, de pédagogue qui ne dédaignait pas le travail manuel, que notre professeur frottait le globe. Pour notre part, il exigeait que nous utilisions un coussin de cuir appliqué au verre car, disait-il, il arrivait qu'un globe puisse éclater entre les mains d'un manipulateur malhabile.

La machine de l'abbé Nollet

Mettre en mouvement la grande roue de la machine était un exercice qui nécessitait une grande force physique. Les plus solides gaillards de notre groupe se disputaient la faveur de s'y faire valoir. Il avait fallu tout l'art des menuisiers pour que l'ensemble supporte la fougue de ces jouteurs qui concourraient à savoir combien de tours il leur suffirait pour faire atteindre à la roue sa vitesse de croisière.

Un détail attirait également l'attention de ceux pour qui le cours de physique était surtout occasion de distraction.

Si l'abbé Bérardier se flattait d'avoir strictement respecté les plans, proportions et matériaux conseillés par l'abbé Nollet, il avait également noté que celui-ci attachait une particulière attention à la beauté du meuble. La base de celui de notre collège était constituée de vastes tiroirs aptes à recevoir tout la matériel nécessaire aux démonstrations. L'abbé Bérardier, qui avait fait ses premiers pas dans la faïencerie de son aïeul, avait choisi d'en décorer les devantures par des céramiques illustrées de scènes copiées des ouvrages de l'abbé Nollet. L'une en particulier avait la faveur des collégiens. Elle représentait le groupe animé de jeunes femmes et de jeunes hommes entourant une élégante demoiselle couchée sur un plateau suspendu au plafond par des cordons de soie. Un homme à la tenue plus sévère, sans doute un abbé, tenait au dessus de sa chevelure un tube de verre que, par expérience, nous savions avoir été frotté par la main vigoureuse de l'expérimentateur. D'une de ses fines mains la jeune femme attirait des feuilles d'or placées sur un plateau, de l'autre elle faisait tourner à distance, par le seul pouvoir du fluide électrique, les feuilles d'un livre placé sur un tabouret. Un jeune homme risquait son doigt à proximité du nez de la jeune personne et nous imaginions le cri et les éclats de rires qui suivraient l'éclatement d'une étincelle entre ces deux jeunes gens. Nous savions que dans les salons parisien, le jeu de la "vénus outragée" faisait fureur. La jeune femme, placée sur un plateau de cire, défendait sa vertu en gratifiant d'un choc électrique le galant qui voudrait lui voler un baiser. Attraction et répulsion, le fluide électrique échauffait l'imagination des adolescents que nous étions et nous faisait rêver de ces cabinets parisiens où le frôlement des étoffes et les parfums capiteux tranchaient avec la tristesse du local où l'abbé nous faisait ses démonstrations.

Le bouquet final du cours d'électricité se réalisait dans la cour du collège. Chaque classe devait se soumettre à l'épreuve du choc électrique délivré par la terrible bouteille dont l'extraordinaire propriété s'était manifestée pour la première fois à Leyde entre les mains du professeur Musschenbroek.

Imaginez un flacon droit de verre mince empli de feuilles d'or sommairement froissées et dont la partie inférieure est couverte d'une feuille d'étain. Le col étroit est fermé par un bouchon de liège enduit de cire et percé d'une tige de fer dont la longue pointe effilée plonge dans les feuilles d'or et dont la partie externe est recourbée sous forme d'un crochet. Cette forme a son importance.

 

La terrible bouteille de Leyde

Il faut ici signaler un canon de mousquet suspendu horizontalement, par le moyen de deux cordons de soie, au dessus de la sphère de verre de la machine. Par l'une de ses extrémités, proche à moins d'un pouce de la surface de la sphère, cette tige recevait de la sphère le fluide électrique libéré par le frottement. La forte charge électrique qui s'y accumulait était disponible pour de multiples expériences. Ainsi, en y suspendant la bouteille par son crochet on faisait prendre à celle-ci une forte charge électrique.

Nous descendions alors dans la cour au centre du collège, notre maître tenant précieusement, par son fond recouvert d'étain, la bouteille préalablement chargée. Prenant la main du plus proche d'entre nous il invitait notre groupe à former une ronde qui se fermait à proximité de la bouteille. Les anciens, attirés par l'événement se massaient aux fenêtres, s'amusant à nous prédire une dangereuse issue. On se battait pour ne pas être le dernier jusqu'au moment où un plus hardi, voulant donner le spectacle de son courage, prenait résolument la tête de la file. Le moment était solennel. L'abbé Bérardier exigeait le silence. Chacun regardait alors avec angoisse la main de notre intrépide camarade s'approchant timidement de la boule qui terminait le crochet de la bouteille. Nous nous préparions à le voir écarter vivement la main après avoir senti la piqûre de  l'étincelle habituelle. Quelle n'était pas alors notre surprise quand tous ensemble nous recevions une violente secousse qui nous secouait le corps et nous coupait la respiration. Le cri lancé en chœur et répercuté par les voûtes du cloître était alors suivi par l'éclat de rires des anciens mimant en grimaçant et en gesticulant le réjouissant spectacle que nous leur avions offert.

La leçon se terminait par une évocation de la foudre dont la décharge électrique libérée par la "bouteille de Leyde" représentait le modèle réduit. L'abbé nous mettait alors en garde vis à vis du danger qu'il y avait à nous réfugier sous un arbre les jours d'orage. Il évoquait aussi cette dangereuse tradition de sonner les cloches pour écarter la foudre des villages. Bien des paroissiens en avaient fait la douloureuse expérience mais la vieille routine avait encore cours chez des populations qui voyaient toujours dans l'éclair l'instrument de la vengeance divine. Il regrettait que les autorités ecclésiastiques aient rejeté son conseil de dresser un paratonnerre au sommet de l'une des tours de la cathédrale de Quimper dédiée à Saint Corentin, ce qui, à n'en pas douter, aurait aidé à vaincre cette superstition.

L'enseignement de l'abbé m'a accompagné quand j'ai rejoint le collège de Navarre à Paris où j'ai eu la chance extrême d'avoir pour professeur l'abbé Nollet. Dans l'amphithéâtre construit pour lui, six cent personnes pouvaient assister à des démonstrations réalisées à partir de son propre matériel où le mariage du bronze, de l'or, de l'ivoire et de l'ébène, ajoutaient encore au merveilleux des phénomènes électriques. Invités parfois aux démonstrations publiques les collégiens que nous étions n'avaient d'yeux que pour les jeunes femmes qui se disputaient les premiers rangs et dont les tenues colorées et les rires sonores exaltaient notre imagination.

Entre la sévère rhétorique et la si brillante physique, mon choix avait été rapidement fait. Les sciences seraient mon univers.

 

Démonstrations de l'abbé Nollet au Collège de Navarre.

xxxxxxxxxxxxxxxx

Voir aussi : Le premier condensateur électrique : la bouteille de Leyde.

Pour l'ensemble du journal voir : Fragments d'un journal trouvé dans le grenier d'une antique maison du quai du Léon à Landerneau.


 

Partager cet article
Repost0
23 janvier 2018 2 23 /01 /janvier /2018 21:03

L’actualité est riche en contestation des ondes électromagnétiques, qu’elles soient issues des lignes à haute tension, des antennes radio, radar ou téléphoniques.

Pourtant il fut un temps où des médecins transformaient leurs patients en antennes afin de les soumettre à ces ondes supposées bénéfiques.


première mise en ligne : octobre 2012.


Difficile d’imaginer, aujourd’hui, un monde sans radio, sans télévision, sans téléphone portable, sans internet, toutes techniques reposant sur l’émission et la réception d’ondes électromagnétiques.

Théorisées par Maxwell et observées pour la première fois par Hertz, en 1889, elles ont été considérées comme l’un de ces fabuleux cadeaux apportés à l’humanité par la fée électricité.

Electricité et médecins.

A chaque étape de son développement, l’électricité a éveillé l’intérêt de médecins, persuadés qu"un tel fluide ne pouvait qu’être bénéfique au traitement de leurs patients.

William Gilbert (1544-1603), qui a inventé le mot "électricité" à partir du mot grec "elektron" qui désignait l’ambre, était lui-même médecin. En effet, l’ambre faisait encore partie de l’arsenal thérapeutique de son temps et, même si son efficacité était déjà contestée, l’idée d’utiliser ce "fluide électrique" obtenu par le frottement le l’ambre mais aussi de corps aussi ordinaires que le verre et le soufre, était tentante.

Des machines électriques ont été construites dont l’une chassait la précédente dans le cabinet du médecin.

En l’année 1885, la revue La Nature décrit l’installation d’un concentré de machines électriques supposées soigner les patients de l’hôpital de la Salpêtrière à Paris.



Le docteur Romain Vigouroux (1831-1895) qui officiait dans ce service pouvait ainsi "traiter", à la chaîne, 200 personnes par séance.

Notons ici que bains électriques et piqures électriques étaient administrés sous forme de courant continu, négatif ou positif suivant l’imagination du praticien.

Bientôt, les courants alternatifs de haute fréquence mis au point par Tesla, et les ondes électromagnétiques émises par les circuits parcourus par ces courants, allaient trouver de nouveaux adeptes.

Tesla et les courants de hautes fréquence.

Dans une communication faite en mai de 1891, Nicolas Tesla décrivait le procédé d’obtention de ces ondes et quelques unes de leurs propriétés.

L’une, en particulier, était spectaculaire. En tenant, à proximité de l’émetteur, un tube contenant un gaz raréfié, on voyait celui-ci s’illuminer alors que ses extrémités n’étaient reliées à aucun conducteur.


Reproduction de l’expérience de Tesla.


Un siècle plus tard, l’expérience est régulièrement répétée avec un tube d’éclairage au néon à proximité des lignes à haute tension, prouvant ainsi l’existence d’un champ électrique notable dans leur voisinage . Ce qui, en général, n’est pas pour plaire aux riverains.

Darsonval et la "Darsonvalisation"

Jacques Arsène d’Arsonval (1851-1940) est médecin et électricien. Concepteur du premier téléphone homologué par le minsitère des PTT en France, il est le fondateur en 1894 de l’Ecole Supérieure d’Electricité et, dans le même temps, membre de l’Académie de Médecine.

Il met au point une méthode thérapeutique au moyen des courants de haute fréquence qui prendra le nom de "Darsonvalisation". Celle-ci est décrite dans l’ouvrage de son collègue H. Bordier,précis d’électrothérapie, dont il écrit la dédicace.

Dans l’un des dispositif, utilisé par le docteur Bordier, le patient est placé au coeur même de ce qui peut être considéré comme un émetteur d’ondes électromagnétiques de haute fréquence.

Pour répondre aux inquiétudes des populations soumises aux ondes électromagnétiques on trouve toujours, aujourd’hui, une "commission d’experts" pour nous affirmer que ces effets sont imaginaires.

D’Arsonval, quant à lui s’emploie à vouloir prouver que, bien au contraire, les effets sont réels et spectaculaires. Il combat en ce sens l’opinion de ses confrères qui, dit-il, s’ils"n’osent plus contester les vertus curatives de l’électricité, en donnent volontiers encore une explication qui en constitue la négation détournée - Dans la plupart des cas, disent-ils, l’électricité guérit par suggestion.

Cette objection spécieuse n’est plus soutenable, ajoute-t-il. "Pour la réfuter, il fallait montrer par des preuves objectives, de nature exclusivement physique et chimique, que le fonctionnement de la machine animale est profondément modifié par certaines formes de l’énergie électrique."

Le docteur Bordier décrit la méthode de d’Arsonval.

Dans l’Autoconduction " les tissus sont placés dans un champ électrique oscillant, créé par un solénoïde qui entoure de toute parts l’individu. Les tissus vivants sont alors le siège de courants induits extrêmement énergiques, grâce à la fréquence de la source électrique ; ils se comportent comme des conducteurs fermés sur eux mêmes, et sont parcourus par des courants d’induction de grande intensité."

La preuve "objective" d’un effet physique ?

si l’on continue à soumettre, pendant un temps assez long, le sujet à l’auto-induction, on voit la peau se vasculariser et se couvrir de sueur". Par ailleurs " comme l’ont bien établi les expériences de M. d’Arsonval, à l’aide de sa méthode calorimétrique, aussi précise qu’élégante, les courants de haute fréquence augmentent la quantité de chaleur produite par l’homme et les animaux soumis à leur action."

Sur le plan physique, l’observation n’a rien d’étonnant. Les fours à micro-ondes sont l’exemple même des effets possibles de tels courants poussés à leur extrême. Il se dit d’ailleurs que l’ingénieur Percy Spencer, qui a inventé les fours à micro-onde, a eu cette idée alors qu’il travaillait à la construction de magnétrons, éléments des antennes des radars. Etant à proximité d’un radar en activité, il constata qu’une barre chocolatée avait fondu dans sa poche. Plus tard il fera éclater des pop-corns et cuire un oeuf à proximité de la même antenne.

Sans aller jusqu’à cuire son patient, une action thermique de "l’antenne Darsonval" est donc constatable mais pour le reste que peut-on guérir par une telle méthode ?

Tout ! Et particulièrement les maladies "nerveuses" qui sont "à la mode" de l’époque et font le bonheur des Charcot, Freud et autres thérapeutes. Nous n’en donnerons pas ici le détail.

Les modes changent rapidement et bientôt une spectaculaire panacée envahira les cabinets des médecins. Des ondes produites par une simple ampoule à vide et capables de traverser le corps humain : les rayons X !

(voir : Les Rayons X et les rayonnements radioactifs, quand on ne parlait pas encore de principe de précaution..

Pour autant la médecine décrite comme "électrothérapie" fera encore le bonheur de nombreux médecins.


Une installation de Darsonvalisation, La Science et la Vie 1916.


voir aussi :

La maison de la rue Blanche du docteur Félix Allard


Voir aussi :

La reconnaissance de l'électricité médicale et ses "machines à guérir" par les scientifiques français (1880-1930) par Christine Blondel.

Ci dessous, le docteur Vigouroux à la Salpètrière (gravure de Daniel Verge)

 

_______________________________________________________________________

 

Et aujourd’hui ?

La Darsonvalisation a encore ses adeptes :

Voir, par exemple, cette publicité : L’Equilios est un générateur d’ondes électromagnétiques pulsées à haute fréquence de dernière génération.

Cette action électromagnétique fut aussi appelée “darsonvalisation” et utilisée jusqu’au début des années 50. Elle tomba en désuétude avec l’avènement des grands laboratoires pour renaître ensuite avec l’Equilios.

Avec toujours les mêmes propositions miracles des marchands de "pseudo-science".


Que dit la législation ?

INRS :

Imperceptibles, les champs électromagnétiques peuvent avoir des effets sur la santé de l’Homme. Il est donc important de rappeler quelques notions afin d’évaluer le risque lié à l’exposition aux champs électromagnétiques au poste et dans l’environnement de travail. Cette évaluation sert de base pour la mise en place de mesures de prévention permettant de réduire les expositions professionnelles.

Réglementation et risques liés aux champs électromagnétiques :

Voir aussi sur le site de la société française de radioprotection :

Radiosensibilité : variabilité individuelle et tests prédictifs

et son club histoire

Partager cet article
Repost0
18 janvier 2018 4 18 /01 /janvier /2018 17:00

Monsieur Jean-Jacques Kress a rassemblé et restauré une magnifique collection d'appareils électriques anciens. Il nous a autorisés à en présenter ici l'album photographique. (voir lien).

 

 

Partager cet article
Repost0
18 janvier 2018 4 18 /01 /janvier /2018 08:16

Ce texte a été publié dans le bulletin de l'Union des Physiciens à l'occasion du bicentenaire de la révolution de 1789. Une année qui a fait date également pour ce qui est de la "révolution chimique" initiée par Lavoisier et les chimistes français. 

Voir : http://bupdoc.udppc.asso.fr/consultation/article-bup.php?ID_fiche=7885

Une suite lui a été donnée sous la forme de manipulations réalisées en classe.

voir : En classe avec Lavoisier.

 

 

Partager cet article
Repost0
17 janvier 2018 3 17 /01 /janvier /2018 08:35

A class of the lycée de l’Elorn, in Landerneau, Brittany, France, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages


Northern Finistère, in Brittany, is not really welknown for its chemical industry. Yet, since the 17th century, that is to say when chemistry started to develop, a chemical industry was carried out, non stop, around seaweed.

In the past

The industry of « soda » (sodium carbonate) first developed. This product is extracted from ashes of dried seaweed. It is necessary to make glass and soap. That activity came to an end at the end of the 18th century when new ways were discovered.

It resumed in 1829 after Bernard Courtois, the chemist, had discovered in 1812 a new an useful product in seaweed ashes : iode. It is mainly used in photo-making and medecine. Its production in Brittany stopped in 1952, because of the competition of iodine, extracted from nitrates in Chili.

Today

Today, the extraction of alginates contained in big laminaria has taken over. In 1883, Edward Stanford isolated the algine of seaweed, later Axel Kefting, a Norvegian, extracted algine acid. Its production on a large scale started in 1930. Brittany produces about 2000 tons in its factories in Lannilis and Landerneau. Alginates are thickening and stabilying agents, that are used both in the pharmaceutical industry and food industry, or in that of paper, colouring or moulding products.

The use of seaweed in food, pharmacy or cosmetics is less known., though worthy of interest. Many laboratories in Finistere work in that field for « top quality » products, often meant for export.

The seconde C of the lycée de l’Elorn, in Landerneau, has chosen to discover that ancient, rich and varied industry of seaweed, while dealing with different parts of its curriculum. We present the result of that work in the following pages.


Our work on the seaweed industry

Retour ligne automatique
The story of the seaweed industry, that of soda and iodine, is made lively thanks to the museum of seaweed gatherers in Plouguerneau, which supplied us with the ash from ovens, operated for shows during the summer, so as to analyse it.

The « Centre for the Study and Promotion of Seaweed (C.E.V.A) » in Pleubian looks for the properties of seaweed and implements new uses. We contacted them for the food applications (the making of a « flan »)

Today, many factories work on seaweed. It’s the case for DANISCO and TECHNATURE, which agreed to help us.

DANISCO deals with laminar collected in North-Finistere, it’s one of the largest European producers of alginates. We visited the factory. It supplied us with refined alginate of sodium for our experiments.

TECHNATURE packages alginates and other seaweed extracts, to make casting products, cosmetics, or food products. Its customers are in the U.S.A, as well as in Japan, Spain, or France. The company allowed us to test its products and to prepare new ones, following its advice (face creams).

Our school syllabus is well adapted to a study of seaweed. In a first part, the study of ionic compounds can be made on the seaweed ash. In a second part, the study of organic molecules can be made on alginates. The appliances are varied and entertaining.

We have divided the form into four groups, each responsible for a part of the work and for the links with one of the companies concerned.

- Seaweed ashes. Analysis, extraction of iodine.(in connection with the museum of the seaweed gatherers)

- Extraction of alginates. (in connection with Danisco company)

- The use of alginates for castings . (with Technature).

- The making of a new face cream.(with Technature)

- The making of a flan (a pudding) (with C.E.V.A Pleubian)

- Translations into English ( documentation and reports).

- A video report on our project ( and the making of a poster).


Seaweed in the past
Treating the « soda loaves »

The burning of seaweed

Each year, the museum of seaweed gatherers, in Plouguerneau, on the Northern coast of Finistère organises the burning of seaweed in its old furnaces so as to get ashes with a large amount of soda. We went on the spot, to extract a « soda loaf », in a compact shape. The hot cinders seem to be melting, and are cast in the cells of the furnace, while they are cooling.

The mechanical processing of the ashes :

We first roughly broke the « soda loaf » with a hammer. We, then, crushed the ashes in a mortar with a pestel. Then, we sifted them, to obtain a thin powder.

The washing of the ashes

We left to boil 20g of the ashes in 100 cm3 of water for about 5 min. We filtered it. A solid deposit of about 9g was left (weighed after drying). The solution contains soluble substances, mainly carbonate and iodur ions.



The search for carbonate ions

The carbonate ions, CO32- , represent the main active principle of soda and gives it its basic character.(in the present the word « soude » ,in French, refers to sodium hydroxide).

Experimental file

 

measure of the pH using pH paper and pHmeter : The solution has a pH=11, so that, its basic character is obvious.

Characterisation of the CO32- ions :

(first method) : action of the calcium chlorur. You get a precipitate of insoluble calcium carbonate according to the reaction :

Ca2++ CO32- -> CaCO3

(second method) : action of the concentrate chlohydric acid. You can notice an important emission of carbon dioxide, according to the reaction :

CO32-+ 2H+-> CO2 + H2O

The extraction of iodine

We extracted iodine from the solution, through the action of Hydrogen Peroxide H2O2 in acid surrounding.

experimental File

- Acidification of the solution using concentrated hydrochloric acid : The first result of the acidification of the solution is to let out carbon dioxide coming from carbonate ions.

- Iodine is let out using hydrogen peroxide : The hydrogen peroxide oxidises iodide ions, iodine appears and turns the solution brown. One can also see a light precipitate of iodine.

- Getting the gassy iodine to appear by heating the solution : a light heating lets out purple vapours of iodine.

 

Measuring the iodine : this experiment is part of the curriculum of the 1ere S form, so we asked them to measure the iodine in the solution. The iodine is measured with the thiosulphate of sodium. They found 1,29g of iodine in 100g of ash.


Seaweed Today

A visit to two factories processing alginates

In the Landerneau area, two firms process seaweed for theit alginates. The Danisco firm has specialized in extracting alginic acid from raw seaweed. The Technature firm uses alginates to elaborate finished goods.

Danisco :

Mr Pasquier, the manager, conducted our guided tour of the factory. Every year the plant (9000 m2 of workshops and laboratories) processes 6000 tons of dried seaweed to produce 3000 tons of alginates.

The alginates supply numerous industries all over the world. Used as binders and thickeners, they can be found in inks, creams, glues, rubbers, toothpastes. As gelling agents they come in useful to make jams, custards, impression powders. These products ar marketed under the brand name SOBALG.

The Danisco firm provided us with a smal quantity of purified alginic acid so that we could study its properties. The danisco manager also explained to us a great length how they extract the alginates from the seaweed.

We conducted that experiment in our scholl laboratory.

Technature :

We were welcomed by the manager, Mr Le Fur, and the commercial manager, Mr Winckler (today manager of Lessonia). The firm packages the alginates for its different uses : casts, cosmetics, foodstuffs.

The firm has clients all over the world (Euope, the USA, Japan...). The breton products ar renowned for their quality and their purity.

The firm gave us some casting alginates so that we could make a cast.

They also offered us to elaborate a new "beauty mask". We will give more details about these two experiments in the following pages.

How to create a beauty mask

Technature entrusted us with the creation of a beauty mask. It is a new product the company wishes to launch. It’s a product made with tropical fruits, based on casting alginate.

The formula of the « tropical fruit » mask.

Product usedQuantityproperties
Bioprunte (alginate of sodium, sulfate of calcium, salt of phosphorus, neutral charge of diatomees earth.)30gWhen in close contact with the skin, it creates a film. The mask sets into action active agents, and also has a mechanical effect ( it eliminates the dead cells of the skin).
Pinaple Pouder Retour ligne manuel
Retour ligne manuel
Papaye powder

0,15 g

Retour ligne manuel
Retour ligne manuel
0,15 g

The cells of the skin are constantly replaced (every one to two months). With age, the process slows down, and the dead cells accumulate, which cause the skin to thicken. The dead cells are retained by a ciment of proteins ; it has to be hydrolysed to eliminate the dead cells.Retour ligne automatique
Papaye contains papaïn, an enzym, which acts on the hydrolysis of proteins. Pinaple contains bromeline which plays the same role.
yellow pigment n°5Retour ligne automatique
yellow pigment n°6

0,03g

Retour ligne automatique
0,03g

Naturel pigments are used to obtain a pleasant colour of fruit.
Flavours : fruit de soleil, papaye0,015gThey are natural extracts from fruit, with very concentrated effects.
Our work

First, we tested an alginate mask, with no additive, so as to watch the « casting » effect of that product. Retour ligne automatique
We then tried several formulas, by varying the colours and flavours.Retour ligne automatique
At last, we tested the resulting cast.

How to operate

Dose : 30g of powder for 100g of water

Dilution of the product : Pour the water quickly on the powder. Mix briskly until you get a smooth paste.Retour ligne automatique
Important : water must be at 20°C

How to apply it : Apply it immediately over the face, avoid the eyes. It sets after about six minutes.

It takes about 15 mn to use

Résult

your skin is finer

your complexion Retour ligne automatique
brighter


Agar-Agar and the formation of colloids

Agar-Agar is a Malaysian word. That product used in Malaysia, was also often used in Japon and the Far East. Agar-Agar comes from various seaweed, in particular from the gelidum species. Those seaweed, after frequent washings, are dried and boiled. The colloid we get is then dehydrated and turned into powder.

Agar-agar has a stong gelling power. If you add two gramms into a quarter of a litre of water, and boil it for five minutes, you get a hard gel, if tou leave it to cool.

At the biology laboratory, Agar-Agar is used to prepare nutrient supports for plants.Retour ligne automatique
At the chemistry laboratory, it can be used to prepare conducting electrolytic bridges in the study of batteries.

We prepared Agar-Agar colloid, coloured with helianthine. Agar-agar is also used to prepare pudding, but for that we used a seaweed from Brittany, Pioka, which contains carrageenans.

Agar-Agar : an excellent gelling agent extracted from red algae


« Pioka » and carrageenans

Pioka is the Breton name of a seawweed that is also called sea « lichen ». It is collected at every low tide, its high price attracts seasonal pickers. Its scientific name is chondrus crispus. The active principle extracted from it is made up of carrageenans. It has a real gelling power in milk. In the traditionnal way, it is used by people along the Northern coast of Brittany to make puddings named « flans ».

The préparation of seaweeds.Retour ligne automatique
After the gathering of seaweeds, they are spread on the dunes, and dried by often turning them. They can be also washed with fresh water to clear them of salt at various remains. At the end of treatment, the seaweeds are white and dry, and can then be preserved.

Just before use. Retour ligne automatique
One can improve the rising process with several soakings ans rinsings. The seaweeds must completely get rid of their « sea » smell.Retour ligne automatique
Seaweeds today, in food

A recipe of pioka pudding

We have prepared the recipe of this dessert. It was given to us by an elderly person from the Brignogan area in North-Finistere. She herself had seen her parents make it.

N.B : carrageenans of pioka easily give a gel with milk, it gives no gel with water. For that, on should use the agar-agar we also tested (it is also used for puddings).

Our recipe

Take a handful of dried seaweeds per quarter of a litre of milk. Rinse them. Make them boil for five minutes stirring them. Filter the hot milk with a strainer or a skimming ladle. Make it boil again for five minutes with the flavour choose, either chocolate or vanilla ( for exemple, three sponfils of Nesquick per quarter of litre of milk). Pour into bowls. Leave it cool and place it into a fridge.


Conclusion

When we started working on this project, we were not aware chemistry had been concerned with seaweed for so long.

We now, know, that here, people make products that are used all over the world.

Our impression is that the chemists who do that work really enjoy it, they extract from nature the best it can offer. The issue will be to increase the stock of seaweed and no doubt to plan its culture.

As far as our school project is concerned, it developed without our knowing it. The theorical study, the search for information, the experiments at the laboratory, the visit of factories, the elaboration of a new product, the test of an old recipe...all that was part of our project.

By writing this project, we intend to keep track of our work.

Partager cet article
Repost0
16 janvier 2018 2 16 /01 /janvier /2018 12:28
Par Gérard Borvon.

 

Un article à classer dans la rubrique des souvenirs d'un prof de physique qui ne voulait pas s'ennuyer en classe

__________________________________________________________________

 

Dans les dernières années de cette fin de 20ème siècle déjà lointain, j'accompagnais de façon régulière mes élèves du lycée de l'Elorn à Landerneau au centre des archives municipales voisin de l'établissement. Là, dans le reste de verdure d'un ancien parc, un manoir bourgeois, portant les marques de ses multiples remaniements, conservait les collections de revues de vulgarisation scientifique qui garnissaient l'ancienne bibliothèque. Elles avaient fait le bonheur des notables et lettrés landernéens de ce 19ème siècle où la ville était un prospère centre industriel. Elles allaient reprendre du service cent ans plus tard.

Le manoir de Keranden à Landerneau, ancien centre des archives municipales.

 

L'une de ces revues avait particulièrement du succès par ses articles écrits dans un style vivant et surtout pour ses nombreuses illustrations : La Nature. Revue des sciences et de leurs applications aux arts et à l'industrie. Le thème de nos recherches tournait généralement autour de : " Les Sciences, il y a 100 ans". Ainsi, année après année, ces lycéennes et lycéens ont découvert les premiers pas de leur actuelle "modernité". Les débuts, par exemple, des dessins animés puis du cinéma avec le "phénakistiscope".

 

Nous avons découvert le "phénakistiscope (alors orthographié "phénakisticope" ) dans un numéro de la Nature de 1880. On y parlait alors du "phénakisticope de Joseph Plateau".

 

 

Plus tard, dans la même revue datée de 1882 un article sur "l'enseignement par les jeux" décrivait l'appareil sous le terme de "zootrope".

 

 

L'idée nous vint alors d'apprendre en nous amusant, comme nous invitait à le faire l'auteur de l'article, et d'illustrer la notion de persistance rétinienne par la construction de phénakistiscopes.

 

L'article nous ramena à un article daté de 1879 où il était question des allures du cheval photographiées par Eadweard Muybridge.

 

 

 

Nous retrouvions Muybridge dans un article daté de 1882 où était décrite sa méthode : 24 appareils disposés le long d'une piste où l'animal photographié coupait des fils déclenchant la prise de vue.

 

 

 

L'article annonçait également les publications de Etienne-Jules Marey au sujet de son "fusil photographique".

 

 

Tout cela se terminait par l'article de 1895 qui annonçait la naissance du cinématographe des frères Lumière.

 

 

Pour aller plus loin.

L'ensemble de ce travail a fait l'objet d'un article publié dans le bulletin de l'Union des Physiciens sous le titre : Du phénakisticope au cinématographe un moment de physique amusante.

 

 

Cet article détaille tout ce qui n'a été qu'évoqué ci-dessus.

Ce phénakistiscope a été réalisé en marqueterie par les élèves de la section marqueterie du lycée de l'Elorn à Landerneau

 

 

Un Phénakistiscope en mouvement.

 

 

 

Dans le musée des frères Lumière à Lyon.

 

 

On peut lire aussi :

 

L'histoire des sciences, un outil pour la classe :

quatre expériences pédagogiques.

Partager cet article
Repost0

Présentation

  • : Le blog d'histoire des sciences
  • : Comme l'art ou la littérature,les sciences sont un élément à part entière de la culture humaine. Leur histoire nous éclaire sur le monde contemporain à un moment où les techniques qui en sont issues semblent échapper à la maîtrise humaine. La connaissance de son histoire est aussi la meilleure des façons d'inviter une nouvelle génération à s'engager dans l'aventure de la recherche scientifique.
  • Contact

Recherche

Pages

Liens